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Abstract

In the last three decades, we can see that an enthralling research topic which at-
tracted the consideration of many researchers is mathematical modelling of biological
systems. This paper is organised with the aim of getting some new simulations of
lassa hemmorhagic fever; a deathly diseases in pregnant women via Caputo-Fabrizio
fractional order derivative with the help of Euler method. Lassa hemorrhagic fever
is biocidal and epidemical disease, whose outbreaks were first confirmed in African
countries. As compare to the Ebola virus this virus kills pregnant women’s more.
On 8 January, Lassa virus was detached in Vero cell cultures from a blood sample,
which was ejective to be 12 days after the invasion of the illness. In this manuscript,
important lemma and theorems are considered to exhibit the existence and unique-
ness analysis, stability of proposed fractional approximation method. Results are
provided to confirm the effectiveness of used approximation method by graphical
simulations for different values of β.
Keywords: Lassa hemorrhagic fever, epidemic mathematical model, Caputo-Fabrizio
derivative, fractional Euler method.
AMS Subject Classification(2010): 37N25, 92D30.

1 Introduction

A well known infectious disease called Lassa hemorrhagic fever [4] [5] is classified under
the family of arenaviridae virus. This disease was first recognised in the town of Lassa, in
Borno State, Nigeria in 1969. A multimammate mouse (named Mastomys natalensis),
an animal found in sub-Saharan Africa is the main host of this virus. Annually, this
virus has affected 2-3 million people and spread out by the direct interplay with the
infected persons blood, faeces or urine and by manifestation to sewage of animals via
respiratory tracts. The uncover of infective material by dint of cracked skin or the lesser
particles mixture in the air [6] is one of the main reason. It becomes more risky for those
who are belongs to rural areas with tired abstersion conditions. It is recorded that 2 to
21 days is the incubation term of this fever. This lassa disease invasion with fever and
weakness, successively reaching to headache, abdominal pain, muscle pain, sore throat,
nausea, chest pain, vomiting, cough, and diarrhoea. In the observations of hospitalized
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patients of this disease it is seen that 20% of them goes die and in the duration of
epidemic this percentage can reach to 50%. The death rate is near about 80% in the
case of spreading in pregnant women which looks like more dangerous [2] [3]. Recently,
most of the maternal deaths are cause of several infections, eclampsia, haemorrhage,
virus inspection, unsafe abortion and others. Especially, in this list arenaviridae viruses
has been an swelling virus which catch many pregnant women’s into death. Lassa and
Ebola hemorrhagic fevers are the two main viruses of Arenaviridae virus family. Reverse
transcriptase polymerase chain reaction test, antigen detection tests, and virus isolation
by cell culture observations can be used to diagnosed this virus infection. This lassa
virus has a moderate treatment convenience and there is no licensed vaccine is avowed
till now to control this infection [7]. For an initial stage detection only ribavirin is
establish to be an dominant antiviral drug. 4 new confirmed cases were reported from
two states of Nigeria in June 10- 16, 2019 with a death and then it is reached to a total
of 2763 suspected cases from 1 January to 16 June, 2019 in 22 states of Nigeria. In these
2763 cases there were 591 confirmed positive cases and 132 confirmed deaths. In these
confirmed cases the case fatality is 22.3% while the ratio of male-female is 1.2:1. It is
noticed that the age group of 21- 40 years founded affected mainly. In 2019, there are
22 states in Nigeria have founded at least one confirmed case [8].

In epidemiology, so many non-linear models have been successfully studied with the
help of fractional calculus with various approaches such as Riemann, Liouville, Caputo,
Atangana- baleanu and Fabrizio etc. However, these fractional approaches have their
own issues or limitations. In Caputo-Fabrizio, non-singular kernel and non-local property
have been pointed out. The given model is studied through Caputo-Fabrizio fractional
operator. A numerical method in the fractional derivative sense is also used to solve the
system of equations. The important class of the new achievements gained within this
manuscript is, only a simple recursive algebraic formula is needed to solve for given CF
fractional operator. The stability and existence and uniqueness analysis of the proposed
technique is described in this paper which make the suggested scheme adept and inge-
nious to use as compared to the other current methods. It may also be commented that
the Lassa hemorrhagic fever study has been done in [2] using beta differential operator
and then studied by Goyal in [9]. A study via q- homotopy analysis transform method
has been also done in [15] and via Atangana-Baleanu fractional derivative in [19].
In the organization of this paper sect. 2 is for preliminary description of the Caputo-
Fabrizio derivative and proposed numerical method. In sect. 3, fractional model de-
scription, in sect. 4, the proposed fractional approximation method with existence and
uniqueness analysis, stability analysis will be shown. Results will be discussed in sect.
5.

2 Preliminaries

Definition 1. [20] For T ∈ H1(c, d) and 0 < β < 1, the Caputo- Fabrizio (CF) fractional
derivative(FD) of order β is defined by

CF
c Dβ

t T (t) =
1

1− β

∫ t

c

dT (η)

dη
exp[−α(t− η)]dη

where α = β
1−β

The CF non- integer order integral is defined as

CF
c Iβt T (t) = (1− β)T (t) + β

∫ t

c
T (η)dη.

Lemma 1. [10] If 0 < β < 1 and m is an integer (nonnegative), then ∃ the +ve
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constants Cβ,1 and Cβ,2 only dependent on β, s.t

(m+ 1)β −mβ ≤ Cβ,1(m+ 1)β−1,

and
(m+ 2)β+1 − 2(m+ 1)β+1 +mβ+1 ≤ Cβ,2(m+ 1)β−1.

Lemma 2. [10] Let us assume dp,n = (n − p)β−1(p = 1, 2, ..., n − 1) & dp,n = 0 for
p ≥ n, β,M, h, T > 0,mh ≤ T & m is a +ve integer. Let

∑p=n
p=m dp,n|ep| = 0 for

k > n ≥ 1. If

|en| ≤Mhβ
n−1∑
p=1

dp,n|ep|+ |η0|, n = 1, 2, ...,m,

then
|em| ≤ C|η0|, m = 1, 2, ...

where C is a +ve constant independent of m & h.
Lemma 3. [10] Let the fractional ordinary differential equation in the Caputo sense{

C
0 D

β
t ξ(t) = f(t, ξ(t)), t ∈ (0,K), K > 0,

ξ(k)(0) = ξ
(k)
0 , k = 0, 1, ..., r − 1,

(1)

Where the Caputo derivative defined as

C
0 D

β
t ξ(t) =

1

Γ(r − β)

∫ t

0
(t− s)r−β−1ξ(r)(s)ds, r − 1 < ξ < r ∈ Z+.

The corresponding Volterra integral equation can be written as

ξ(t) =
r−1∑
k=0

tk

k!
y
(k)
0 +

1

Γ(β)

∫ t

0
(t− s)β−1f(s, ξ(s))ds. (2)

Let ξ(t) is considered as the solution to (2), f(t, ξ) is bounded where h is sufficiently
small. Then, the given inequality holds

|ξ(t+ h)− ξ(t)| ≤ C1h
σ(β), t ∈ [0,K − h],

where constant C1 is not depend on h, and

σ(β) =

{
β, 0 < β < 1;
1, β ≥ 1.

Remark: We will use the given lemma for the system of equation in the Caputo-Fabrizio
derivative sense.
Lemma 4. [10] Let when ξ(t) is considered as the solution of (2), and f(t, ξ) is continuous
and satisfies the Lipschitz condition with respect to ξ and t with a Lipschitz constant L
for sufficiently small h, then we have

|
∫ tm+1

0
(tm+1 − t)β−1f(t, ξ(t))dt− hβ

β

m∑
j=0

dj,m+1f(tj , ξ(tj))| ≤ C2h
σ(β).

Lemma 5. (Gronwall Inequality [21]) Let c, d > 0, and {γi} satisfy

|γn| ≤ d+ ch
r−1∑
i=0

|γi|, r = k, k + 1, ..., rh ≤ T,

then
|γr| ≤ eaT (d+ ckhM0), r ≥ k, rh ≤ T,

where M0 = max(|γ0|, |γ1|, ..., |γk−1|).
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3 Model description

Here, we introduce a Lassa hemorrhagic fever time fractional model studied by Atangana
et al. [2]. In [2], the author presented and derived the projected model in the sense of
beta derivative. The formulation of the system for susceptible, infected and recovery
class of lassa haemorrhagic fever in the sense of Caputo-Febrizio fractional derivative
presented as:

CF
0 Dβ

t S(t) = −gS(t)I(t) + pN − uN + dR(t) + rS(t)− uS(t)
CF
0 Dβ

t I(t) = gS(t)I(t)− (d+ r)I(t)− rS(t)
CF
0 Dβ

t R(t) = rI(t)− dR(t)

(3)

with initial conditions

S(0) = S0, I(0) = I0, and R(0) = R0. (4)

Here, N = S + I + R is the adult women population in a given country, S, I, R are
the susceptible, infected and recovery population of pregnant women respectively. Let p
is the pregnancy rate of women, s is the susceptible rate, infected at a rate g, infected
women are dying at a rate d, women are recover at a rate r, u is the death rate cause of
other disease or natural death.
To calculate the endemic equilibrium points, let us assume

0 = −gS̄Ī + pN − uN + dR̄+ rS̄ − uS̄
0 = gS̄Ī − (d+ r)Ī − rS̄
0 = rĪ − dR̄

(5)

put the values of R̄ and S̄ from last two equations into the first one of the system, we
obtain

EĪ2 + F Ī +G = 0, E = −dg, F = (r − u)d+ gN(p− u)− ur, G = −r(p− u)N,

Thus the given Ī is the solution of the above equation which is presented as

Ī∓ =
−F ∓

√
F 2 + 4Gdg

2E

We obtain the reproductive number by considering the positive solution of the equa-
tion.

Ī =

√
F 2 + 4Cdg

2E
− F

2E
=

F

2E

(√
F 2 + 4Gdg

F
− 1

)
=

F

2E
(R0 − 1)

The equilibrium points for the disease-free system are

(
p−u
u , 0, 0

)
where

R0 =

√
F 2 + 4Gdg

F
when modelling an infectious disease it would be a most important concerns to find its
efficiency to assail a population. R0 (basic reproductive number) is a very familiar term
in the study of disease spread in a target population and a precious idea in epidemic
theory. The measurement of R0 represents the secondary cases average born by an
individual who is infected to the virus and moved into a susceptible population with no
impregnability to the disease in the privation of interference to infection control.
In our case, if F is negative, then R0 < 1 which means the stability of disease- free
equilibrium and un stability of the endemic equilibrium points. If F is +ve and Gdg is
also +ve, then R0 > 1 which means that the endemic equilibrium is stable and disease-
free equilibrium is unstable.
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4 The Euler fractional approximation method

Here, we are discussing an efficient numerical method for the proposed model (3) and
(4) in the sense of CF fractional operator. In the way of simplify the relations, here we
represent Eqs. (3) and (4) in a compact form{

CF
0 Dβ

t ζ(t) = g(ζ(t)), 0 < t < d <∞,
ζ(0) = ζ0.

(6)

where ζ = (S, I,R) ∈ R3
+, g is a continuous real- valued vector function agree the

Lipschitz condition

‖ g(ζ1(t))− g(ζ2(t)) ‖≤ L ‖ ζ1(t)− ζ2(t) ‖, L > 0, (7)

and ζ0 = (S0, I0, R0) is the vector for initial conditions named as initial state vector.
Now applying CF non- integer order integral operator to eq. (6), we derive

ζ(t) = ζ0 +CF
0 Iβt g(ζ(t)), 0 < t < d <∞. (8)

where CF
0 Iβt represents the fractional integral operator respect to the CF fractional

derivative. For proposed numerical method, we consider a interval length [0, d] with
time step size h = d−0

N , where N ∈ N. Let ζk be the numerical approximation of ζ(t) at
t = tk, where tk = 0 + kh & k = 0, 1, ..., N. Describing Eq. (8) by applying the Euler
method [10], we infer the following formula for the CF operator

ζk+1 = ζ0 + (1− β)g(ζk+1) + βh
k∑
i=0

g(ζi), k = 0, ..., N − 1, (9)

The stability analysis of the proposed numerical method is given by the following theo-
rem.

Theorem 1. The numerical scheme (9) is conditionally stable.
Proof. Let us approximate ζ0 and ζi (i = 0, ..., k + 1) by ζ̄0 and ζ̄i, respectively. From
eq. (9), this method yields

ζk+1 + ζ̄k+1 = ζ0 + ζ̄0 + (1− β)g(ζk+1 + ζ̄k+1) + βh

k∑
i=0

g(ζi + ζ̄i). (10)

Using Eq. (9) in (10), we derive

|ζ̄k+1| = |ζ̄0 + (1− β)[g(ζk+1 + ζ̄k+1)− g(ζk+1)] + βh
k∑
i=0

[g(ζi + ζ̄i)− g(ζi)]|. (11)

Applying the Lipschitz condition and triangle inequality, we obtain

|ζ̄k+1| ≤ (1 + hL)|ζ̄0|+ (1− β)L|ζ̄k+1|+ βhL

k∑
i=1

|ζ̄i|. (12)

Eq.(12) can be simplified as

|ζ̄k+1| ≤
1 + hL

(β − 1)L+ 1
|ζ̄0|+

βhL

(β − 1)L+ 1

k∑
i=1

|ζ̄i|. (13)
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Finally, from Lemmas (1) and (2), we conclude |ζ̄k+1| ≤ C 1+hL
(β−1)L+1 |ζ̄0|, where C is a +ve

constant not dependent on h and k.

Theorem 2. For the numerical method (9) we have

|ζ(tk+1)− ζk+1| ≤ Chβ, k = 0, ..., N − 1, (14)

where C is a +ve constant not depends on h and k.
Proof. For the projected numerical scheme (9), we express the following relation by
assuming ζ(t0) = ζ0, using Eq. (8) in the CF sense and employing Eq. (9)

ζ(tk+1)− ζk+1 = (1− β)[g(ζ(tk+1))− g(ζk+1)] + β

[ ∫ tk+1

0
g(ζ(η))dη − h

k∑
i=0

g(ζi)

]

= (1− β)[g(ζ(tk+1))− g(ζk+1)] + β

[ ∫ tk+1

0
g(ζ(η))dη − h

k∑
i=0

g(ζ(ti))

]

+βh

k∑
i=1

[g(ζ(ti))− g(ζi)].

Now using the Lipschitz condition (7) and lemma (3) and (4) in the above expression,
it becomes

|ζ(tk+1)− ζk+1| ≤ L(1− β)|ζ(tk+1)− ζk+1|+ βC2h+ βhL
k∑
i=1

|ζ(ti)− ζi|. (15)

where C2 is a constant free from h. Also we can written the Eq. (15) as follows

|ζ(tk+1)− ζk+1| ≤
βC2h

(β − 1)L+ 1
+

βhL

(β − 1)L+ 1

k∑
i=1

|ζ(ti)− ζi|. (16)

Lastly, we derive Eq.(14) by employing the Gronwall’s inequality from Lemma 5.

Theorem 3. (Existence and uniqueness) Let g(ζ(ξ)) be a continuous real-valued
function, defined under the domain H of a plane (ξ, ζ), and agree with the Lipschitz
condition in H with respect to ζ, i.e.,

|g(ζ1(ξ))− g(ζ2(ξ))| ≤ L|ζ1(ξ)− ζ2(ξ)|.

Then, ∃ a unique solution ζ(ξ) of the fractional IVP (6), when the following condition
is satisfied

(1− β)L+ βLdβ < 1. (17)

Proof: Let us take the volterra integral equation (8)

ζ(ξ) = ζ0 + (1− β)g(ζ(ξ)) + β

∫ ξ

0
g(ζ(η))dη (18)

If ζ(ξ) is a solution of (6), then it satisfies (18). Applying the CF FD operator on, we
derive for ζ(ξ) the fractional differential equation (6). Let V = (0, d) & Z : C(V,R) →
C(V,R) be the following operator

Z[ζ(ξ)] = ζ0 + (1− β)g(ζ(ξ)) + β

∫ ξ

0
g(ζ(η))dη (19)

6



Then, Eq. (18) can be written in the form

ζ(ξ) = Z[ζ(ξ)]. (20)

Let ‖ . ‖V is the defined supremum norm on V; such that

‖ ζ(ξ) ‖V = sup |ζ(ξ)|, ζ(ξ) ∈ C(V,R). (21)

Then, C(V,R) with ‖ . ‖V is a Banach space. Moreover, it is easily shown that

‖
∫ ξ

0
K(ξ, η)ζ(η)dη ‖

V

≤ d‖ K(ξ, η) ‖V ‖ ζ(ξ) ‖V , (22)

where ζ(ξ) ∈ C(V,R),K(ξ, η) ∈ C(V 2,R) and

‖ K(ξ, η) ‖V = sup
ξ,η∈J

|K(ξ, η)|, K(ξ, η) ∈ C(V 2,R). (23)

Now we enumerate the following

‖ Z[ζ1(ξ)]− Z[ζ2(ξ)] ‖V = sup
ξ∈V
|Z[ζ1(ξ)]− Z[ζ2(ξ)]|. (24)

By the defi- of operator Z in Eq. (19), and with the help of Eq. (22) and Lipschitz
condition, we have

‖ Z[ζ1(ξ)]− Z[ζ2(ξ)] ‖V
≤ (1− β)‖ g(ζ1(ξ))− g(ζ2(ξ)) ‖V + βdβ‖ g(ζ1(η))− g(ζ2(η)) ‖V

≤
(

(1− β)L+ βLdβ
)
‖ ζ1 − ζ2 ‖V .

Therefore, we obtain

‖ Z[ζ1(ξ)]− Z[ζ2(ξ)] ‖V ≤M‖ ζ1(ξ)− ζ2(ξ) ‖V , (25)

where M = (1 − β)L + βLdβ. If the given condition of eq. (17) is satisfied, then the
operator Z will be a contraction on C(V,R). Thus, as a Banach fixed point theorem
consequence, the proposed system (6) has a unique solution.
The inequality (17) also shows that this sufficient condition depends on three parameters
including the Lipschitz constant L, terminal time d and fractional order β.

5 Simulation results

In this paper, all numerical results are done by the help MATLAB software for S, I and
R at β = 0.75, 0.85, 0.95 and 1 respectively. The numerical solution of the proposed
system is attained by using fractional Eulers method with parameters values mentioned
in Table. In the group of Figure 1, fig. (i) shows the approximation nature of the no.
of susceptible, infected and recovered patients (pregnant women) with time for u = 0.2
and β = 0.75. In the same way fig. (ii) is for β = 0.85, fig. (iii) is for β = 0.95, and fig.
(iv) shows the all three classes for β = 1. Similarly in the class of Fig. 2, all separate
figures are for particular values of β when the death rate by other diseases u = 0.5.
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Parameter values

N S+I+R

u 0.2/ 0.5

p 0.3

d 0.8

r 0.2

g 0.4

S(0) 30

I(0) 10

R(0) 0

D(0) 0

(i)

(ii)
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(iii)

(iv)

Figure 1 Nature of the achieved results at u = 0.2 for
(i)β = 0.75, (ii)β = 0.85, (iii)β = 0.95, (iv)β = 1.

(i)
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(ii)

(iii)

(iv)

Figure 2 Nature of the achieved results at u = 0.5 for
(i)β = 0.75, (ii)β = 0.85, (iii)β = 0.95, (iv)β = 1.

6 Conclusions

In the last three decades, so many fatal diseases have manifest their entity in different
countries all over the world. In this way, lassa and ebola hemorrhagic fever in Africa are
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one of the fatal disease. Ebola virus first founded in 1975 in Zaire, and then in Sierra
Leone, Guinea, Nigeria, and Liberia in 2014. Lassa was classified first time in town of
Lassa in 1969, in Borno state Nigeria and the cases of this epidemic have been founded in
Sierra Leone, Guinea, Liberia, Nigeria, and the Central Africa Republic. This particular
disease is more dangerous for those women who are in third trimester of pregnancy in
which the death rate of about 80%. In this paper we observed the results with the help
of fractional Euler approximation method via Caputo-Fabrizio fractional derivative. In
this work we give the prediction for susceptible, infected and recovered population of
pregnant woman for different values of β. We presented the conditional stability of
the proposed numerical scheme by the help of some important lemmas. Existence and
uniqueness analysis also presented by the help of Lipschitz condition and Banach fixed
point theorem. All figures are clearly described which give the idea of effectiveness of
the proposed numerical scheme.

References

[1] Okuonghae, D., & Okuonghae, R. (2006). A mathematical model for Lassa fever.
Journal of the Nigerian Association of Mathematical Physics, 10(1).

[2] Atangana, A. (2015). A novel model for the lassa hemorrhagic fever: deathly disease
for pregnant women. Neural Computing and Applications, 26(8), 1895-1903.

[3] McCormick, J. B., Webb, P. A., Krebs, J. W., Johnson, K. M., & Smith, E. S.
(1987). A prospective study of the epidemiology and ecology of Lassa fever. Journal
of Infectious Diseases, 155(3), 437-444.

[4] Ogbu, O., Ajuluchukwu, E., & Uneke, C. J. (2007). Lassa fever in West African
sub-region: an overview. Journal of vector borne diseases, 44(1), 1.

[5] Frame, J. D., Baldwin Jr, J. M., Gocke, D. J., & Troup, J. M. (1970). Lassa fever, a
new virus disease of man from West Africa. The American journal of tropical medicine
and hygiene, 19(4), 670-676.

[6] Emond, R. T., Bannister, B., Lloyd, G., Southee, T. J., & Bowen, E. T. (1982).
A case of Lassa fever: clinical and virological findings. Br Med J (Clin Res Ed),
285(6347), 1001-1002.

[7] Warner, B. M., Safronetz, D., & Stein, D. R. (2018). Current research for a vaccine
against Lassa hemorrhagic fever virus. Drug design, development and therapy, 12,
2519.

[8] Ekechi, H. U., Ibeneme, C., Ogunniyi, B., Awosanya, E., Gbadebo, B., Usman, A.,
& Ihekweazu, C. (2020). Factors associated with a confirmed Lassa fever outbreak in
Eguare community of Esan West, Edo State, Nigeria: January-March, 2019. Journal
of Interventional Epidemiology and Public Health, 3(1).

[9] Goyal, M., Baskonus, H. M., & Prakash, A. (2019). An efficient technique for a
time fractional model of lassa hemorrhagic fever spreading in pregnant women. The
European Physical Journal Plus, 134(10), 482.

[10] Li, C., & Zeng, F. (2013). The finite difference methods for fractional ordinary
differential equations. Numerical Functional Analysis and Optimization, 34(2), 149-
179.

[11] Jajarmi, A., & Baleanu, D. (2018). A new fractional analysis on the interaction of
HIV with CD4+ T-cells. Chaos, Solitons & Fractals, 113, 221-229.

11



[12] Diethelm, K., Ford, N. J., Freed, A. D., & Luchko, Y. (2005). Algorithms for the
fractional calculus: a selection of numerical methods. Computer methods in applied
mechanics and engineering, 194(6-8), 743-773.

[13] Li, C., Chen, A., & Ye, J. (2011). Numerical approaches to fractional calculus and
fractional ordinary differential equation. Journal of Computational Physics, 230(9),
3352-3368.

[14] Sheng, Q., & Tang, T. (1995). Optimal convergence of an Euler and finite differ-
ence method for nonlinear partial integro-differential equations. Mathematical and
computer modelling, 21(10), 1-11.

[15] Gao, W., Veeresha, P., Prakasha, D. G., Baskonus, H. M., & Yel, G. (2020). New
approach for the model describing the deathly disease in pregnant women using
Mittag-Leffler function. Chaos, Solitons & Fractals, 134, 109696.

[16] Baleanu, D., Jajarmi, A., & Hajipour, M. (2018). On the nonlinear dynamical sys-
tems within the generalized fractional derivatives with MittagLeffler kernel. Nonlinear
dynamics, 94(1), 397-414.

[17] Podlubny, I. (1999). Fractional differential equations, vol. 198 of Mathematics in
Science and Engineering.

[18] Li, C., & Zeng, F. (2015). Numerical methods for fractional calculus (Vol. 24). CRC
Press.

[19] Jain, S., & Atangana, A. (2018). Analysis of lassa hemorrhagic fever model with
non-local and non-singular fractional derivatives. International Journal of Biomath-
ematics, 11(08), 1850100.

[20] Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without
singular kernel. Progr. Fract. Differ. Appl, 1(2), 1-13.

[21] Lin, R., & Liu, F. (2007). Fractional high order methods for the nonlinear fractional
ordinary differential equation. Nonlinear Analysis: Theory, Methods & Applications,
66(4), 856-869.

12


	Introduction
	Preliminaries
	Model description
	The Euler fractional approximation method
	Simulation results
	Conclusions

