Applications of Bilinear Control Theory in Nonlinear Spectroscopy

Kunal Marwaha

University of California, Berkeley

April 25, 2019

Here, I wish to motivate bilinear system identification techniques for $3^{\rm rd}$ order spectroscopy.

The von Neumann equation describes time evolution of a density matrix $\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|$ where $\{|\psi_i\rangle\}$ spans the Hilbert space:

$$\frac{\partial \rho(t)}{\partial t} = -\frac{i}{\hbar} [H(t), \rho(t)]$$

Integrating:

$$\rho(t) = \rho(0) + \frac{-i}{\hbar} \int_0^t dt_1[H(t_1), \rho(t_1)]$$

One can solve by repeatedly inserting the above equation into itself:

$$\rho(t) = \rho(0) + \frac{-i}{\hbar} \int_0^t dt_1[H(t_1), \rho(0)] + \left(\frac{-i}{\hbar}\right)^2 \int_0^t dt_1 \int_0^{t_1} dt_2[H(t_1), [H(t_2), \rho(t_2)]]$$

And so on:

$$\rho(t) = \rho(0) + \sum_{n=1}^{\infty} \left(\frac{-i}{\hbar}\right)^n \int_0^t dt_1 \int_0^{t_1} dt_2 \dots \int_0^{t_{n-1}} dt_n [H(t_1), [H(t_2), \dots [H(t_n), \rho(t_n)] \dots]]$$

This series is traditionally defined as

$$\rho(t) = \sum_{n=0}^{\infty} \rho_n(t) = \rho(0) + \sum_{n=1}^{\infty} \rho_n(t)$$

where $\rho_0(t) = \rho(0)$ and $\rho_n(t) = \int_0^t dt_1 \dots \int_0^{t_{n-1}} dt_n[H(t_1), \dots [H(t_n), \rho(t_n)] \dots]$. Re-inspecting the above equation, I find a recursive relationship for the nth order perturbation using linearity of the commutator:

$$\rho_n(t) = \frac{-i}{\hbar} \int_0^t d\tau [H(\tau), \rho_{n-1}(\tau)]$$

By differentiating both sides, I derive an equation of motion for the $n^{\rm th}$ order perturbation:

$$\frac{\partial \rho_n(t)}{\partial t} = \frac{-i}{\hbar} [H(t), \rho_{n-1}(t)]$$

In nonlinear spectroscopy, polarization is related to the perturbation of the density matrix as follows (see Mukamel):

$$P_n(t) = \langle \mu \rho_n(t) \rangle$$

I wish to use a general form to relate the polarization measurement $P_3(t)$ with nth order perturbations of the density matrix. In superoperator form (where the elements of $n \times n$ density matrices concatenate to create $1 \times n^2$ vectors), let us define **x** as a concatenation of $\rho_n, 0 \le n \le 3$:

$$\mathbf{x}(t) = \begin{pmatrix} \rho_0(t) \\ \rho_1(t) \\ \rho_2(t) \\ \rho_3(t) \end{pmatrix}$$

The third-order polarization measurement $P_3(t)$ is therefore

$$P_3(t) = \begin{pmatrix} 0\\0\\0\\F \end{pmatrix} \cdot \mathbf{x}(t)$$

such that applying F (in operator form) behaves as follows: $F \cdot = \langle \mu \cdot \rangle$. The $1 \times 4n^2$ vector $\mathbf{x}(t)$ is governed by the time evolution equation

$$\frac{\partial \mathbf{x}(t)}{\partial t} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ M(t) & 0 & 0 & 0 \\ 0 & M(t) & 0 & 0 \\ 0 & 0 & M(t) & 0 \end{pmatrix} \mathbf{x}(t)$$

where $\mathbf{x}(0) = \begin{pmatrix} \rho(0) \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ and applying $M(t)$ (in operator form) behaves

as

follows: $M(t) \cdot = \frac{-i}{\hbar} [H(t), \cdot].$

This is a general form to describe polarization measurement $P_3(t)$ and perturbations of the density matrix.

Next, I investigate rudimentary linear control theory.

Standard state-space representation of a linear system has this form:

$$\dot{\mathbf{x}}(t) = A(t)\mathbf{x}(t) + B(t)\mathbf{u}(t)$$

$$\mathbf{y}(t) = C(t)\mathbf{x}(t) + D(t)\mathbf{u}(t)$$

If the system is LTI (linear and time-invariant), then matrices A, B, C, Dwill be time-independent. Our hope is to formulate the nonlinear spectroscopy problem in a form suitable for control theory analysis.

Our observation $P_3(t)$ can be interpreted as $\mathbf{y}(t)$ as shown above. In particular, $C(t) = C = \begin{pmatrix} 0 & 0 & F \end{pmatrix}$ and $D(t) = \mathbf{0}$. Can the time dependence within H(t) be modeled as input $\mathbf{u}(t)$ to the system? In general, $H(t) = H_0 + E(t) \cdot \mu$.

Let us define superoperators M_0, M_1 such that $M(t) = A_0 + E(t) \cdot M_1$. By linearity of the commutator, applying M_0 (in operator form) can behave as $M_0 \cdot = \frac{-i}{\hbar}[H_0, \cdot]$, and applying M_1 (in operator form) can behave as $M_1 \cdot = \frac{-i}{\hbar}[\mu, \cdot]$.

Now, all matrices are time-independent, but there remains coupling between $\mathbf{x}(t)$ and E(t). In particular, we have the evolution equation:

$$\dot{\mathbf{x}}(t) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ M_0 & 0 & 0 & 0 \\ 0 & M_0 & 0 & 0 \\ 0 & 0 & M_0 & 0 \end{pmatrix} \mathbf{x}(t) + \begin{pmatrix} 0 & 0 & 0 & 0 \\ M_1 & 0 & 0 & 0 \\ 0 & M_1 & 0 & 0 \\ 0 & 0 & M_1 & 0 \end{pmatrix} \mathbf{x}(t) E(t)$$

Bilinear system theory may be well-equipped to handle this coupling.

In general, 3^{rd} order spectroscopy experiments employ four-wave mixing: at time $t = t_0$, an electric pulse excites a molecule in its ground state. Two more pulses fire at the molecule (at time $t = t_1, t_2$), adjusting the molecular state. A last pulse (at $t = t_3$) is designed such that the molecule is forced back into its ground state, emitting some measured energy. This last pulse is the "measurement".

In a classical controls context, the input $\mathbf{u}(t)$ models the electric field controls E(t). E(t) is pulse-like at $t = 0, t_1, t_2$, and 0 everywhere else. (Since the last pulse constitutes a measurement, there are effectively no inputs after time $t = t_2$).

The system evolution, then, after time $t = t_2$, is linear with equations as given below:

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ M_0 & 0 & 0 & 0 \\ 0 & M_0 & 0 & 0 \\ 0 & 0 & M_0 & 0 \end{pmatrix} \mathbf{x}(t)$$
$$\mathbf{y}(t) = C\mathbf{x}(t) = (0 \quad 0 \quad 0 \quad F)\mathbf{x}(t)$$

For convenience, let us define time $t = t_2 = 0$. In general, we may not know M_0 nor x(0). We can use classical subspace identification techniques to approximate M_0 . Then, we will use some methods from bilinear control theory to approximate M_1 .

The closed-form solution to this linear system is given below:

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0)$$

Here, e^A is shorthand for the series expansion of e^x :

$$e^A = I + A + A^2/2 + A^3/6 + \dots$$

In this formulation, A is nilpotent, so e^A has a finite number of terms. In particular:

$$e^{At} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ M_0 t & 1 & 0 & 0 \\ M_0^2 t^2 / 2 & M_0 t & 1 & 0 \\ M_0^3 t^3 / 6 & M_0^2 t^2 / 2 & M_0 t & 1 \end{pmatrix}$$

Since $\mathbf{y}(t) = (0 \quad 0 \quad F)\mathbf{x}(t)$, we can find a closed-form solution for $\mathbf{y}(t)$:

$$\mathbf{y}(t) = F(M_0^3 t^3 / 6 \quad M_0^2 t^2 / 2 \quad M_0 t \quad 1) \mathbf{x}(0)$$

Expanding $\mathbf{x}(0)$ in terms of its perturbation components, the above equation simplifies:

$$\mathbf{y}(t) = F[M_0^3 t^3 \rho_0(0)/6 + M_0^2 t^2 \rho_1(0)/2 + M_0 t \rho_2(0) + \rho_3(0)]$$

Thus, for a particular E(t), the output polarization maps to a cubic function of time (after the third pulse). System identification techniques to identify M_0 and $\{\rho_i(0)|1 \le i \le 3\}$ could prove useful. (Here, ρ_0 is a constant, so it should still represent the ground state of the molecule, as it did before E(t) was applied.)