[16] Nábělek, A. K., Letowski, T. R., & Tucker, F. M. (1989). Reverberant overlap‐and self‐masking in consonant identification. The Journal of the Acoustical Society of America, 86(4), 1259-1265.
[17] Kjellberg, A. (2004). Effects of reverberation time on the cognitive load in speech communication: Theoretical considerations. Noise and Health, 7(25), 11.
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
Arai, T., Pavel, M., Hermansky, H., & Avendano, C. (1996, October). Intelligibility of speech with filtered time trajectories of spectral envelopes. In Spoken Language, 1996. ICSLP 96. Proceedings., Fourth International Conference on (Vol. 4, pp. 2490-2493). IEEE.
Biesmans, W., Das, N., Francart, T., & Bertrand, A. (2017). Auditory-inspired speech envelope extraction methods for improved EEG-based auditory attention detection in a cocktail party scenario. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(5), 402-412.
Bistafa, S. R., & Bradley, J. S. (2000). Reverberation time and maximum background-noise level for classrooms from a comparative study of speech intelligibility metrics. The Journal of the Acoustical Society of America, 107(2), 861-875.
Bradley, J. S. (1986). Speech intelligibility studies in classrooms. The Journal of the Acoustical Society of America, 80(3), 846-854.
Ding, N., & Simon, J. Z. (2011). Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. Journal of neurophysiology, 107(1), 78-89.
Drullman, R., Festen, J. M., & Plomp, R. (1994). Effect of temporal envelope smearing on speech reception. The Journal of the Acoustical Society of America, 95(2), 1053-1064.
Fuglsang, S. A., Dau, T., & Hjortkjær, J. (2017). Noise-robust cortical tracking of attended speech in real-world acoustic scenes. NeuroImage, 156, 435-444.
Greenberg, S. (1997). On the origins of speech intelligibility in the real world. In Robust Speech Recognition for Unknown Communication Channels.
Houtgast, T., & Steeneken, H. J. (1973). The modulation transfer function in room acoustics as a predictor of speech intelligibility. Acta Acustica United with Acustica, 28(1), 66-73.
Kähkönen, S., Ahveninen, J., Jääskeläinen, I. P., Kaakkola, S., Näätänen, R., Huttunen, J., & Pekkonen, E. (2001). Effects of haloperidol on selective attention: a combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology, 25(4), 498-504.
Kusumoto, A., Arai, T., Kinoshita, K., Hodoshima, N., & Vaughan, N. (2005). Modulation enhancement of speech by a pre-processing algorithm for improving intelligibility in reverberant environments. Speech communication, 45(2), 101-113.
Lasocka I. 2015. Szept w tłumie, czyli efekt cocktail party ???
Mesgarani, N., David, S. V., Fritz, J. B., & Shamma, S. A. (2014). Mechanisms of noise robust representation of speech in primary auditory cortex. Proceedings of the National Academy of Sciences, 111(18), 6792-6797.
Milner, R. (2015). Cortical auditory evoked potentials–clinical applications and usability in central auditory processes evaluation.
Näätänen, R., Teder, W., Alho, K., & Lavikainen, J. (1992). Auditory attention and selective input modulation: a topographical ERP study. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience.
Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24(4), 375-425.
Nábělek, A. K., & Robinson, P. K. (1982). Monaural and binaural speech perception in reverberation for listeners of various ages. The Journal of the Acoustical Society of America, 71(5), 1242-1248.
O'Sullivan, J. A., Reilly, R. B., & Lalor, E. C. (2015, August). Improved decoding of attentional selection in a cocktail party environment with EEG via automatic selection of relevant independent components. In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE (pp. 5740-5743). IEEE.
Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., Shamma, S. A., Crone, N. E., ... & Chang, E. F. (2012). Reconstructing speech from human auditory cortex. PLoS biology, 10(1), e1001251.
Rieke, F., Bodnar, D. A., & Bialek, W. (1995). Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc. R. Soc. Lond. B, 262(1365), 259-265.
Sato, H., Sato, H., Morimoto, M., & Ota, R. (2007). Acceptable range of speech level for both young and aged listeners in reverberant and quiet sound fields. The Journal of the Acoustical Society of America, 122(3), 1616-1623.
Sato, H., Morimoto, M., Sato, H., & Wada, M. (2008). Relationship between listening difficulty and acoustical objective measures in reverberant sound fields. The Journal of the Acoustical Society of America, 123(4), 2087-2093.
Stanley, G. B., Li, F. F., & Dan, Y. (1999). Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus. Journal of Neuroscience, 19(18), 8036-8042.