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Abstract

Human learning is a complex process whereby future behavior is altered via the modulation of neural activity. In

many cases, such activity displays markers of collective dynamics, leading to non-trivial fluctuations in patterns of

functional connectivity. Such fluctuations can display characteristic structure both across time and across subjects.

Yet, a fundamental understanding of how neural activity and connectivity track learning processes that are shared

across subjects versus those that distinguish one subject from another has remained elusive. Here, we seek to

address this challenge in a longitudinal experiment in which healthy adult human participants learned the values

of novel objects over the course of 4 days training sessions. To assess the degree to which patterns of functional

activity were subject-general versus subject-specific, we calculated the intersubject correlation of fMRI BOLD time

series. To perform a complementary assessment of the degree to which patterns of statistical relations between

those time series were subject-general versus subject specific, we introduced a measure of intersubject functional

connectivity: the Pearson correlation between the functional connectivity matrices of each subject and the functional

connectivity matrices of all other subjects. Intersubject correlations in both activity and connectivity were greater

than expected in non-parametric permutation tests in the lateral occipital cortex, lingual gyrus, supramarginal

area, and sensorimotor cortex. In addition, intersubject correlations in activity were greater than expected in the

medial prefrontal cortex while intersubject correlations in connectivity were greater than expected in the superior

parietal cortex, posterior cingulate gyrus, frontal pole, superior and middle frontal gyri. Interestingly, over the

whole brain intersubject correlations in both activity and connectivity peaked in the early stages of learning, while

intersubject correlations in connectivity became steady in the later stages of learning. Finally, individual differences

in performance accuracy tracked intersubject correlations in connectivity but not activity. Taken together, our

results point to both a conserved and variable brain network substrate for value learning, and begin to distinguish

the time scales over which these substrates vary with task performance.
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1. Introduction

Humans have the remarkable ability to adapt to environmental pressures through learning – a process that is

accompanied by heterogeneous changes in brain structure and function. Parsing the neurophysiological mechanisms

of learning could provide a better understanding of how the brain is able to fine-tune its organization and dynamics

to accurately and efficiently accomplish day-to-day tasks. Importantly, such alterations continue to impact future5

behaviors well beyond the critical period over which learning occurs, and in a manner that is unique to each

individual [1, 2]. These and related empirical observations have resulted in a shift in investigational paradigms

that seek to understand general mechanisms of learning and the ensuing variability in these processes that drive

inter-individual differences in behavior [3].

Many factors may contribute to inter-individual variability in learning, including the mechanics of the particular10

skill or information that is being learned, and the strategies by which the same phenomenon, concept, or principle

can be apprehended [4, 5]. It is intuitively plausible that different individuals could be predisposed to engage in

different learning strategies based on the nature of their central nervous system [6]. Unique genetic and environment

factors present in the early stages of development can give rise to different wiring patterns in the brain [7], in turn

learning to different patterns of neural activity in response to stimuli [8, 9, 10]. A particularly parsimonious15

language in which to describe and characterize such patterns is that of network science [11, 12], where regions of

the brain are represented as network nodes whose activity can vary over time [13], and connections between regions

are represented as network edges whose strength can also vary over time [14]. While some organizational principles

of brain network organization and dynamics appear to be conserved across individuals [15], others – including

measures of activity [16, 17] and connectivity [4] – vary appreciably [18]. It is as yet unknown to what degree these20

shared versus unique features of brain network structure and dynamics explain the processes of learning and the

resultant behavior.

From a computational perspective, identifying tools that can be used to compare shared versus unique features

of brain network structure and dynamics in a statistically principled fashion are relatively sparse. Arguably one

of the most elegant potential approaches is intersubject correlation (ISC), which has historically been used to25

quantify the extent to which neuronal processes are shared across individuals [19]. ISC estimates the similarity of

brain activity across subjects by using the temporal signature of neuronal activity in a particular brain region as a

predictor of the neuronal activity in the corresponding brain region of another individual. Thus, ISC is a “model-

free” approach that is thought to reflect the degree of inter-subject synchrony in emotional or mental states, which

is not simply explained by common evoked responses to the tasks [20, 21]. While ISC can effectively capture30

the shared neuronal response of individual brain regions, it does not measure the degree to which the functional

connections between pairs of brain regions are commonly modulated across individuals. Recent work demonstrating

that topological features of functional brain networks can predict the capacity of an individual to learn new skills

[22, 23, 24], motivates the development of an approach that can quantify the inter-subject similarity of functional

connectivity. Such techniques to estimate the similarity of functional brain organization of human cortex across35

subjects during learning in the context of both functional activity and functional connectivity constitute important

tools to probe the neural basis of individual differences during learning.
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In this study, we utilize ISC to measure the response of brain activity shared across individuals learning the

value of novel objects over the course of 12 training sessions taking place on four days. In addition to the ISC,

we introduce the intersubject functional connectivity (ISFC), which measures inter-regional functional correlations40

across subjects. The ISFC is estimated by calculating the Pearson correlation coefficient between the pattern of

functional connectivity of a single subject and the average pattern of functional connectivity across all remaining

subjects. We hypothesized that subject-general patterns of activity and connectivity would be located in motor

cortex (consistent with the shared finger movement to press the response box) [25, 23], visual cortex (consistent

with the shared processing of the visual stimuli of the novel objects), and other areas previously associated with45

the learning of value, including lateral occipital cortex [26]. Based on prior work showing that learning modulates

functional connectivity on an individual basis [27, 28, 29], we hypothesized that increase in intrinsic functional

connectivity shared across the subjects over a period of learning modulated by the coherence of stimulus induced

activity. Such findings would demonstrate the utility of intersubject analyses (ISC and ISFC) in the context of

functional activity and functional connectivity could provide clear neurophysiological correlates and the dynamic50

of intrinsic functional connectivity and task-dependent activity in the human brain shared across the subjects over

a period of time during learning.

2. Results

Intersubject analyses of functional brain activity and functional connectivity are powerful techniques for discrim-

inating brain regions that adhere to generalized constraints of functional architecture from brain regions that might55

break free from such generalized rules and contribute to subject-specific behaviors. Simply, intersubject analyses

quantify the extent to which a functional measurement (brain activity or connectivity) in one subject statistically

differs from the expected distribution of the measurement in other subjects. To infer generalized constraints on the

functional activity of a single brain region, we computed the inter-subject correlation (ISC) – a measure of relia-

bility of the stimulus-driven response across subjects without any a priori knowledge of the temporal composition60

of the exact cortical response [19]. Similarly, constraints on the functional connectivity between two brain regions

for a given subject can be inferred from inter-subject functional connectivity (ISFC). Together, measures of ISC

and ISFC are a boon for research avenues that seek to tease apart and interpret relationships between activity and

connectivity that accompany the evolution of cognitive processes over time, such as learning.

In this study, we investigated functional mechanisms that facilitate network reorganization associated with value65

learning by assessing inter-subject correlation (ISC) (Fig. 1A) and inter-subject functional connectivity (ISFC) (Fig.

1B) based on functional MRI (fMRI) measured in 20 healthy subjects (9 females; ages 19-53 years; mean age = 26.7

years) at rest and during a task-based learning experiment over four consecutive days. To compute ISC and ISFC,

we first extracted the BOLD time series of 112 brain regions defined by the Harvard-Oxford atlas [30, 31] – including

cortical and sub-cortical regions. We next measured ISC by separately correlating the BOLD signal for each of70

N brain region between every pair of S subjects – resulting in an S × S correlation matrix for each brain regions

(see Materials and Methods and Supplementary Information). Intuitively, ISC represents a correlation of brain

activity between the same region across subjects. Unlike the generalized linear model, which is a generalization of
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ordinary linear regression that estimates the relationship between responses and measurements, ISC is a model-free,

non-parametric approach. We then measured ISFC by computing the Pearson correlation between each subject’s75

N × N functional connectivity matrix (constructed using a wavelet coherence measure) and the average of all

other, non-held-out subjects’ functional connectivity matrices – resulting in an N ×N correlation matrix for each

subject (see Materials and Methods and Supplementary Information). A critical distinction between ISC and ISFC

is that ISFC includes the information about the inter-regional, stimulus-induced functional connectivity patterns

that might not revealed by ISC. Specifically, ISFC characterizes the correlation between one subject brain network80

and brain network of all other subjects.

2.1. Dynamic constraints on functional architecture during learning

First, we asked whether inter-subject correlation of functional activity and functional connectivity is homogenous

across brain areas, or whether some brain areas are more constrained in their activity and connectivity to the group-

level than other brain areas. We expected significantly greater inter-subject correlation of functional activity among85

brain regions associated with basic sensory functions than among brain regions associated with abstract, cognitive

processing. To test our hypothesis, we first assessed brain regions for which the ISC was statistically significant

(t-test, p < 0.05, corrected for multiple comparisons) across all scan sessions (Fig. 2A). We found significantly high

ISC among brain regions in the occipital lobe, particularly lateral occipital cortex, lingual gyrus, pericalcarine, and

fusiform gyrus. We also observed significantly high ISC among sensorimotor regions, including supramarginal gyrus,90

right superior frontal region and superior motor areas. Separately, we verified that these brain regions also exhibited

significantly high ISC during each individual experimental session(Fig. S3A-B). Next, we tested the heterogeneity

of ISFC across brain regions (Fig. 2B). Across all scan sessions, we observed significantly high average ISFC (t-

test, p = 0.05, corrected for multiple comparison) in the left frontal pole, middle and superior frontal gyri, inferior

temporal gyrus, sensorimotor, middle temporal gyrus, inferior temporal gyrus, angular, supramarginal gyrus ,95

precuneus, inferior temporal gyrus, cingulate gyrus, amygdala, thalamus, lateral occipital cortex and occipital lobe.

We separately verified that these brain regions exhibited significantly high ISFC during each individual experimental

session (Fig. S3D-E). Importantly, our results demonstrate a clear distinction in the brain regions that have high

ISC and high ISFC. Namely, ISC uniquely captured visuomotor networks and medial prefrontal cortex while ISFC

uniquely captured dorsal lateral prefrontal cortex (dLPFC), frontal pole, middle temporal gyrus, thalamus and100

amygdala. These differences may be explained by the fact that ISFC estimated inter-regional correlation based on

the functional connectivity while ISC quantified the reliability of common response of each brain region across all

the subjects which based on the functional activity. Overall, our we observed distinct regional variation in measured

ISC and ISFC across the brain, and that these brain regions exhibit robustly high inter-subject correlations across

experimental sessions.105

Next, we asked whether inter-subject correlation of functional activity and functional connectivity distinguish

different phases of value learning. We expected to find an interaction between ISC and ISFC during learning, such

that functional activity would be highly aligned across subjects early during learning, indicated by high values

of ISC, and that functional connectivity would be highly aligned later during learning, indicated by high values

of ISFC. Our hypothesis is driven by the notion that initial phases of learning would evoke common patterns of110
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functional activity across individuals, which might in turn reinforce common patterns of functional connections

across subjects near the end of learning. We first examined the dynamics of ISC during value learning (Fig.2C) and

found that the average ISC of all regions increased from day 1 to day 2 and, subsequently, continued decreasing

through day 4 (One-way ANOVA, F (3, 447) = 38.3121, p = 2.7e − 21). Overall, the average ISC was significantly

greater during all four days of value learning compare to at rest (t = 11.49, p = 1.28 × 10−20; Fig. S2A). The115

resulting trends in ISC dynamics during value learning suggest that ISC might support two phases of learning: (i)

increased ISC between day 1 and day 2 may be associated with increasing constraints on functional activity, perhaps

as a result of common neurophysiologic mechanisms across subjects that facilitate early stage learning of the task

mechanics, and (ii) decreased ISC from day 2 through day 4 may be associated with less constrained dynamics,

perhaps as subjects explore cognitive strategies to increase their performance on the task. Interestingly, the average120

ISC of subjects at rest was near zero (Figure S2A-B, see supplementary results), suggesting that functional activity

is minimally constrained in the absence of a common stimulus. Across the four days, the average ISC of the region

during value learning were different (One-way ANOVA, F (3, 448) = 38.31, p = 2.7 ∗ 10−21). We next examined the

dynamics of ISFC during value learning (Fig. 2D) and found no significant difference in average ISFC across the

four days. Specifically, ISFC significantly increased from day 1 to day 2 and peaked during day 2. The increasing125

trend in ISFC during value learning suggests that functional connectivity becomes more constrained to a common

topological pattern across subjects, perhaps reinforcing the functional network associated with performing the value

learning task.

We then explicitly tested for potential interactions between ISC and ISFC over time. Overall, we found that

ISC and ISFC were significantly positively correlated with each other across the four days (Spearman: day 1:130

r = 0.4196, p = 0., day 2: r = 0.4291, p = 0, day3:r = 0.3497, p = 0, day 4: r = 0.4555, p = 0), suggesting

that increased group-level constraints on functional activity are related to increased group-level constraints on

functional connectivity. However, despite the significantl correlation between ISC and ISFC on any given day,

we observed that their rate of change through the duration of the task was indeed significantly different in day 4

(Fig. 2E ). During early stage learning on days 1 and 2, both ISC and ISFC increased– suggesting that functional135

activity and functional connectivity were both constrained to common organizational rules across the cohort .

During later stage learning on day 4, ISFC significantly exceeded ISC – suggesting that functional activity becomes

more autonomous than functional connectivity . These dynamics point to a potential driver-follower mechanism of

constrained functional activity preceding constrained functional connectivity over four days of value learning.

2.2. Regional variability of functional constraints during learning140

Next, we asked “If the dynamics of whole-brain inter-subject correlations map unto different phases of value

learning, which brain systems might be most complicit in these phases?”. To investigate this question, we first

partitioned brain regions into objectively defined functional modules using the popular GenLouvain community de-

tection algorithm [32] (see Materials and Methods and SI). Briefly, community detection is applied to the functional

network constructed from data of each task session and parses brain regions into functional modules such that brain145

regions within the same module exhibit strong functional connections and brain regions between different modules

have weak functional connections. In order to obtain a single representative partitioning of brain regions across
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subjects and scans, we computed the module allegiance matrix [25] – capturing the probability that two regions

belong to the same functional module (Fig. 3A). By applying a final round of community detection to the module

allegiance matrix, we identified seven modules that were associated with different putative brain systems, including150

fronto-temporal (FT) which covered most of the limbic lobe, sensorimotor network (SM), auditory network (AUD)

including hippocampus and amygdala, the common default mode network (DMN), Language (LAN) network, Vi-

sual (VIS) network and three subcortical regions - putamen, caudate and thalamus (PCT) (Fig. 3B; see Table 1

for list of regions in each community).

We next explicitly examined the regional interactions between ISC and ISFC during value learning. Similar to155

global ISC and ISFC, we compared differences in ISC and ISFC in each of the seven brain systems through the four

learning sessions (Fig. 4 ). We did, however, find that the effect of the dynamical interaction between ISC and ISFC

varied between brain systems. Frontal temporal (FT) module shows significant higher ISC in day 2 suggesting that

high constraint on functional activity in the early stage of learning. However, both SM and VIS modules revealed

similar pattern with significant higher ISFC in day 3 and 4, which can be interpreted that functional connectivity160

across the subjects become more synchronized than the functional activity in the later stage of value learning.

Given the potential functional role of these brain systems in stimulus processing, our result suggest that functional

connectivity becomes comparatively more constrained than functional activity during late stage learning when

subjects are presumably better acquainted with the task. The DMN also produced similar differences between ISC

and ISFC like SM and VIS but with smaller differences during day 4. The PCT module also revealed significant165

difference during day 1 (ISC is higher) and day 4( ISFC is higher). However, AUD and LAN with lower ISC and

ISFC compare to other communities (Fig 3C and D) show no significant difference between ISC and ISFC (Fig. 4)

curves.

2.3. ISFC and value learning task accuracy

Lastly, we examined whether inter-individual differences in the constraints of functional activity and connectivity170

explain measured performance on the learning task. We hypothesized some modules might be induced with the

accuracy of the task and learning as function of days. First, we tested whether participants demonstrated a clear

learning effect and found that average task accuracy increased with each learning session (Fig. 5) and that there were

obvious changes in accuracy across the days (Two-way ANOVA, F (3, 80) = 3.69, p = 0.0169). Next, we computed

the Spearman correlation coefficient between each participant’s task accuracy and the ISFC. However, we observed a175

significant relationship between average task accuracy and average ISFC over the four days (r = 0.5820, p = 0.0082).

We therefore explored the modules’ ISFC that are mostly correlated value learning accuracy in order to gauge which

network specifically drive inter-individual differences in value learning task accuracy. Three networks’ ISFC were

positively correlated with the average accuracy over the four days (Fig. 5); SM(r = 0.5070, p = 0.0284), DMN

(r = 0.6088, p = 0.0067) and PCT (r = 0.6684, p = 0.0023).180

3. Discussion

In this study, we used intersubject analyses to understand the respective roles of functional activity and func-

tional connectivity in value learning. Importantly, intersubject analyses allowed us to tease apart large-scale
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neuronal processes that drive the learning of object value from processes that help subjects strategize their use of

the learned information to improve task performance. Critically, we found a dual role for functional activity and185

functional connectivity during value learning, in which: subjects (i)commonly expressed patterns of functional ac-

tivity and connectivity during the early stages of learning, and (ii) individualized patterns of functional connectivity

during the early stages of learning become more commonly expressed during later stages of learning compared to

the functional activity. These dynamic processes suggest that the early stages of learning recruits common pat-

terns of functional activity that help consolidate the learned information within common patterns of functional190

connectivity and that the later stages of learning recruits individualized patterns of functional activity that rep-

resent subject-specific processes that help optimize behavior. Generally, our findings demonstrated that subjects

undergoing value learning express common stimulus-induced activity and intrinsic connectivity that evolves based

on the stage of the learning process.

3.1. Intersubject brain network pattern during value learning195

Are intersubject relationships homogenous across brain regions, or are some cognitive systems more likely to be

correlated in their activity or connectivity than others? Regionally, we identified several cognitive brain systems

– visual, sensorimotor and default mode – that demonstrated significantly greater intersubject correlation and

intersubject functional connectivity than other brain systems. In particular, we witnessed significantly high ISC

and ISFC within lateral occipital cortex, sensorimotor, and right middle frontal gyrus, which suggests that value200

learning commonly recruits brain regions responsible for visual perception, motor control and decision making

based on chosen value [33]. We also witnessed significantly high ISC and ISFC precuneus, temporal and parietal

regions, suggesting that brain regions involved in attention, mentalization, and the attribution of self-belief are also

commonly involved in value learning [34, 35].

Interestingly, we found selected brain regions whose ISFC exceeded their ISC – including frontal pole, middle205

temporal gyrus, insular cortex, precuneus, amygdala, thalamus, cuneus and cingulate gyrus. These areas are

commonly associated with higher cognitive functions such as flexibility of thinking, problem solving, cognitive

inhibition and attentional control[34]. One explanation for the high ISFC exhibited by these brain regions is

that they represent important cognitive control areas that are likely to act as functional hubs, which may be

commonly integrated with other brain regions across subjects. Specifically, frontal pole frequently interacts with210

the anterior cingulate gyrus during reward-guided learning [36]. Importantly, the precuneus is known to play an

important hub in the default mode network (DMN) [37] – is often activated during episodic memory retrieval and

self-processing operations [38]. The higher ISFC at the precuneus might be related higher reaction time in chosen

correct value during value learning task[39] which relate to subject memory of previous similar task. In summary,

greater similarity of functional activity appears to occur within predominantly sensory-specific brain regions and215

greater similarity of functional connectivity appears to occur in regions commonly associated with higher cognitive

function.

3.2. Dynamic intersubject learning curve

An advantage of our experimental approach is the ability to examine changes in neuronal processes throughout

different phases of value learning – that is, we were able to track intersubject relationships dynamically. During220
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early stages of learning, we observed similar patterns of brain activity across subjects, suggesting that participants

generally exhibit similar temporal course of BOLD activation in response to value learning task stimuli. During later

stages of learning, we observed a decrease in the ISC across subjects, suggesting that participants may have adapted

to the procedures of the task. We speculate that this dynamical shift in ISC also supports a mechanism in which

individualized pattern of activity supports inter-individual variability in task performance. The ISFC gradually225

increased between the first and second day and subsequently decreased in day 3 but become steady in day 4.

This trajectory is reminiscent of the typical shape of a traditional learning curve [40]. Indeed, the empirically

observed trajectory of ISFC suggests that the functional connectivity within and between brain networks of all

the participants points to its role in an adaptive mechanism for value learning [27, 28, 41]. The changes in

the intersubject large-scale functional brain networks may also provide important neural markers of goal-directed230

training performance irrespective of training platform and may give more information about the specific changes

in brain activity and connectivity that affect behavioral outcomes.

Importantly, we found that cognitive systems were heterogeneously influential in the dynamic pattern of ISFC

and ISC. The higher ISFC (compared to ISC) of the sensorimotor system in the later stage of learning may result

from trained motor coordination of hand and finger movement to perform the button-pushing during task response235

[25, 42]. We observed the largest difference between ISC and ISFC during the later stages of learning of both visual

and sensorimotor networks. The resulting changes suggest a role in visual and sensorimotor systems in supporting

visual identification of objects, interpretation of value, and motor coordination of hand-finger movement to guide

more accurate and efficient decision making after the critical learning period. The lower ISC in the later stage of

learning could not be ascribed to reduced functional neural activity at the visual and sensorimotor regions rather240

than individual differences in temporal time courses of BOLD signals after the task adaptation [43, 44]. Rather,

the higher ISFC in the later stage of learning could be attributed to the coherent functional connectivity between

brain regions. Interestingly, our findings also demonstrated involvement of DMN, such that over the course of value

learning, connectivity within DMN becomes more generalized across subjects. Although DMN is often viewed as a

task-negative system that is typically more active during resting state processes, here we report evidence that the245

architecture of this system evolves as individuals learn the value of different objects. We speculate that changes in

DMN architecture might support an improved physiological capability of more rapidly disengaging task-negative

processes in support of improved task efficiency.

3.3. Functional network drivers of value learning

Once the learning is achieved, what mechanisms optimize the organization of learned information for task250

performance? We showed evidence that visual and sensorimotor systems are involved in encoding task mechanics

and value learning. First, ISFC was significantly correlated with task accuracy, suggesting that behavior might

be improved when the functional network reorganizes according to a generalized rule common across the subjects.

Furthermore, individual variation in stimulus-induced functional activity might be responsible for modulating

subject-specific behavior during the value learning tasks [45, 46, 47]. Our observation that the relationship between255

ISFC and task accuracy was driven by the sensorimotor, DMN and subcortical regions including putamen, thalamus

and caudate. The putamen and caudate nucleus are part of dorsal striatum, that play an important role in decision
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making – a cognitive capability that is important in choice-driven behaviors related to determining the value of

an object [49]. In particular, the positive correlation of dorsal striatum’s ISFC and accuracy suggest that dorsal

stratum regions are intrinsic neural drivers that modulate the subject behavior to increase the performance accuracy260

by interacting with other brain systems especially the feedback-related learning[50]. Our results findings suggest

that interregional coupling of brain activity with the dorsal striatum may be promising focal point of future work

in the identification of target brain areas that contribute to individual deficits in general learning.

4. Materials and Methods

4.1. Experimental setup and procedure265

Participants learned the monetary value of 12 novel visual stimuli in a reinforcement learning paradigm.

Learning occurred over the course of four MRI scan sessions conducted on four consecutive days. The novel

stimuli were 3-dimensional shapes generated with a custom built MATLAB toolbox (code available at http:

//github.com/saarela/ShapeToolbox). ShapeToolbox allows the generation of three-dimensional radial fre-

quency patterns by modulating basis shapes, such as spheres, with an arbitrary combination of sinusoidal mod-270

ulations in different frequencies, phases, amplitudes, and orientations. A large number of shapes were generated

by selecting combinations of parameters at random. From this set, we selected twelve that were considered to be

sufficiently distinct from one another. A different monetary value, varying from $1.00 to $12.00 in integer steps,

was assigned to each shape. These values were uncorrelated with any parameter of the sinusoidal modulations, so

that visual features were not informative of value. Participants completed 20 minutes of the main task protocol275

on each scan session, learning the values of the 12 shapes through feedback. The sessions comprised of three scans

of 6.6 minutes each, starting with 16.5 seconds of a blank gray screen, followed by 132 experimental trials (2.75

seconds each), and ending with another period of 16.5 seconds of a blank gray screen. Stimuli were back-projected

onto a screen viewed by the participant through a mirror mounted on the head coil and subtended 4 degrees of

visual angle, with 10 degrees separating the center of the two shapes. Each presentation lasted 2.5 seconds and,280

at any point within a trial, participants entered their responses on a 4-button response pad indicating their shape

selection with a leftmost or rightmost button press. Stimuli were presented in a pseudorandom sequence with every

pair of shapes presented once per scan. Feedback was provided as soon as a response was entered and lasted until

the end of the stimulus presentation period. Participants were randomly assigned to two groups depending on the

type of feedback received. In the RELATIVE feedback case, the selected shape was highlighted with a green or285

red square, indicating whether the selected shape was the most valuable of the pair or not, respectively. In the

ABSOLUTE feedback case, the actual value of the selected shape (with variation) was displayed in white font.

Between each run, both groups received feedback about the total amount of money accumulated up to that point.

4.2. MRI Data collection and preprocessing

Magnetic resonance images were obtained at the Hospital of the University of Pennsylvania using a 3.0 T290

Siemens Trio MRI scanner equipped with a 32-channel head coil. T1-weighted structural images of the whole brain

were acquired on the first scan session using a three-dimensional magnetization-prepared rapid acquisition gradient
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echo pulse sequence (repetition time (TR) 1620 ms; echo time (TE) 3.09 ms; inversion time 950 ms; voxel size

1 mm by 1 mm by 1 mm; matrix size 190 by 263 by165). A field map was also acquired at each scan session

(TR 1200 ms; TE1 4.06 ms; TE2 6.52 ms; flip angle 60◦ ; voxel size 3.4 mm by 3.4 mm by 4.0 mm; field of view295

220 mm; matrix size 64 by 64 by 52) to correct geometric distortion caused by magnetic field inhomogeneity. In

all experimental runs with a behavioral task, T2*-weighted images sensitive to blood oxygenation level-dependent

contrasts were acquired using a slice accelerated multi-band echo planar pulse sequence (TR 2,000 ms; TE 25 ms;

flip angle 60◦ ; voxel size 1.5 mm by 1.5 mm by 1.5 mm; field of view 192 mm; matrix size 128 by 128 by 80). In

all resting state runs, T2*-weighted images sensitive to blood oxygenation level-dependent contrasts were acquired300

using a slice accelerated multi-band echo planar pulse sequence (TR 500 ms; TE 30 ms; flip angle 30◦ ; voxel size

3.0 mm by 3.0 mm by 3.0 mm; field of view 192 mm; matrix size 64 by 64 by 48).

Cortical reconstruction and volumetric segmentation of the structural data was performed with the Freesurfer

image analysis suite[51]. Boundary-Based Registration between structural and mean functional image was per-

formed with Freesurfer bbregister [52]. Preprocessing of the fMRI data was carried out using FEAT (FMRI Expert305

Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). The follow-

ing pre-statistics processing was applied: EPI distortion correction using FUGUE [53]; motion correction using

MCFLIRT [54]; slice-timing correction using Fourier-space time series phase-shifting; non-brain removal using

BET [55]; grand-mean intensity normalization of the entire 4D dataset by a single multiplicative factor; highpass

temporal filtering (Gaussian-weighted least-squares straight line fitting, with σ = 50.0s). Nuisance time series were310

voxelwise regressed from the preprocessed data. Nuisance regressors included (i) three translation (X, Y, Z) and

three rotation (pitch, yaw, roll) time series derived by retrospective head motion correction (R = [X, Y, Z, pitch,

yaw, roll]), together with first derivative and square expansion terms , for a total of 24 motion regressors [56]);

(ii) the five first principal components of non-neural sources of noise, estimated by averaging signals within white

matter and cerebrospinal fluid masks, obtained with Freesurfer segmentation tools and removed using the anatom-315

ical CompCor method (aCompCor) [57]; and (iii) an 24 estimate of a local source of noise, estimated by averaging

signals derived from the white matter region located within a 15 mm radius from each voxel, using the ANATICOR

method [58]. Global signal was not regressed out of voxel time series due to its controversial application to resting

state fMRI data[59, 60].

We parcellated the brain into 112 cortical and subcortical regions, separated by hemisphere using the structural320

Harvard-Oxford atlas of the FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain)

Software Library (FSL; Version 5.0.4) [30, 31]. We warped the MNI152 regions into subject-specific native space

using FSL FNIRT and nearest-neighbor interpolation and calculated the average BOLD signal across all gray matter

voxels within each region. The participant’s gray matter voxels were defined using the anatomical segmentation

provided by Freesurfer, projected into subject’s EPI space with bbregister. For each individual fMRI, we extracted325

regional mean BOLD time series by averaging voxel time series in each of the 112 regions.

4.3. Inter-subject correlation (ISC) and inter-subject functional connectivity (ISFC)

We used the Pearson correlation coefficient to compute inter-subject correlation (ISC) of each brain region for

each subject. First, we calculated region-wise temporal correlation between every pair of subjects as:
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rij =

∑N
t=1[(xi(t) − x̄i)(xj(t) − x̄j)]√∑N

t=1(xi(t) − x̄i)2
∑N

t=1(xj(t) − x̄j)2
, (1)

where N is the number of time points of time series data, rij is the correlation coefficient of a region between the330

times series xi and xj of the ith and jth subjects, respectively. To test the significance of each pair of correlations

between one region fMRI BOLD signals of two subjects, we performed a fully non-parametric regional permutation

test with 10,000 randomization [61]. This non-parametric test accounts for slow-scale autocorrelative structure in

the BOLD time series [62], by removing removing phase information from each BOLD signal, through Fourier phase

randomization. To correct for multiple comparisons, we selected the maximum value of correlation value in a given335

permutation procedure and defined the threshold for a pair correlation as q*100th percentile of null distribution of

maximum values. The threshold for both rest and task condition was set at q = 0.01 and the following thresholds

were obtained: rest: rth = 0.0475; task: rth = 0.1172. . Next , we averaged only significant correlation values out

of 190 correlation values, rij from all subject pairs to one ISC for each region:

ISC =
2

M(M − 1)

M∑
i=1

M∑
j=2,j>1

rij , (2)

where M is the number of subject and in our study with 20 subjects, the ISC was averaged over significant 190340

subject pairs. The procedure (see SI for more information) was followed for each scan, day, and for both rest and

task conditions. Average ISC for each region was obtained for each day during learning task for three scans per

day.

We constructed functional brain networks for each experimental session of each subject, by computing a wavelet

transform coherence (WTC) measure between every possible pair of regional BOLD time series [63]. To calculate345

the WTC, we first applied a wavelet decomposition to the BOLD time series of each brain regions by successively

convolving the time series with the Morlet wavelet in a frequency range of 0.05 – 0.11Hz (see SI). The wavelet

transformed signal is a complex number expressed as a function of time and frequency. Next, we computed the

correlation between wavelet transformed signals associated with each possible pair of brain regions. The wavelet

transform of each time series were smoothed in both time and frequency (or scale) before computing the correlation350

measure [64, 65](see SI). We repeated this procedure for all pairs of regions and tabulated the resulting WTC values

in a weighted adjacency matrix A for each experimental session and subject.

Inter-subject functional connectivity (ISFC) was obtained from the functional connectivity (FC) matrices of all

the subjects. ISFC estimated correlation between one subject and all other subjects. We computed the ISFC of

each subject as the correlation between single subject FC matrix and average of all other subjects FC matrices as355

ISFCi =
1

N
Ai[

1

n− 1

∑
j 6=i

Aj ] (3)

where A is the adjacency functional connectivity matrix of a subject and n and N is the total number of subjects

and total number of regions respectively.

To objectively identify a common set of functional brain systems across all subjects, we partitioned the adjacency

matrix into communities by optimizing the modularity index using a generalized Louvain method [66, 67] developed

11



specifically for community detection in multi-layer networks. We constructed a multi-layer network from our360

experimental data, by concatenating adjacency matrices from all sessions and subjects for each day and each runs.

We obtained partition of brain into network communities for each scan and subject with the standard parameter

of γ = ω = 1. (See supplementary materials for details). In order to obtain single representative of partition

into different communities, we computed a module allegiance matrix [25], a matrix whose entries represent the

probability that corresponding regions belong to the same community across the scans and participants. We then365

computed the optimal community structure [68] of the network by subdivided the network into non-overlapping

groups of nodes which maximizes the number of within-group edges from the module allegiance matrix.

4.4. Reliability of ISC and ISFC

For each subject, we measured the correlation between bold signals for the three scans obtained in each in order

to measure the reliability of ISC. This was done for each subject and across the days on a region-by-region basis370

(see SI for more information). Similarly, to investigate the reliability of ISFC, we computed edge persistence (see

SI) between the three scans for each day and for each subjects and was done for region-by-region basis.
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Figure 1: Inter-subject correlation and functional connectivity. (A) Inter-subject correlations (ISC) between times series from

the same region across different subjects during task and rest predict the coherent activation of similar brain regions. This was estimated

from the bold signals by the person correlation(B) Inter-subject functional connectivity (ISFC) is the correlation between connectivity

of one subject and other group of subjects revealing pattern of correlations across both the regions and the subjects .
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Figure 2: Inter-subject correlation. Dynamics ISC and ISFC (A) The consistent ISC (p < 0.05, corrected for multiple compar-

ison) across the subjects for the whole four days during the value learning task, shows that lateral occipital cortex, lingual gyrus,

supramarginal, sensorimotor region and anterior cingulate were more correlated across the subjects. (B) The average ISFC (p < 0.05,

corrected for multiple comparison) across all the subjects for the whole four days revealed higher correlation at the pre-central, lingual

gyrus and left supramarginal. Other regions include precuneus, cuneus, frontal pole and cingulate gyrus. (C) Average inter-subject

correlation (ISC) increased from day1 to day 2 and decreased in day 3 and day 4. There was significance difference across the whole

days (F (3, 447 = 7.4, p = 7.59 ∗ 10−5, (D) The ISFC increased significantly from the first day, and was highest in the second day

but became steady after day 3. However, no significance difference across the four days. (E) Normalized ISC and ISFC shows their

dynamics, no significant difference was observed in day 1, day 2, and day 3. However, ISFC was significantly higher in day 4.
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Table 1: Network Communities

Community Regions

FT Temporal pole, Middle temporal gyrus - anterior, Frontal medial cortex,

Subcallosal cortex, Orbital frontal cortex, Nucleus Accumbens

SM Precentral gyrus, Postcentral gyrus, Superior parietal lobule,

Supramarginal gyrus-anterior and posterior, Supplemental motor area,

Central opercular cortex, Parietal operculum cortex

AUD Inferior temporal gyrus-anterior and posterior, Parahippocampal gyrus-

anterior

and posterior, Temporal fusiform cortex-anterior and posterior,

Globus pallidus, Amygdala, Hippocampus, Brainstem

DMN Frontal pole, Insular cortex, Superior frontal gyrus, Middle frontal gyrus,

Inferior frontal gyrus - pars triangularis and pars opercularis,

Middle temporal gyrus-posterior, Middle temporal gyrus- temporooccip-

ital

Supramarginal gyrus-posterior Angular gyrus, Paracingulate gyrus,

Cingulate gyrus, anterior Cingulate gyrus, posterior, Frontal operculum

cortex,

LAN Superior temporal gyrus-anterior and posterior,Planum polare,

Heschl’s gyrus, Planum temporale

VIS Inferior temporal gyrus-temporooccipital, Lateral occipital cortex-

superior

and inferior, Intracalcarine cortex, Precuneus cortex, Cuneus cortex,

Lingual gyrus,

Temporal occipital fusiform cortex, Occipital fusiform

gyrus,Supercalcarine cortex

Occipital pole

PCT Putamen, Caudate, Thalamus
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Figure 3: Network communities, ISC and ISFC. (A) The module allegiance matrix indicating the probability of brain region

belonging to the same community based on the task. Seven communities were identified from community detections across the whole four

days for all the subjects, and (B) The communities are projected on to the MRI surface and were named base on the region location and

cognitive definition -frontal temporal (FT), Sensorimotor(SM), Auditory(AUD), Default mode network (DMN), Language (LAN), Visual

(VIS) and Putamen-caudate- thalamus (PCT) (see Table 1 for the regions in the communities). (C) ISC for each network community

the same pattern of the average ISC of the whole day. Sensorimotor, DMN and VIS systems had relatively higher ISC compared to the

other regions. There was significance difference across the days in all the regions excluding language (LAN) network. (D) The network

communities’ ISFC revealed higher ISFC at SM, DMN, and VIS networks. Onewayanova. ∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001
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Figure 4: Learning Curve. The normalized ISC and ISFC curves for the seven network communities in order statistical significance

. There was lager significant difference in day 3 and 4 especially for SM, VIS, DMN and auditory as ISC significantly decreased while

ISFC increased, . t− test : ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001
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Figure 5: Accuracy and ISFC. Average accuracy across the subject which increased with day. SM, DMN and PCT were significantly

correlated with the accuracy across the subjects which indicate that ISFC is driving by the learning task performance.
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