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Abstract

In this lecture we will simply summarize the most important messages from the previous lectures.

1 Lecture 1

We started the semester with the most important cooking recipes of quantum mechanics (Jendrzejewski
et al., a).

1.1 Schrödinger picture

1. We have to identify a relevant Hilbert space.

2. Identify the observables that all us to fully describe the quantum state.

Then we solve the Schrödinger equation:

i~∂t |ψ(t)〉 = Ĥ(t) |ψ(t)〉 . (1)

For a time-independent Hamilton operator Ĥ, we find eigenstates |φn〉 with corresponding eigenenergies En
:

Ĥ |φn〉 = En |φn〉 . (2)

If we know the initial state of a system

|ψ(0)〉 =
∑
n

αn |φn〉 , (3)

where αn = 〈φn|ψ(0)〉, we know the full dimension time evolution

|ψ(t)〉 =
∑
n

αn |φn〉 exp−iEnt/~. (4)
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1.2 Entanglement

Consider a quantum system S formed by two subsystems S1 and S2. For each of them we write:

|ψ1〉 =

M∑
m

am |αm〉 , (5)

|ψ2〉 =

N∑
n

bn |βn〉 . (6)

The full wavefunction |ψ〉 has the general form:

|ψ〉 =

M∑
m

N∑
n

cmn |αm〉 ⊗ |βn〉 . (7)

The system is entangled if we cannot write

|ψ〉 =
M∑
m

N∑
n

ambn |αm〉 ⊗ |βn〉 (8)

2 Lecture 2

We continued with the cooking recipes in the second lecture (Jendrzejewski et al., b).

2.1 Heisenberg picture

We can also look at the evolution of the system in terms of evolving operators:

d

dt
ÂH =

i

~

[
Ĥ, ÂH

]
+ ∂tÂH (9)

2.2 Statistical Mixtures and Density Operator

If only the subsystem of a pure quantum state is accessible to measurements, or the state of the system is
not known at the microscopic level (statistical ensemble!), the state of the system has to be described by a
Hermitian density operator

ρ̂ =

N∑
n=1

pn |φn〉 〈φn| . (10)

Here, 〈φn| are the eigenstates of ρ̂, and pn are the probabilities to find the system in the respective states
|φn〉. With this knowledge we can now determine the result of a measurement of an observable A belonging
to an operator Â.

〈Â〉 = tr(ρ̂ · Â) =
∑
n

pn 〈φn| Â |φn〉 . (11)

The time evolution of the density operator can be expressed with the von Neumann equation:

i~∂tρ̂(t) = [Ĥ(t), ρ̂(t)]. (12)
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2.3 Uncertainty Relation

The product of the variances of two noncommuting operators has a lower limit:

∆Â ·∆B̂ ≥ 1

2

∣∣∣〈[Â, B̂]〉∣∣∣ , (13)

where the variance is defined as ∆Â =

√〈
Â2
〉
−
〈
Â
〉2

.

2.4 Ehrenfest Theorem

With the Ehrenfest theorem, one can determine the time evolution of the expectation value of an operator
Â:

d

dt

〈
Â
〉

=
1

i~

〈[
Â, Ĥ

]〉
+
〈
∂tÂt

〉
. (14)

3 Lecture 3

We now went on to a discussion of the two-level atom (Jendrzejewski et al., c), which has two eigenstates
|0〉.

3.1 Eigenstates

The eigenstates can be expressed in matrix notation:

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, (15)

We can then write the Hamiltonian in its most general form as:

Ĥ =
~
2

(
∆ Ωx − iΩy

Ωx + iΩy −∆

)
(16)

Another useful way of thinking about the two-level system is as a spin in a magnetic field. Let us remind us
of the definitions of the of the spin-1/2 matrices:

sx =
~
2

(
0 1
1 0

)
sy =

~
2

(
0 −i
i 0

)
sz =

~
2

(
1 0
0 −1

)
(17)

We then obtain:

Ĥ = B · ŝ with B = (Ωx,Ωy,∆) (18)

By diagonalizing Eq. (16) we obtain the energies:

E± = ±~
2

√
∆2 + |Ω|2 (19)

The Eigenstates then read:

|ψ+〉 = cos

(
θ

2

)
e−iϕ/2 |0〉+ sin

(
θ

2

)
eiϕ/2 |1〉 , (20)

|ψ−〉 = − sin

(
θ

2

)
e−iϕ/2 |0〉+ cos

(
θ

2

)
eiϕ/2 |1〉 , (21)

where

tan(θ) =
|Ω|
∆

(22)
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3.2 Rabi oscillations

The most common question is then what happens to the system if we start out in the bare state |0〉 and
then let it evolve under coupling with a laser ? So what is the probability to find it in the other state |1〉:

P1(t) = |〈1|ψ(t)〉|2 . (23)

P1(t) can be expressed with ∆ and Ω alone. The obtained relation is called Rabi’s formula:

P1(t) =
1

1 +
(

∆
|Ω|

)2 sin2

(√
|Ω|2 + ∆2

t

2~

)
(24)

3.3 Bloch sphere

We can visualize the two level system as a spin-1/2, evolving on the Bloch sphere. So let us go back to the
formulation of the Hamiltonian in terms of spins as in Eq. (18). Applying a field in x-direction leads to a
rotation of the spin around the x axis with velocity Ω. We can now use this general picture to understand
the dynamics as rotations around an axis, which is defined by the different components of the magnetic field.

4 Lecture 4

We now moved on to understand how some multi-level system, i.e. an atom, evolves under the influence of
an oscillating field (Jendrzejewski et al., d). We wrote down the Hamiltonian:

Ĥ = Ĥ0 + V̂ (t). (25)

Here, Ĥ0 belongs to the atom and V (t) describes the time-dependent field and its interaction with the atom.
We assume that |n〉 is an eigenstate of Ĥ0 and write:

Ĥ0 |n〉 = En |n〉 . (26)

The system |ψ(t)〉 can be expressed as follows:

|ψ(t)〉 =
∑
n

γn(t)e−iEnt/~ |n〉 , (27)

we obtained a set of coupled differential equations

i~γ̇ke−iEkt/~ =
∑
n

γne−Ent/~ 〈k| V̂ |n〉 , (28)

i~γ̇k =
∑
n

γne−i(En−Ek)t/~ 〈k| V̂ |n〉 (29)

They determine the full time evolution.

4.1 Rotating wave approximation

We will now assume that the coupling term in indeed an oscillating field with frequency ωL, so it reads:

V̂ = V̂0 cos(ωLt) =
V̂0

2

(
eiωlt + e−iωlt

)
(30)
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The relevant quantity is then the detuning δ = ωL−ω0. If it is much smaller than any other energy difference
En − Ei, we directly reduce the system to the following closed system:

i~γ̇i = Ωγ̃f (31)

i~ ˙̃γf = δγ̃f + Ω∗γi (32)

withγf = γ̃fe
iδt/~.

4.2 Adiabatic elimination

For far detuning, where δ � Ω the final state |f〉 gets barely populated and the time evolution can be
approximated to to be zero. This approximation is known as adiabatic elimination:

i~γ̇i =
|Ω|2

δ
γ̃i (33)

The last equation described the evolution of the initial state with an energy Ei = |Ω|2
δ .

4.3 Perturbation theory

We assume that we can write:

V̂ (t) = λĤ1(t) (34)

, where λ is a small parameter. Having identified the small parameter λ, we make theperturbative ansatz

γn(t) = γ(0)
n + λγ(1)

n + λ2γ(2)
n + · · · (35)

and plug this ansatz in the evolution equations and sort them by terms of equal power in λ.

The 0th order reads

i~γ̇(0)
k = 0. (36)

For the 1st with the initial conditions ψ(t = 0) = |i〉 we get:

i~γ̇(1) = ei(Ef−Ei)t/~ 〈f | Ĥ1 |i〉 (37)

Integration with γ
(1)
f (t = 0) = 0 yields

γ
(1)
f =

1

i~

t∫
0

ei(Ef−Ei)t
′/~ 〈f | Ĥ1(t′) |i〉dt′, (38)

so that we obtain the probability for ending up in the final state:

Pi→f (t) = λ2
∣∣∣γ(1)
f (t)

∣∣∣2 . (39)

Ffor a constant perturbation this results in Fermi’s golden rule:

Pi→f = T
2π

~2

∣∣∣〈f | V̂ |i〉∣∣∣2 δ(ω0) (40)
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5 Lecture 5

We now moved on to the most fascinating topic of AMO, the hydrogen atom (Jendrzejewski et al., e). It’s
Hamiltonian then reads:

Ĥ ' ~̂p
2

r

2mp
− Ze2

4πε0r
(41)

This Hamiltonian commutes with the angular momentum operator ~L, whose components have the commu-
tation relationship:

[Li, Lj ] = i~εijkLk (42)

So we can decompose the solution over the eigenvalues of

~̂L2 |l,ml〉 =~2l(l + 1) |l,ml〉 (43)

L̂z |l,ml〉 =~ml |l,ml〉 (44)

• l is a non-negative integer and it is called the orbital angular momentum quantum number.

• ml takes values −l,−l + 1, ..., l − 1, l and it is sometimes called the projection of the angular
momentum.

The corresponding wave functions are

〈θ, φ|l,ml〉 = Ylm(θ, φ). (45)

Where Ylm(θ, φ) are the spherical harmonics. We then make the ansatz:

ψ(r, θ, φ) = R(r)Ylm(θ, φ) (46)

Substituting R(r) = u(r)/r leads to

− ~2

2µ

d2

dr2
u(r) +

(
− Ze2

4πε0r
+

~2

2µ

l(l + 1)

r2

)
︸ ︷︷ ︸

Veff

u(r) = E u(r), (47)

which is known as the “radial wave equation”. It is a very general result for any central potential. The
energies read:

En = −Ry,m
n2

with n = 1, 2, 3, · · · (48)

Ry,m =
µZ2e4

32π2ε20~2
(49)

The typical energy scale for distances is the Bohr radius for infinite nuclear mass

a0 =
4πε0~2

mee2
(50)

=
~

mecα
= 0.5 angstrom = 0.05 nm. (51)
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For the energy we get

Ry,∞ =
mee

4

32π2ε20~2
(52)

=
1

2
mec

2︸ ︷︷ ︸
511 keV

α2 ≈ 13.6 eV. (53)

The constant

α =
e2

4πε0~c
=

1

137.035999139(31)
(54)

is the fine structure constant.

6 Lecture 6

We had a short intermezzo on the harmonic oscillator and then talked about the electric dipole operator
(Jendrzejewski et al., f):

6.1 The harmonic oscillator

Its hamiltonian reads:

Ĥ =
p̂2

2m
+
mω2

2
x̂2 (55)

We will define p = P
√
mω and x = X√

mω
. The next step is then to define the ladder operators:

â =
1√
2~

(X + iP ) (56)

â† =
1√
2~

(X − iP ) (57)

(58)

So the Hamiltonian can now be written as:

Ĥ = ~ω
(
N̂ +

1

2

)
with N̂ = a†a (59)

The Fock basis is defined by:

N̂ |n〉 = n |n〉 (60)

The ladder operators act as:

â |n〉 =
√
n |n− 1〉 (61)

â† |n〉 =
√
n+ 1 |n+ 1〉 (62)

So we can construct the full basis by just defining the action of the lowering operator on the zero element
a |0〉 = 0 and the other operators are then constructed as:

|n〉 =
(a†)n√
n!
|0〉 (63)
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6.2 Electric dipole operator

We now saw the the action of an oscillating electric field on the atom can be described by

Ĥ1(t) = −e~̂r · ~E(t) = − ~̂D · ~E(t) (64)

Now we choose

~E = E0~ε cos
(
ωt− ~k · ~r

)
(65)

and do time-dependent perturbation theory (see (Jendrzejewski et al., a)):

|ψ(t)〉 = γ1(t)e−iE1t/~ |1〉+γ2(t)e−iE2t/~ |2〉 (66)

+

∞∑
n=3

γne−iEnt/~ |n〉 (67)

As initial condition we choose

γi(0) =

{
1 for i = 1
0 for i > 1

(68)

We write ω0 = (E2 − E1)/~ and get for the second order:

γ2(t) =

Rabi frequency Ω︷ ︸︸ ︷
E0

2~

〈
2| ~̂D · ~ε |1

〉(ei(ω0+ω)t − 1

ω0 + ω
+

ei(ω0−ω)t − 1

ω0 − ω

)
︸ ︷︷ ︸

time evolution of the system

(69)

The term before the round brackets is called dipole matrix element:〈
2| ~̂D · ~ε |1

〉
= e

∫
ψ2 (~r) · ~r · ~ε · ψ1 (~r) d~r. (70)

From the form of (70), we found that the orbital angular momentum has to change for dipole transitions
∆l = ±1. The selection rules for different polarizations of light are then visualized in Fig. 1

Figure 1: Dipole selection rules for different polarizations of light.

7 Lecture 7

We moved on to the discussion of stationnary perturbation theory examplified at the hydrogen atom (Jen-
drzejewski et al., g).
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7.1 Pertubation theory

We set up the problem as: (
Ĥ0 + λŴ

)
|ψ〉 = E |ψ〉 (71)

λ is a very small parameter and Ĥ0 is describing the hydrogen atom system. We will note the eigenvalues
and eigenstates of this system as:

Ĥ0 |ψn〉 = εnψn (72)

While, we do not know the exact solution of |ψ〉 and the energy E, we decide to decompose them in the
following expansion of the small parameter λ:

|ψ〉 = |0〉+ λ |1〉+ λ2 |2〉+O(λ3) (73)

E = E0 + λE1 + λ2E2 +O(λ3) (74)

To zeroth order in λ we obtain:

Ĥ0 |0〉 = E0 |0〉 (75)

For the first order we obtain:

E1 = 〈ψn| Ŵ |ψn〉 (76)

|1〉 =
∑
i6=n

〈ψi|Ŵ |ψn〉
(εn−εi) |ψi〉 (77)

Second order pertubation results in:

E2 =
∑
i 6=n

| 〈ψi| Ŵ |ψn〉 |2

(εn − εi)
(78)

7.2 Static external magnetic fields

The potential energy of a bound electron in a magnetic field ~B = B0~ez is then:

VB = − ~ML · ~B (79)

=
µB
~
LzB0 (80)

Its contribution is directly evaluated from Eq. (76) to be:

EZeeman = µBmB0 (81)

This is the Zeeman splitting of the different magnetic substates.

7.3 Relativistic corrections

We can write for the energy:

En =
1

2
mec

2︸ ︷︷ ︸
rest mass energy

Z2α2 1

n2
(82)

We conclude:
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• Relativistic effects are most pronounced for deeply bound states of small quantum number n.

• Relativistic effects effects will become important once (Zα) ≈ 1, so they will play a major role in heavy
nuclei.

It leads to spin-orbit coupling:

ĤLS =
ge

4πε0

e2

2m2
ec

2r3
~̂L · ~̂S (83)

, where ~S is the spin1/2 of the electron. It breaks the conservation of orbital angular momentum. However,
the sum of spin and orbital angular momentum:

~J = ~L+ ~S (84)

will commute. We can now rewrite eq. (83) in terms of the conserved quantities through the following
following little trick:

~̂L · ~̂S =
1

2

(
~̂J2 − ~̂L2 − ~̂S2

)
(85)

This directly implies that Ĵ2, L̂2 and Ŝ2 are new conserved quantities of the system. We use:{
Ĥ0, ~̂L

2 ~̂S, ~̂J, Ĵz

}
. (86)

The corresponding basis states |n, l, j,mj〉 are given by:

|n, l, j,mj〉 =
∑
ml,ms

|n, l,ml,ms〉 〈n, l,ml,ms|n, l, j,mj〉︸ ︷︷ ︸
Clebsch-Gordan coefficients

(87)

8 Lecture 8

We moved on to the helium atom (Jendrzejewski et al., s):

H = − ~2

2me
∇2
r1 −

~2

2me
∇2
r2 +

e2

4πε0

(
−Z
r1
− Z

r2
+

1

r12

)
(88)

In natural units we found:

H̃ = −1

2
∇2
r̃1 −

1

2
∇2
r̃2 +

(
−Z
r̃1
− Z

r̃2
+

1

r̃12

)
(89)

Within these units we have for the hydrogen atom En = Z2

2
1
n2

8.1 Symmetries

The exchange operator is defined as:

P12ψ(r1, r2) = ψ(r2, r1) (90)

So we can see that there are two sets of eigenvalues with λ = ±1.

P12ψ± = ±ψ± (91)

We will call:

• ψ+ are para-states

• ψ− are ortho-states

It is a first symmetry of the helium atom.
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8.2 Spin and Pauli principle

So we can decompose the total wave function as:

ψ = ψ(r1, r2) · χ(1, 2) (92)

To construct the full wave function we need to take into account the Pauli principle, which telles us for
Fermions that the full wavefunction should anti-sysmmetrc under exchange of particles:

ψ(q1, q2, · · · , qi, · · · , qj , · · · ) = −ψ(q1, q2, · · · , qj , · · · , qi, · · · ) (93)

This tells us that each quantum state can be only occupied by a single electron at maximum. Sorting out
the solutions we have

χ− =
1√
2

(| ↑↓〉 − | ↓↑〉) (94)

χ+,1 = | ↑↑〉 (95)

χ+,1 =
1√
2

(| ↑↓〉+ | ↓↑〉) (96)

χ+,−1 = | ↓↓〉 (97)

(98)

So χ+ is associated with spin 1 and χ− is associated with spin 0.

8.3 Level scheme

We can now continue through the level scheme of Hydrogen and try to understand our observations. No
radiative transitions between S = 0 and S = 1, which means that we will basically have two independent
schemes. They are characterized by:

• electronic excitations, which are the main quantum numbers N .

• orbital angular momentum, with quantum number L.

• total spin with quantum number S

• total angular momentum J , but the spin-orbit coupling in Helium is actually extremly small.

We will then use the term notation:
N2S+1LJ (99)

the superscript is giving the multiplicity or the number of different J levels.

8.4 Independent particle model

We will now go back to the influence of the interaction on the eigenenergies of the system. Going back to
Eq. (89), we will treat the single particle Hamiltonians as unperturbed system and H12 as the perturbation:

H0 = −1

2
∇2
r1 −

Z

r1
− 1

2
∇2
r2 −

Z

r2
(100)

H1 = − 1

r12
(101)

At this stage we can try to calculate the groundstate energy. The electron interaction leads within first order
perturbation theory to an energy shift of:

E
(1)
0 = 〈ψ0|

1

r12
|ψ0〉 =

5

8
Z (102)
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In the variational approach, we will try to find the minimal energy of the ground state. Namely we will
minimize:

Evar =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

(103)

To apply the variational approach, we introduce a screened charge Zeff in the the groundstate of the
hydrogen atom, which reads:

ψvar(r1, r2) = e−Zeff (r1+r2) (104)

It becomes minimal at

Zeff = Z − 5

16
(105)

9 Lecture 9

We moved on to the properties of the excited states (Jendrzejewski et al., h).

9.1 Exchange Interaction

To attack this problem we approach it pertubatively in the free independent particle model. And we found
for the singlet, triplet states:

∆ES = Jnl +Knl (106)

∆ET = Jnl −Knl (107)

The first term is called direct (Coulomb) term and the second term is known as exchange term.

9.2 Dipole selection rules

Due to the LS coupling scheme, we get:

|ψ(~r1, ~r2)〉 ⊗ |χ(1, 2)〉 . (108)

There is no entanglement between the degrees of freedom and no mixed symmetry between spin and spatial
degree of freedom! If we plug this into the dipole coupling we get,:〈

i|~̂r |f
〉

= 〈χ(1, 2)|χ′(1, 2)〉 ·
〈
ψ(~r1, ~r2)|~̂r |ψ′(~r1, ~r2)

〉
(109)

1. The first factor has to be zero if the total spin is not the same. Then the relative alignment is not the
same. Thus, there are no dipole transitions between singlet and triplet atoms!

2. From the second factor we infer that transitions can only occur between states of opposite parity, e.g.,
∆l = ±1, together with angular momentum conservation.

10 Lecture 10

In lecture 10 we studied the propagation of light through dielectric media (Jendrzejewski et al., i). We
assume a mono-chromatic plane wave to come in, such that we can write down the electric field as:

~Ein = E0~εe
ikz−iωLt (110)

This incoming field will polarizes the gas of dipoles. For the propagation we will do the following assumptions:
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• The atoms are independent.

• We can describe them as small dipoles.

• We can describe the light in the semi-classical approximation.

We can then write the dipole operator as:

〈 ~D〉 = E0~α (111)

We call α the polarizability. For a large gas with a constant density of dipoles n, we obtain a macroscopic
polarization of:

~P = n〈 ~D〉 (112)

= ε0χ~E (113)

χ =
nα

ε0
(114)

χ is the susceptibility of the gas.

10.1 Propagation of light

At this stage we would like to understand the propagation of an electric field through such a polarized
medium. The general Maxwell equation actually reduces to:

∂

∂z
E +

1

c

∂

∂t
E =

ik

2ε0
P (115)

This equation becomes especially transparent, if we investigate it for very long times, such that we can
perform a Fourier transformation and obtain:

∂

∂z
E = i

ω

c
E +

ik

2ε0
P (116)

= i

(
ω

c
+
k

2
χ(ω)

)
E (117)

E(ω, z) = E0e
i(ω

c + k
2χ(ω))z (118)

We can then see that:

• The imaginary part of the susceptibility leads to absorption on a scale l−1 = k
2 Im(χ(0))

• The real part describes a phase shift. The evolution of the electric field can be seen as propagating

with a wavevector k → k+ k
2 Re(χ(0)), so the dielectric medium has a refractive index n = 1 + Re(χ(0))

2

If the electric field has a certain frequency distribution, we obtain:

E(t, z) = eizkχ(0)/2E(t− z/vg, 0) (119)

vg =
c

1 + ωL

2
dχ
dω

(120)

So the group velocity is controlled by the derivative of the susceptibility !
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10.2 The two-level system

In this basis, the dipole element reads:

〈D〉 = 〈e|D |g〉 γ∗eγg (121)

= dσeg (122)

In the second line we introduced the notations:

• d = 〈e|D |g〉

• The product γ∗eγg can identified with the off-diagonal component of the density operator σ = |ψ〉 〈ψ|.
We will often call it coherence.

This density operator approach allows us to introduce spontaneous decay in a very straight-forward fashion.
So the full equations read now:

Ṅg = iΩ(σeg − σge) + ΓNe (123)

σ̇ge = −iδσge + i(Ng −Ne)Ω− Γ2σge (124)

At this stage we can find the steady-state solutions by setting Ṅg = σ̇ge = 0. This leads too:

Ne =
1

2

Ω2 Γ2

Γ

(ω0 − ωL)2 + Γ2
2 + Ω2 Γ2

Γ

(125)

σge = i
Ω

2

Γ2 − i(ωL − ω0)

Γ2
2 + (ω0 − ωL)2 + Ω2Γ2/Γ

(126)

For very small coupling strength we can neglect the Ω dependence in the coherence and hence the suscepti-
bility reads:

α =
d2

2

(ωL − ω0) + iΓ2

Γ2
2 + (ω0 − ωL)2

(127)

We obtain now rather directly that:

• Absorption is maximal on resonance.

• There is no dephasing on resonance.

• For large detunings the absorption can be increasingly neglected and the media becomes refractive as
it only keeps an optical index.

The population and coherence in the two-level system will saturate as a substantial amount of atoms is
excited and the excited fraction is limited to 1/2 of the atoms. This kind of observations motivates for

practical purposes to introduce the saturation intensity Isat ∝ Γ2

2 , which allows us to rewrite the previous
to equations as:

Ne =
1

2

I/Isat
1 + I/Isat

(128)
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11 Lecture 11

We now went on to the laser (Jendrzejewski et al., j). For the propagation of light we found in general:

dI

dz
= (Ne −Ng)σI (129)

So if we have most atoms in the excited state and neglect the atoms in the ground state we can actually have
light amplification. Amplification will happen if the intensity after a round trip is higher than the initial
one:

G(0) >
1

(1− T )(1−A)
(130)

11.1 Steady-state operation

Assuming that the lasing condition is fullfilled, we have to have an electric field, which remains exactly
constant after each round trip.This implies to conditions:

• The gain has to cancel the losses:

G =
1

(1− T )(1−A)
(131)

• The phase after the round trip has to be a multiple of 2π

For a cavity of length L, the wavelength λp has to be an integer fraction:

Lcav = pλp with p ∈ N (132)

ωp/2π = p
c

L
(133)

12 Lecture 12

Having set up the very basics for atom-light interaction we dived into the study of entanglement (Jendrze-
jewski et al., k).

We learned about parametric down-conversion on a non-linear crystal, which is heavily pumped. Importantly,
we saw that it allows for th creation of entangled photons.

The two emitted photons are analyzed by rotatable polarizers Â(θ), which has two detection paths ±1. We
can express it then in our basis states of vertical polarization |V 〉 and horizontal polarization |H〉. The
polarizer aligned with H has eigenvalues:

Â |H〉 = + |H〉 (134)

Â |V 〉 = − |V 〉 (135)

The possible outcome of our experiments are the four states {HH,HV, V H, V V } and hence we could de-
compose our full wavefunction as:

|ψ〉 = c0 |HH〉+ c1 |HV 〉+ c2 |V H〉+ c3 |V V 〉 (136)

We then found that the created state we entangled. We could quantify it through the density operator:

ρ̂ =
∑
i

ηi |i〉 〈i| (137)
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• The reduced density operator, which shows mixed states if there is entanglement:

ρ̂1 = tr2(ρ̂) (138)

In this case, ρ̂ is the density operator of a pure state and tr2 is the trace over the Hilbert space of
particle 2.

• The von Neumann entropy, which measures the remaining uncertainty within a quantum state:

S = −tr(ρ̂ ln ρ̂) (139)

= −
∑
i

ηi ln ηi =
∑
i

ηi ln
1

ηi
(140)

The experimental observation were then compared to Bell’s inequalities for local observables:

S = E(θ1, θ2)− E(θ1, θ
′
2) + E(θ′1, θ2) + E(θ′1, θ

′
2) (141)

−2 ≤ S ≤ 2 (142)

The E are the expectation values for the rotated beam splitters. This is known as the Bell–Clauser–Horn–
Shimony–Holt (CHSH) inequalities.

13 Lecture 13

We then moved on to the study of multi-electron systems (Jendrzejewski et al., l).

In natural units, the Hamiltonian can be written as:

Ĥ =

N∑
i

(
−1

2
~∇2
ri −

Z

ri

)
+
∑
i<j

1

rij
. (143)

13.1 The central field approximation

This problem is hard to solve, but we could massively simplify it through the central field approximation:

Ĥ = Ĥs + Ĥ1 (144)

Ĥs =

N∑
i

(
−1

2
~∇2
ri + Vcf(ri)

)
(145)

Vcf(ri) = −Z
ri

+ S(ri), (146)

The perturbation is then difference between the spherically symmetric part of the interaction and the true
electron-electron interaction:

Ĥ1 =
∑
i<j

1

rij
−
∑
i

S(ri) (147)

S(ri) describes now the screening of the nucleus due to the other electrons.We now focused on the study of
the part with spherical symmetry Ĥs, which further made all the particles independent. The ψi can be split
up into a radial and an angular part. For the radial part we get u(r) = r ·R(r):(

−1

2

d2

dr2
+ Vcf(r) +

l(l + 1)

2r2

)
unl = Enlunl(r). (148)

The major difference to the H atom is that the degeneracy of the l levels is lifted because of Vcf. The effective
potential has then to be calculated numerically.
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13.2 The periodic table

We then have the following quantum numbers:

• n, which is electron shell.

• l, which is the orbital angular momentum with l < n.

• s, which is the spin of the electron and it can be ±1/2

As the electrons are fermions we can fill up each of the nl states with two of them. We then write down the
configuration of the electron by writing down the numbers of electrons per nl configuration. So we get the
periodic table shown. We typically use the following notation:

• A configuration is the distribution of the electrons over the different orbits.

• Electrons with the same n are part of the same shell.

• Electrons with the same n and l are part of the same sub-shell.

• The inner shells are typically filled and form the core.

• The outermost shell is typically named the valence shell.

13.3 The quantum defect

For alakils we could describe the screening effect empirically through the quantum defect. We simply write
down the energy levels as:

Enl ∼= −Ry,∞ ·
(

1

n− δl

)2

, (149)

14 Lecture 14

We now also added the residual coupling and the spin to the problem (Jendrzejewski et al., p).

14.1 On the residual coupling

This conservation of single angular momenta will be broken by Ĥ1. However, these forces are internal, which
implies that the total angular momentum ~L =

∑
i
~li is conserved. So we should label the states in the complex

Hamiltonian by ~L. The total angular momentum will then set the symmetry of the spatial wavefunction.
This has wide-reaching consquence on the spin degree of freedom through exchange interaction.

14.2 The Pauli principle and spin

• According to the Pauli principle, each single-particle state can be occupied only by one electron. After
distributing all electrons over different single-particle eigenstates (“orbitals”), the resulting state needs
to be fully antisymmetrized (Slater determinant).

• There is a simplification for atoms with many electrons: The angular momenta and spins of a complete
subshell with n, l, {m−l, · · · ,ml} add to zero and can be ignored in the further considerations (“shell
structure”).

• Alkali atoms are the simplest atoms with shell structure: All but one valence electron add to L =
0, S = 0. The ground state thus has L = 0, S = 1/2.
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• For more complex atoms, the valence electrons couple to a total orbital angular momentum L with a
given symmetry according to particle exchange.

14.3 Fine splitting

To take into account the spin, we can decompose the Hamiltonian as follows:

Ĥ =

N∑
i

(
1

2
~∇2
~ri

+ Vcf(ri)

)
︸ ︷︷ ︸

Ĥ0

+

N∑
j>i

(
1

rij
− S(ri)

)
︸ ︷︷ ︸

Ĥ1

+

N∑
i

ci(~ri)~̂Li · ~̂Si︸ ︷︷ ︸
Ĥ2

(150)

The term Ĥ0 is from the central field and the independent particle model. The Hamiltonian Ĥ1 results
from the residual electrostatic interaction and the Hamiltonian Ĥ2 comes from the spin-orbit coupling of
individual electrons.

The question is now which term dominates. Since Ĥ2 ∝ (Zα)2, we can ignore it if Z is small. This is the
case for light atoms. So far, we have been concerned with the “Russell-Saunders” coupling, also known as
LS coupling. However, for atoms with large Z, the term Ĥ2 in the Hamiltonian (150) might become large,
since it is proportional to (Zα)2. We can ignore Ĥ1 instead.

According to Ĥ2 the individual electron orbital angular momentum l pairs with the spin s of the same
electron to form the total electron angular momentum j. This will lead us to the concept of jj coupling.

14.4 Hyperfine splitting

The nucleus has a spin angular momentum ~I, which leads to a magnetic moment:

~µI = gIµN ~I (151)

We have introduced the new constants:

• gI , which is always in the order of one, but it changes due to the changing structure of the different
nuclei.

• The nuclear magneton µN = e~
2mp

= me

mp
µB .

As with the spin-orbit coupling this nuclear spin will experience the magnetic field produced by the motion
of the electrons ~Bel and we have:

Hhfs = −~µI · ~Bel (152)

= Ahfs~I ~J (153)

This couples ~I and ~J and the full structure is given by total angular momentum:

~F = ~J + ~I (154)

We saw then that it can have big practical importance in hydrogen, Cs clocks and cold atoms.

15 Lecture 15

We moved on to simple diatomic molecules (Jendrzejewski et al., q). We started out with the molecular
hydrogen ion. The full Hamiltonian of the system at study would read:

Ĥ = −1

2
∇2

r −
1

2M

(
∇2

RA
+∇2

RB

)
+ V (r,RA,RB) (155)
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15.1 The Born-Oppenheimer approximation

The idea of the Born-Oppenheimer approximation is to separate the fast electronic motion from the
slow motion of the heavy nuclueus (M = 1836). So the ansatz is:

Ψ(RA,RB, r) = ψe(RA,RB, r) · ψn(RA,RB) (156)

After some approximations we obtain:

ψeT̂nψn +
(
T̂eψe + V ψe

)
ψn = Eψeψn (157)

So we will first solve the electronic motion:(
T̂e + V̂

)
ψe = Ee(RA,RB)ψe (158)

To be explicit we obtain for the ionic hydrogen:

He = −1

2
∇2

r −
1

rA
− 1

rB
+

1

R
(159)

At this stage we can just focus on the electronic part to understand the structure of simple diatomic molecules,
while assuming that R is an independent parameter. Most importantly, we will focus at usual on symmetries,
which will tell us more about the allowed states in the system.

In the second step we solve the nuclear motion:

T̂nψn + Eeψn = Eψn (160)

15.2 Symmetries of the electronic wavefunction

This discussion follows along similiar lines as for the hydrogen atom and the helium atom. We basically can
categorize the different states by their properties. This will help us later enormously to understand allowed
transition etc.

For any (diatomic) molecule we break the spherical symmetry that we relied on for the atomic systems. This
means that angular momentum is not a conserved quantity anymore.

However, the Hamiltonian (159) is invariant under the rotation around the axis of the diatomic molecule, so
Lz is conserved. Here the quantum number can have the integer values Λ = 0, 1, 2, · · · . We also note them
Σ,Π,∆,Φ or σ, π, δ, φ for single electrons.

We can further perform an reflection containing the axis of the molecule R. So for each Λ we have positive
and negative values. We can use them to categorize states by Λ±.

We further have symmetry under parity operation for homo-nuclear, diatomic molecules A2, see (159).

If the system does not have explicit spin-orbit coupling, the total spin S of the system will be conserved. So
the full notation for electronic states is typically:

2S+1Λ±g,u (161)

Most of the time the ground state of the system is 1Σ+
g .
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15.3 Linear combination of atomic orbitals

We then moved on to study the stability of the states through decomposition of the molecule wavefunction
over the atomic orbitals of its components. We could make the simple Ansatz:

ψe(r) = c1ψ1s(RA) + c2ψ1s(RB) (162)

Going through the symmetry requirements, we find that we can write the full wavefunction as:

ψg,u(r) =
1√

2± 2S
(ψ1s(RA)± ψ1s(RB)) (163)

The contribution S describes the overlap of the two atomic orbitals

S =

∫
drψ∗1s(RA)ψ1s(RB) (164)

We can then evaluate the energy of the two states through the variational principle:

Eg,u = 〈ψg,u| Ĥe |ψg,u〉 (165)

=
1

2± 2S
(〈ψA| ± 〈ψB |) Ĥe (|ψA〉 ± |ψB〉) (166)

=
EAA ± EAB

1± S
(167)

(168)

In the most simplistic interpretation the gerade state does not have a node in the middle and it is therefore
of smaller kinetic energy.

15.4 Neutral hydrogen molecule

In the following we will only consider the electronic part, which adds up too:

Ĥ = H0,1 +H0,2 + 1
r12

+ 1
R (169)

H0,i = − 1
2∇

2
ri −

1
rA,i
− 1

rB,i
(170)

So we can make the Ansatz:

ψ(r1, r2) = ψg(r1) · ψg(r2) (171)

= 1
2+2S (ψ1s(rA1)ψ1s(rB2) + ψ1s(rB1)ψ1s(rA2) + ψ1s(rA1)ψ1s(rA2) + ψ1s(rB1)ψ1s(rB2)) (172)

The first two terms describe kovalent binding. They describe situations where each electron is associated
with one core. The last two terms describe ionic binding as one associated both electrons with a single
atom and then looks one the attraction of another ionic core. This is quite similiar to the interaction in the
H+

2 molecule.

Within this approach, one actually finds a binding energy of Eb = −2.64 eV at an equilibrium distance of
Re = 1.4a0. A substantial approximation was here that we neglected the interaction between the electrons,
which should repel.

As the two electrons should repel each other, we can assume that the ionic binding is strongly suppressed.
So the wavefunction is now assumed to be:

ψHL = 1√
2+2S2

(ψ1s(rA1)ψ1s(rB2) + ψ1s(rB1)ψ1s(rA2)) (173)

Again, the wavefunction cannot be factorized and the two electrons are entangled because of the interac-
tions. Recognize the common theme with the Helium atom. Calculation of the binding energy within this
approximation leads to Eb = −3.14 eV and Re = 1.6a0.
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We then went into the different binding mechanism (Jendrzejewski et al., r) as visualized in Fig. 2

Figure 2: Binding in diatomic molecules

We saw that we can have a general expression for the van-der-Waals interaction:

E2 = −C6

R6
(174)

16.1 Molecular orbit theory

We would like to put together more complex molecules step-by-step. The idea was to build up from the
orbits of the hydrogen ion. We then saw that certain orbits will repel each other.

In a first step, there has to be sufficient wave function overlap, such that there can be constructive and
destructive interference. This implies that the orbit has to be large enough to ’see’ the other atom, but not
to diffuse. This typically implies that only the valence shell has to be considered.

Only orbits of the same symmetry group can form a bond. The main symmetry property here is the total
Lz with respect to the axis of the molecule. We have:

• s, pz and dz2 have Lz = 0 (Σ).

• px, py as well as dyz, dzx have |Lz| = 1(Π)

Having a sufficient overlap is obviously not enough, the two orbits also have to have the same a similiar
energy, which is easily fulfilled in a homonuclear molecule.
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17 Lecture 17

We finally discussed the transitions in molecules (Jendrzejewski et al., m). In the center of mass frame we
get the nuclear motion: (

− 1

2M
∆~R + Ee(~R)

)
ψn(~R) = Eψn(~R), (175)

We can separate the angular motion and radial motion They describe the rotational and vibrational levels
of the nucleus. For the “rigid” molecule where the distance between the atoms is fixed, the rotational energy
is simply given by:

Erot(R) =
J · (J + 1)

2MR2
(a.u.) (176)

where M is the reduced mass of the nuclei in atomic units and J is the angular momentum quantum number.
The molecule H2 has then a rotational frequency ω/2π = 3 · 1012 · J(J + 1).

The vibrational leves can be found from a harmonic approximation of the Bron-Oppenheimer potential. The
harmonic expansion around the minimum reads:

Ee ≈ E0 +
1

2
Mω2

0(R−R0)2 (177)

For the example of H2, we get ω/2π ∼ 1014 Hz. A better approximation of the vibrational level structure is
the Morse potential. In this case we approximate the molecular potential curves by:

Ee(R) ≈ Vmorse(R) (178)

Vmorse(R) = hcDe(1− e−ax)2 with a =

√
k

2hcDe
(179)

x = R−R0 (180)

17.1 Molecular transitions

We are now ready to discuss the different transitions that might appear in the spectrum. We will start
out with the transitions of the lowest frequency, the rotational transitions.Pure rotational transitions exist
in polar molecules. The transition rules are di-atomic molecules: ∆J = ±1 and ∆MJ = 0,±1. For more
complex molecules these transition rules can vary quite substantially as the rotational degree of freedom
might have to be described by an additional quantum number.

Vibrational transistions will only happen in molecules for which the permanent electric dipole changes as a
function of distance. Once again they are non-existant in homo-nuclear molecules.

A transition of the ground state molecular branch to a higher electronic shell will happen at constant
internuclear radius as they are much faster than the nuclei motion. This implies that an electronic transition
will typically excite the molecule into a high vibrational branch. The factor S(ν, ν′) = | 〈ν| |ν′〉 |2 is then
called the Franck-Condon factor and it describes the strength of the transitions.

18 Lecture 18

We now moved on to the quantization of electromagnetic field (Jendrzejewski et al., n). We took a lagrangian
in quantized in the Coulomb gauge. We expressed the Lagrangien in terms of the vector potential and found
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that the electric field is the conjugate variable to the vectore potential. This resulted in the classical
Hamiltonian:

H =

∫
d~kH(~k) (181)

H(~k) =
∑
i

(
1

ε0
Π∗i (

~k, t)Πi(~k, t) + ε0c
2k2A∗i (

~k, t)Ai(~k, t)

)
(182)

Using raising and lowering operators it took the quanitized form:

H =

∫
d~kH(~k) (183)

Ĥ(~k) =
∑
i

~ωk
2

(
âi(~k)â†i (

~k) + â†i (
~k)âi(~k)

)
(184)

=
∑
i

~ωk
(
â†i (
~k)âi(~k) +

1

2

)
(185)

We can also express the actual field operators in terms of the normal modes:

Ê(~r) = i

∫
d~k

(2π)3/2

∑
i

(
~ω
2ε0

)
~ei

(
âi(~k)ei

~k~r − â†i (~k)e−i
~k~r
)

(186)

B̂(~r) =
i

c

∫
d~k

(2π)3/2

∑
i

(
~ω
2ε0

)
(~k × ~ei)

(
âi(~k)ei

~k~r − â†i (~k)e−i
~k~r
)

(187)

Â(~r) =

∫
d~k

(2π)3/2

∑
i

(
~

2ε0ω

)
~ei

(
âi(~k)ei

~k~r + â†i (
~k)e−i

~k~r
)

(188)

19 Lecture 19

Next we the interaction of atoms and light in cavity environments (Jendrzejewski et al., o). They allowed
us to write the Jaynes-Cummings model:

HJC = ~ω0 |e〉 〈e|+ ~ωLâ†â+
~Ω0

2
(|g〉 〈e|+ |e〉 〈g|)

(
â+ â†

)
(189)

Here, we found that we should only think about the dressed atoms as they are strongly coupled to the
photon.

20 Lecture 20

We then discussed how we can engineer quantum computers from systems like trapped ions (ion).

21 Lecture 21

A few words about quantum simulation with cold atoms.
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