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Materials and Methods

Brain network construction

Generally, to perform network analyses one must define the two important elements of the network – nodes
and edges. These two elements are the building blocks of networks and their accurate definitions are very
important for any network models (Butts 2009). The standard method of defining network nodes in the
field of network neuroscience is to consider neuroimaging data such fMRI and apply a structural atlas
or parcellation that separates the whole brain volume into different regions defined by known anatomical
differences. Network nodes thus represent the collection of voxels within anatomically defined region. The
network edges reflect statistical dependencies between the activity time series of two nodes. In this study,
the brain is parcellated into 112 subcortical and cortical regions (see Supplementary Table 1) defined by
the structural Harvard-Oxford atlas of the fMRIB (Smith et al. 2004; Woolrich et al. 2009). Each region’s
activity is given by the mean time series across all voxels within that region.

The edge weights that link network nodes (brain regions) were defined as the wavelet transform coherence
(WTC) (Torrence and Compo 1998), smoothed over time and frequency to avoid bias toward unity coherence.
We use Morlet wavelets with coefficients given by:
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, where f is the centre frequency and σt is the temporal standard deviation. The time-frequency esti-
mate, X (t,f ) of time series x (t) was computed by a convolution with the wavelet coefficients:

X(t, f) = x(t) ∗ w(t, f).
We selected the central frequency of 1/12 Hz corresponding to a spectral width of 0.05 to 0.11 Hz for full
width at half maximum. Then the wavelet transform coherence between two time series x(t) and y(t) is
defined as follows (Torrence and Compo 1998; Cazelles et al. 2007; Grinsted, Moore, and Jevrejeva 2004):

TC2(f, t) =
|S(s−1Xxy(t, f)|2

S(s−1|Xx(t, f)|2) · S(s−1|Xy(t, f)|2)
,

where Xxy is the cross-wavelet of Xx and Xy, s is the scale which depends on the frequency (Cazelles et
al. 2007; Grinsted, Moore, and Jevrejeva 2004), and S is the smoothing operator. This definition closely
resembles that of a traditional coherence, with the marked difference that the wavelet coherence provides a
localized correlation coefficient in both time and frequency. Higher scales are required for lower frequency
signals (Cazelles et al. 2007; Grinsted, Moore, and Jevrejeva 2004) and in this study, we used s=32 for the
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smoothing operation. This procedure was repeated for all pair of regions yielding the 112 by 112 adjacency
matrix, A , representing the functional connectivity between brain regions.

Network modularity

In neuroscience, the term network modularity can be used to refer to the concept that brain regions cluster
into modules or communities. These communities can be identified computationally using machine learning
techniques in the form of community detections algorithms (Girvan and Newman 2001). A community of
nodes is a group of nodes that are tightly interconnected. In this study, we implemented a generalized
Louvain community detection algorithm (De Meo et al. 2011; Mucha et al. 2010) which considers multiple
adjacency matrices as slices of a multilayer network, and which then produces a partition of brain regions into
modules that reflects each subject’s community structure across the multiple stages of learning instantiated
in the four days of task practice. The multilayer network was constructed by connecting the adjacency
matrices of all scans and subjects with interlayer links. We then maximized a multilayer modularity quality
function, Q , that seeks a partition of nodes into communities that maximizes intra-community connections
(Mucha et al. 2010):

Q = 1
2µ

∑
ijs[(Aijs − γsVijs)δsr + δijωjsr]δ(gis, gjr),

where Aijs is the ij th element of the adjacency matrix of slice s, and element Vijs is the component of the
null model matrix tuned by the structural resolution parameter γ. In this study, we set γ=1, which is the
standard practice in the field when no a priori hypotheses exist to otherwise inform the choice of γ. We
employed the Newman-Girvan null model within each layer by using Vijs =

kiskjs
2ms

, where k is the total
edge weight and ms is the total edge weight in slice s. The interslice coupling parameter, ωjsr, is the
connection strength of the interlayer link between node j in slice s and node j in slice r, and the total
edge in the network is µ = 1

2

∑
jr κjr. The node strength, κjr, is the sum of the intraslice strength and

interslice strength: κjr = kjr + cjr, and cjr =
∑
s ωjrs. In this study, we set ω = 1, which is the standard

practice in the field when no a priori hypotheses exist to otherwise inform the choice of ω. Finally, the
indicator δ(gi, gj) = 1 if nodes i and j are assigned to the same community, and is 0 otherwise. We obtained
a partition of the brain into communities for each scan and subject, and from that ensemble of partitions we
constructed a module allegiance matrix(Bassett et al., 2015) , whose elements correspond to the probability
that two regions belong to the same community across all scans and subjects. The seven network communities
generated with this procedure are shown in Table 1 in the main text.

Edge strength

In complementary analyses, we also investigated which regions of the brain were characterized by high
strength within the network. The edge strength of node i is defined as

Si = 1
N−1

∑
jεN aij

,

where aij is the ij th element of the adjacency matrix with N nodes.

Supplementary results

ISC and ISFC

Across subjects, the ISC of many brain regions was consistent from day to day during the value learning
task. In particular, the fusiform, lingual gyrus, several areas in the occipital lobe, and precentral regions’
activity were most consistently correlated across the subjects (Fig. S1A). The correlation strength was lower
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on day four but the lingual, fusiform gyrus and lateral occipital lobe were still found to be significantly
correlated across the subjects. In general, the ISFC was lower on day one but increased in day two (Fig. 2
in the main text and Fig. S1B); specifically, ISFC was high in the right precuneus and superior temporal
pole, regions of the default mode network, and regions of the primary visual system. Other regions with
significantly high ISFC included the left middle temporal temporal gyrus, hippocampus, and medial pre-
frontal cortex. On day four, ISFC was significantly high across the subjects in regions that include superior
and middle frontal gyri, superior parietal, angular gyrus, posterior cingulate gyrus, precuneus and cuneus,
supercalcarine cortex, lateral occipital cortex, occipital fusiform gyrus, lingual gyrus, hippocampus, and
insular cortex.

As a null model, we also computed the ISC for the rest condition, during which fMRI data was also acquired
in each of the four days of the experiment (Fig. S2A-S2B). We observed that the average ISC was much
lower during the rest condition compared to during the value learning task; in fact, the average ISC was
statistically indistinguishable from zero. This observation is perhaps not so surprising when one considers
that during the rest condition, activity is no longer time locked to any stimulus, and therefore subject’s
brain dynamics are allowed to evolve independently. Moreover, we observed that the ISC was similar across
all four days of the resting condition, not varying appreciably across days; the temporal consistency of the
resting ISC was also upheld in all network communities (Fig. S2A-S2B). Similarly, we observed that the
ISFC was similar across all four days of the resting condition, not varying appreciably across days; the
temporal consistency of the resting ISFC was also upheld in all network communities (Fig. S2C-S2D). Thus,
the our results regarding the temporal evolution of ISC and ISFC are driven by learning, not time, as they
are only observed during the learning condition, and not during the resting condition.

Functional integration

As shown in Figure 3 in the main manuscript, the community detection procedure yielded seven communities
defined by the functional activity and structural location of network modules. The seven communities (see
Table 1 in the main text) are fronto-temporal (FT), sensorimotor(SM) , default mode network (DMN),
auditory (AUD), language (LAN), visual (VIS), and the three regions putamen, caudate, and thalamus
(PCT). The functional connectivity pattern during the task shows consistent functional connectivity patterns
across all four days of the experiment (Fig. S3). There were strong functional connections within each
system, and most especially in the VIS, DMN and SM modules. The pattern of functional connectivity was
consistent across days, and we observed strong functional connections between the DMN, sensorimotor, and
visual networks, suggesting that these regions are more integrated than other networks during value learning.

References

Brain regions present in the Harvard-Oxford cortical and subcortical atlas as provided by FSL.

Frontal pole Cingulate gyrus, anterior
Insular cortex Cingulate gyrus, posterior
Superior frontal gyrus Precuneus cortex
Middle frontal gyrus Cuneus cortex
Inferior frontal gyrus, pars triangularis Orbital frontal cortex
Inferior frontal gyrus, pars opercularis Parahippocampal gyrus, anterior
Precentral gyrus Parahippocampal gyrus, posterior
Temporal pole Lingual gyrus
Superior temporal gyrus, anterior Temporal fusiform cortex, anterior
Superior temporal gyrus, posterior Temporal fusiform cortex, posterior
Middle temporal gyrus, anterior Temporal occipital fusiform cortex
Middle temporal gyrus, posterior Occipital fusiform gyrus
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Middle temporal gyrus, temporooccipital Fronal operculum cortex
Inferior temporal gyrus, anterior Central opercular cortex
Inferior temporal gyrus, posterior Parietal operculum cortex
Inferior temporal gyrus, temporooccipital Planum polare
Postcentral gyrus Heschl’s gyrus
Superior parietal lobule Planum temporale
Supramarginal gyrus, anterior Supercalcarine cortex
Supramarginal gyrus, posterior Occipital pole
Angular gyrus Caudate
Lateral occipital cortex, superior Putamen
Lateral occipital cortex, inferior Globus pallidus
Intracalcarine cortex Thalamus
Frontal medial cortex Nucleus Accumbens
Supplemental motor area Amygdala
Subcallosal cortex Hippocampus
Paracingulate gyrus Brainstem

Figure 1: ISC and ISFC maps during the task condition. (A) The ISC was significant (p < 0.05,
corrected for multiple comparisons) in the lingual gyrus and sensorimotor regions across all four days of task
practice. Other regions that showed significant ISC across only the first three days of task practice include
the supramarginal gyrus, and across only the last three days of task practice include the lateral occipital
lobe. (B) The ISFC was lower in day 1 but increased steadily with higher ISFC strength in day 3 and day
4. Regions with significant ISFC (p < 0.05, corrected for multiple comparisons) included sensorimotor areas,
lingual gyrus, supramarginal gyrus, anterior cingulate gyrus and frontal pole, particularly in the third and
fourth day of task practice.
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Figure 2: ISC and ISFC during the resting state condition. (A) The average ISC during the resting
state condition is similar across all four days of the experiment, (B) with no clear differences across each
network community. (C ) The ISFC was lower on day 2 of the experiment, and (D) the same patterns were
observed for all network communities. The fronto-temporal (FT) and auditory (AUD) networks had lower
ISFC compared to other networks.
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learning. Edges shown are those whose functional connectivity strength has a statistical significance of
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