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Abstract

We will continue with some properties of the hydrogen atom. First compare it to the harmonic oscillator, then look into dipole

transitions and end with the coupling to static magnetic fields.

In the last lecture (ato, a) we discussed the basic properties of the hydrogen atom and found its eigenstates.
We will now summarize the most important properties and look into its orbitals. From that we will under-
stand the understand the interaction with electromagnetic waves and introduce the selection rules for dipole
transitions.

1 The energies of Hydrogen and its wavefunctions

In the last lecture, we looked into hydrogen and saw that we could write it’s Hamiltonian as:

Ĥatom = Ĥr +
L̂

2µr2
+ V (r) (1)

Ĥr = − ~2

2µ

1

r2

∂

∂r

(
r2 ∂

∂r

)
(2)

We could then separate out the angular part and decompose it as:

ψ(r, θ, φ) =
u(r)

r
Ylm(θ, φ) (3)

The radial wave equation reads then:

− ~2

2µ

d2

dr2
u(r) +

(
− Ze2

4πε0r
+

~2

2µ

l(l + 1)

r2

)
︸ ︷︷ ︸

Veff

u(r) = E u(r), (4)

1.1 Energy scales

We can now make (4) dimensionless, by rewriting:

r = ρã0 (5)
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So we rewrite:

− ~2

2µã2
0

d2

dρ2
u(r) +

(
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4πε0ã0

1

ρ
+

~2

2µã2
0

l(l + 1)

ρ2

)
u(r) = E u(r), (6)

This allows us to measure energies in units of:

E = εRy,m (7)

Ry,m = − ~2

2µã2
0

(8)

The equation reads then:

d2

dρ2
u(ρ) +

(
µZe2ã0

~24πε0

2

ρ
− l(l + 1)

ρ2

)
u(ρ) = εu(ρ), (9)

If we finally set

ã0 =
4πε0~2

µZe2
(10)

We obtain the especially elegant formulation:

d2

dρ2
u(ρ) +

(
2

ρ
− l(l + 1)

ρ2

)
u(ρ) = εu(ρ), (11)

We typically call ã0 the Bohr radius for an atom with reduced mass µ and with a nucleus with charge
number Z. Ry,m is the Rydberg energy of such an atom.

The universal constant is defined for the infinite mass limit µ ≈ me and for Z = 1. As a length scale we
introduce the Bohr radius for infinite nuclear mass

a0 =
4πε0~2

mee2
= 0.5 angstrom = 0.05 nm. (12)

The energy scale reads:

Ry,∞ =
mee

4

32π2ε20~2
(13)

≈ 2.179× 10−18 J (14)

≈ e× 13.6 eV (15)

≈ h× 3289 THz (16)

So if we excite the hydrogen atom for time scales of a few attoseconds, we will coherently create superposition
states of all existing levels. But which ones ? And at which frequency ?

1.2 Solution of the radial wave equation

At this stage we can have a look into the energy landscape:

The energies read then

En = −Ry,m
n2

with n = 1, 2, 3, · · · (17)
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Figure 1: Energy potential of the hydrogen atom

for l = 0 and

En = −Ry,m
n2

with n = 2, 3, 4, · · · (18)

for l = 1. Despite the different effective potentials (see 1), we get the same eigenstates. This looks like an
accidental degeneracy. Actually, there is a hidden symmetry which comes from the so-called “Runge-Lenz”
vector. It only occurs in an attractive 1/r-potential (ato, a). This vector reads:

A = p× L− r (19)

Finally, we can also visualize the radial wavefunctions for the hydrogen atom as shown in Fig. 2.

Figure 2: Radial wavefunctions

Associated with these radial wavefunctions, we also have the angular profiles. Where Ylm(θ, φ) are the
spherical harmonics as shown in Fig. 3.
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Figure 3: The spherical harmonics. Fig is taken from Ref. (Demtröder, 2018)
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Their shape is especially important for understanding the possibility of coupling different orbits through
electromagnetic waves.

2 The electric dipole approximation

Figure 4: Interaction between an atom and an electromagnetic wave ~E with wave vector ~k. The states —g¿
and —e¿ stand for the ground and excited state and ~ω0 is the energy of the resonant transition between
the states.

We consider an atom which is located in a radiation field. By resonant coupling with the frequency ω0, it
can go from the ground state |g〉 to the excited state |e〉 (see 4).

The potential energy of a charge distribution in a homogeneous electromagnetic field ~E is:

Epot =
∑
i

qi~ri · ~E. (20)

If the upper limit of the sum is 2, we obtain the dipole moment

~D = e~r. (21)

For the hydrogen atom, the distance corresponds to the Bohr radius.

Note. Apart from the monopole, the dipole potential is the lowest order term of the multipole expansion
of the scalar potential φ:

φ (~r) =
1

4πε0

~D · ~r
|~r|3

(22)

~E(~r) =~∇φ(~r) =
3
(
~D · ~r

)
~r/|~r|2 − ~D

4πε0|~r|3
. (23)

For the dipole approximation we consider the size of the atom and compare it to the wavelength λ of the
electromagnetic field:

〈|r|〉 ∼ 1angstrom� λ ∼ 103angstrom (24)

• Therefore, we assume that the field is homogeneous in space and omit the spatial dependence:

E(r, t) ≈ E(t) (25)
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Figure 5: A charge distribution in an electromagnetic field $\vec{E}$

• The correction term resulting from the semi-classical dipole approximation then is

Ĥ1(t) = −e~̂r · ~E(t) = − ~̂D · ~E(t) (26)

• Why can the magnetic field be ignored in this approximation? The velocity of an electron is ∼ αc.
The hydrogen atom only has small relativistic corrections. If we compare the modulus of the magnetic
and the electric field, we get: ∣∣∣ ~B∣∣∣ =

| ~E|
c

(27)

The electric field contribution thus dominates.

Now we choose

~E = E0~ε cos
(
ωt− ~k · ~r

)
(28)

and do time-dependent perturbation theory (see (Jendrzejewski et al.)):

|ψ(t)〉 = γ1(t)e−iE1t/~ |1〉+γ2(t)e−iE2t/~ |2〉 (29)

+

∞∑
n=3

γne−iEnt/~ |n〉 (30)

As initial condition we choose

γi(0) =

{
1 for i = 1
0 for i > 1

(31)
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We write ω0 = (E2 − E1)/~ and get to first order ˆvecD:

γ2(t) =

Rabi frequency Ω︷ ︸︸ ︷
E0

2~

〈
2| ~̂D · ~ε |1

〉(ei(ω0+ω)t − 1

ω0 + ω
+

ei(ω0−ω)t − 1

ω0 − ω

)
︸ ︷︷ ︸

time evolution of the system

(32)

The term before the round brackets is called dipole matrix element:〈
2| ~̂D · ~ε |1

〉
= e

∫
ψ2 (~r) · ~r · ~ε · ψ1 (~r) d~r. (33)

3 Selection rules

We can now look into the allowed transition in the atom as they are what we will typically observe within
experiments.

3.1 Change of parity

The parity operator is defined as:

P̂ψ(~r) = ψ(−~r) (34)

For the eigenfunction we have:

P̂ψ(~r) = λψ(~r) (35)

λ = ±1 (36)

The eigenvalues are called odd and even. From the definition of the dipole operator we can see that it is of
odd parity. What about the parity of the states that it is coupling ? If they have both the same parity than
the whole integral will disappear and no dipole transition can appear.

We can become more concrete for the given eigenfunctions as we have within spherical coordinates:

(r, θ, φ)→ (r, π − θ, φ+ π) (37)

For the orbitals of the hydrogen atom we then have explicitly:

P̂ψnlm(r, θ, φ) = Rnl(r)Ylm(π − θ, φ+ π) (38)

= (−1)lRnl(r)Ylm(, θ, φ) (39)

This gives us the first selection rule that the orbital angular momentum has to change for dipole
transitions ∆l = ±1.

• s orbitals are only coupled to p orbitals through dipole transitions.

• p orbitals are only coupled to s and d orbitals through dipole transitions.
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the basic orbitals

coupling of          and

coupling of          and

Figure 6: Coupling of different orbitals.

3.2 Coupling for linearly polarized light

Having established the need for parity change, we also need to investigate the influence of the polarization
of the light, which enters the dipole operator through the vector ε. In the simplest case the light has linear
polarization (π polarized) and we can write:

~E(t) = ~ezE0 cos(ωt+ ϕ) (40)

This means that the dipole transition element (33) is now given by:

〈2| ~D · ~ez |1〉 = e

∫
ψ2(~r)zψ1 (~r) d~r (41)
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We can now transform z into the spherical coordinates z = r cos(θ) = r
√

4π
3 Y10(θ, φ). We can further

separate out the angular part of the integral to obtain:

〈2| ~D · ~ez |1〉 ∝ e
∫

sin(θ)dθdϕYl′,m′(θ, ϕ)Y10(θ, φ)Yl,m(θ, ϕ) (42)

This element is only non-zero if m = m′ (see appendix C of (Hertel and Schulz, 2015) for all the gorious
details).

Figure 7: Dipole selection rules for different polarizations of light.

3.3 Circularly polarized light

Light has not just linear polarization, but it might also have some circular polarization. In this case we can
write:

~E(t) =
E0√

2
(cos(ωt+ ϕ)~ex + sin(ωt+ ϕ)~ey) (43)

~E(t) = Re
(
~e+E0e

−iωt+φ) (44)

~e± =
~ex ± i~ey√

2
(45)

So light with polarization ~ε = ~e+ is called right-hand circular (σ+) and ~ε = ~e− is called left-hand circular
(σ−). Let us now evaluate the transition elements here. The dipole operator element boils now down to the
evaluation of the integral:

〈l′,m′, n′|x+ iy |l,m, n〉 (46)

As previously we can express the coupling term in spherical coordinates:

x+ iy√
2

= −r
√

4π

3
Y11(θ, ϕ) (47)

Evaluation of the integrals lead now to the rule the projection of the quantum number has to change
m′ = m+ 1. In a similiar fashion we find for left-hand circular light the selection rule m′ = m− 1. All the
results are summed up in Fig. 7.

In the next lecture (ato, b) we will investigate the influence of perturbative effects and see how the fine
structure arises.
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