References

[1]     Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017). EMNIST: an extension of MNIST to handwritten letters. arXiv preprint arXiv:1702.05373.
[2]     Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.
[3]     Coates, A., Ng, A., & Lee, H. (2011, June). An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 215-223).
[4]     Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011, December). Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning (Vol. 2011, No. 2, p. 5).
[5]    
[6]     LeCun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker, J. S., Drucker, H., ... & Vapnik, V. (1995). Learning algorithms for classification: A comparison on handwritten digit recognition. Neural networks: the statistical mechanics perspective261, 276.
[7]     LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems (pp. 396-404).
[8]     Hou, Y., & Zhao, H. (2017, October). Handwritten Digit Recognition Based on Improved BP Neural Network. In Chinese Intelligent Systems Conference (pp. 63-70). Springer, Singapore.
[9]     De Chazal, P., Tapson, J., & van Schaik, A. (2015, April). A comparison of extreme learning machines and back-propagation trained feed-forward networks processing the mnist database. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on (pp. 2165-2168). IEEE.
[10]     Revow, M., Williams, C. K., & Hinton, G. E. (1996). Using generative models for handwritten digit recognition. IEEE transactions on pattern analysis and machine intelligence18(6), 592-606.
[11]     Sabourin, M., Mitiche, A., Thomas, D., & Nagy, G. (1993, October). Classifier combination for hand-printed digit recognition. In Document Analysis and Recognition, 1993., Proceedings of the Second International Conference on (pp. 163-166). IEEE.
[12]     Liu, C. L., Nakashima, K., Sako, H., & Fujisawa, H. (2003). Handwritten digit recognition: benchmarking of state-of-the-art techniques. Pattern recognition36(10), 2271-2285.
[13]     Liu, C. L., Nakashima, K., Sako, H., & Fujisawa, H. (2004). Handwritten digit recognition: investigation of normalization and feature extraction techniques. Pattern Recognition37(2), 265-279.
[14]  Teow, L. N., & Loe, K. F. (2002). Robust vision-based features and classification schemes for off-line handwritten digit recognition. Pattern Recognition35(11), 2355-2364.
[15]     Jeong, C. S., & Jeong, D. S. (1999, December). Hand-written digit recognition using Fourier descriptors and contour information. In TENCON 99. Proceedings of the IEEE Region 10 Conference (Vol. 2, pp. 1283-1286). IEEE.
[16]     Gorgevik, D., & Cakmakov, D. (2004, August). An efficient three-stage classifier for handwritten digit recognition. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on (Vol. 4, pp. 507-510). IEEE.
[17]     Zhang, B., Fu, M., Yan, H., & Jabri, M. A. (1999). Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM). IEEE transactions on neural networks10(4), 939-945.
[18]     Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE transactions on pattern analysis and machine intelligence24(4), 509-522.
[19]     Leem, S., & Kim, S. (2016). High Speed Digit Recognition for Serial Numbers of Home Appliances.
[20-21]     Corr, P. J., Silvestre, G. C., & Bleakley, C. J. (2017). Open Source Dataset and Deep Learning Models for Online Digit Gesture Recognition on Touchscreens. arXiv preprint arXiv:1709.06871.
[22]     Su, J., Vargas, D. V., & Kouichi, S. (2017). One pixel attack for fooling deep neural networks. arXiv preprint arXiv:1710.08864.
[23]     Mathur, G., & Rikhari, S. (2017). A Review on Recognition of Indian Handwritten Numerals.
[24]     Parseh, M. J., & Meftahi, M. (2017). A New Combined Feature Extraction Method for Persian Handwritten Digit Recognition. International Journal of Image and Graphics17(02), 1750012.
[25]     Alom, M. Z., Sidike, P., Taha, T. M., & Asari, V. K. (2017). Handwritten Bangla Digit Recognition Using Deep Learning. arXiv preprint arXiv:1705.02680.
[26]     El Hindi, K., Khayyat, M., & Abu Kar, A. (2017). Comparing the machine ability to recognize hand-written Hindu and Arabic digits. Intelligent Automation & Soft Computing23(2), 295-301.
[27]     Chandio, A. A., Jalbani, A. H., Laghari, M., & Awan, S. A. (2017). Multi-Digit Handwritten Sindhi Numerals Recognition using SOM Neural Network. Mehran University Research Journal of Engineering & Technology36(4), 8.
[28]     Toulgaridis, N., Bougioukou, E., & Antonakopoulos, T. (2017, May). Architecture and implementation of a Restricted Boltzmann Machine for handwritten digits recognition. In Modern Circuits and Systems Technologies (MOCAST), 2017 6th International Conference on (pp. 1-4). IEEE.
[29]     Patel, A., & Kalyani, T. V. (2016, February). Support Vector Machine with Inverse Fringe as Feature for MNIST Dataset. In Advanced Computing (IACC), 2016 IEEE 6th International Conference on (pp. 123-126). IEEE.
[30]     Schaetti, N., Salomon, M., & Couturier, R. Echo State Networks-based Reservoir Computing for MNIST Handwritten Digits Recognition.
[31]     Mohapatra, R. K., Majhi, B., & Jena, S. K. (2015, December). Classification performance analysis of MNIST Dataset utilizing a Multi-resolution Technique. In Computing, Communication and Security (ICCCS), 2015 International Conference on (pp. 1-5). IEEE.
[32]     Rafiei, M. H., & Adeli, H. (2017). A new neural dynamic classification algorithm. IEEE transactions on neural networks and learning systems28(12), 3074-3083.
[33]     Tuba, E., Tuba, M., Simian, D., & Street, I. R. (2016). Handwritten digit recognition by support vector machine optimized by bat algorithm. In 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision,(WSCG 2016) (pp. 369-376).
[34]     Deng, L. (2012). The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine29(6), 141-142.