-------------------------
BIBLIOGRAFIA
[1] J. A. O'Sullivan, A. J. Power, N. Mesgarani, S. Rajaram, J. J. Foxe, B. G. Shinn-Cunningham, ... E. C. Lalor, Attentional selection in a cocktail party environment can be decoded from single-trial EEG, Cerebral Cortex 25(7) (2014) 1697-1706    
[2] N. Ding, J. Z. Simon, Emergence of neural encoding of auditory objects while listening to competing speakers, Proceedings of the National Academy of Sciences 109(29) (2012) 11854-11859  
[3] N. Ding, J. Z. Simon, Adaptive temporal encoding leads to a background-insensitive cortical representation of speech, Journal of Neuroscience 33(13) (2013) 5728-5735  
[4] N. Ding, J. Z. Simon,  Cortical entrainment to continuous speech: functional roles and interpretations, Frontiers in human neuroscience 8 (2014) 311  
[5] N. Ding, M. Chatterjee ,J. Z. Simon, Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure, Neuroimage 88 (2014) 41-46  
[6] B. Zoefel, R. VanRullen, The role of high-level processes for oscillatory phase entrainment to speech sound, Frontiers in human neuroscience 9 (2015) 651  
[7] M. J. Crosse, G. M. Di Liberto, A. Bednar, E. C. Lalor, The multivariate temporal response function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to continuous stimuli, Frontiers in human neuroscience 10 (2016) 604     
[8] N. Mesgarani, S. V. David, J. B. Fritz, S. A. Shamma,  Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex, Journal of neurophysiology 102(6) (2009) 3329-3339  
[9] C. Horton, M. D'Zmura, R. Srinivasan, Suppression of competing speech through entrainment of cortical oscillations, Journal of neurophysiology 109(12) (2013) 3082-3093  
[10] J. R. Kerlin, A. J. Shahin, L. M. Miller, Attentional gain control of ongoing cortical speech representations in a “cocktail party”, Journal of Neuroscience 30(2) (2010) 620-628  
[11] M. Koskinen, J. Viinikanoja, M. Kurimo, A. Klami, S. Kaski, R. Hari, Identifying fragments of natural speech from the listener's MEG signals, Human brain mapping 34(6) (2013) 1477-1489   
[12] N. Mesgarani, E. F. Chang, Selective cortical representation of attended speaker in multi-talker speech perception, Nature 485(7397) (2012) 233  
[13] A. J. Power, J. J. Foxe, E. J. Forde, R. B. Reilly, E. C. Lalor, At what time is the cocktail party? A late locus of selective attention to natural speech, European Journal of Neuroscience 35(9) (2012) 1497-1503  
[14] E. M. Z. Golumbic, N. Ding, S. Bickel, P. Lakatos, C. A. Schevon, G. M. McKhann, ... D. Poeppel, Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”, Neuron 77(5) (2013) 980-991  
[15] R. H. Bolt, A. D. MacDonald, Theory of speech masking by reverberation, The Journal of the Acoustical Society of America 21(6) (1949) 577-580 
[16] A. K. Nábělek, T. R. Letowski, F. M. Tucker, Reverberant overlap‐and self‐masking in consonant identification, The Journal of the Acoustical Society of America 86(4) (1989) 1259-1265  
[17] A. Kjellberg, Effects of reverberation time on the cognitive load in speech communication: Theoretical considerations, Noise and Health 7(25) (2004) 11  
[18] T. Houtgast, H. J. Steeneken, The modulation transfer function in room acoustics as a predictor of speech intelligibility, Acta Acustica United with Acustica 28(1) (1973) 66-73 
[19] A. K. Nábělek, P. K. Robinson, Monaural and binaural speech perception in reverberation for listeners of various ages, The Journal of the Acoustical Society of America 71(5) (1982) 1242-1248  
[20] J. S. Bradley, Speech intelligibility studies in classrooms, The Journal of the Acoustical Society of America 80(3) (1986) 846-854.  
[21] S. R. Bistafa, J. S. Bradley, Reverberation time and maximum background-noise level for classrooms from a comparative study of speech intelligibility metrics, The Journal of the Acoustical Society of America 107(2) (2000) 861-875  
[22] R. Drullman, J. M. Festen, R. Plomp, Effect of temporal envelope smearing on speech reception, The Journal of the Acoustical Society of America 95(2) (1994) 1053-1064  
[23] T. Arai, M. Pavel, H. Hermansky, C. Avendano, Intelligibility of speech with filtered time trajectories of spectral envelopes, In Spoken Language, 1996, ICSLP 96, Proceedings, Fourth International Conference on  IEEE, październik 1996, Filadelfia USA     
[24] S. Greenberg, On the origins of speech intelligibility in the real world,  Proceedings of the ESCA Workshop on Robust Speech Recognition for Unknown Communication Channels, kwiecień 1997,  PONT-a-MOUSSON, Francja
[25] A. Kusumoto, T. Arai, K. Kinoshita, N. Hodoshima, N. Vaughan, Modulation enhancement of speech by a pre-processing algorithm for improving intelligibility in reverberant environments, Speech communication 45(2) (2005) 101-113  
[26] H. Sato, H. Sato, M. Morimoto, R. Ota, Acceptable range of speech level for both young and aged listeners in reverberant and quiet sound fields, The Journal of the Acoustical Society of America 122(3) (2007) 1616-1623  
[27] H. Sato, M. Morimoto, H. Sato, M. Wada,  Relationship between listening difficulty and acoustical objective measures in reverberant sound fields, The Journal of the Acoustical Society of America 123(4) (208) 2087-2093       
[28] S. A. Fuglsang, T. Dau, J. Hjortkjær, Noise-robust cortical tracking of attended speech in real-world acoustic scenes, NeuroImage 156 (2017) 435-444  
[29] http://psychoterapeuta.blox.pl/2015/11/SZEPT-W-TLUMIE-CZYLI-EFEKT-COCKTAIL-PARTY.html
[30] J. A. O'Sullivan, R. B. Reilly, E. C. Lalor, Improved decoding of attentional selection in a cocktail party environment with EEG via automatic selection of relevant independent components, In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE,  sierpień 2015, Mediolan, Włochy
[31] W. Biesmans, N. Das, T. Francart, A. Bertrand, Auditory-inspired speech envelope extraction methods for improved EEG-based auditory attention detection in a cocktail party scenario, IEEE Transactions on Neural Systems and Rehabilitation Engineering 25(5) (2017) 402-412  
[32] N. Mesgarani, S. V. David, J. B. Fritz, S. A. Shamma, Mechanisms of noise robust representation of speech in primary auditory cortex, Proceedings of the National Academy of Sciences 111(18) (2014) 6792-6797  
[33] R. Näätänen, T. Picton, The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure, Psychophysiology 24(4) (1987) 375-425 
[34] https://brain.fuw.edu.pl/edu/index.php/Pracownia_EEG/EEG_spoczynkowe 
[35]  D. Ruggles, B. Shinn-Cunningham, Spatial selective auditory attention in the presence of reverberant energy: individual differences in normal-hearing listeners, Journal of the Association for Research in Otolaryngology 12(3) (2011) 395-405
 
-------------------------