\
Arai, T., Pavel, M., Hermansky, H., & Avendano, C. (1996, October). Intelligibility of speech with filtered time trajectories of spectral envelopes. In Spoken Language, 1996. ICSLP 96. Proceedings., Fourth International Conference on (Vol. 4, pp. 2490-2493). IEEE.
Biesmans, W., Das, N., Francart, T., & Bertrand, A. (2017). Auditory-inspired speech envelope extraction methods for improved EEG-based auditory attention detection in a cocktail party scenario. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(5), 402-412.
Bistafa, S. R., & Bradley, J. S. (2000). Reverberation time and maximum background-noise level for classrooms from a comparative study of speech intelligibility metrics. The Journal of the Acoustical Society of America, 107(2), 861-875.
Bolt, R. H., & MacDonald, A. D. (1949). Theory of speech masking by reverberation. The Journal of the Acoustical Society of America, 21(6), 577-580.
Bradley, J. S. (1986). Speech intelligibility studies in classrooms. The Journal of the Acoustical Society of America, 80(3), 846-854.
Crosse, M. J., Di Liberto, G. M., Bednar, A., & Lalor, E. C. (2016). The multivariate temporal response function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to continuous stimuli. Frontiers in human neuroscience, 10, 604.
Ding, N., & Simon, J. Z. (2011). Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. Journal of neurophysiology, 107(1), 78-89.
Ding, N., & Simon, J. Z. (2012). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences, 109(29), 11854-11859.
Ding, N., & Simon, J. Z. (2013). Adaptive temporal encoding leads to a background-insensitive cortical representation of speech. Journal of Neuroscience, 33(13), 5728-5735.
Ding, N., & Simon, J. Z. (2014). Cortical entrainment to continuous speech: functional roles and interpretations. Frontiers in human neuroscience, 8, 311.
Drullman, R., Festen, J. M., & Plomp, R. (1994). Effect of temporal envelope smearing on speech reception. The Journal of the Acoustical Society of America, 95(2), 1053-1064.
Fuglsang, S. A., Dau, T., & Hjortkjær, J. (2017). Noise-robust cortical tracking of attended speech in real-world acoustic scenes. NeuroImage, 156, 435-444.
Greenberg, S. (1997). On the origins of speech intelligibility in the real world. In Robust Speech Recognition for Unknown Communication Channels.
Horton, C., D'Zmura, M., & Srinivasan, R. (2013). Suppression of competing speech through entrainment of cortical oscillations. Journal of neurophysiology, 109(12), 3082-3093.
Houtgast, T., & Steeneken, H. J. (1973). The modulation transfer function in room acoustics as a predictor of speech intelligibility. Acta Acustica United with Acustica, 28(1), 66-73.
Kähkönen, S., Ahveninen, J., Jääskeläinen, I. P., Kaakkola, S., Näätänen, R., Huttunen, J., & Pekkonen, E. (2001). Effects of haloperidol on selective attention: a combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology, 25(4), 498-504.
Kerlin, J. R., Shahin, A. J., & Miller, L. M. (2010). Attentional gain control of ongoing cortical speech representations in a “cocktail party”. Journal of Neuroscience, 30(2), 620-628.
Kjellberg, A. (2004). Effects of reverberation time on the cognitive load in speech communication: Theoretical considerations. Noise and Health, 7(25), 11.
Koskinen, M., Viinikanoja, J., Kurimo, M., Klami, A., Kaski, S., & Hari, R. (2013). Identifying fragments of natural speech from the listener's MEG signals. Human brain mapping, 34(6), 1477-1489.
Kusumoto, A., Arai, T., Kinoshita, K., Hodoshima, N., & Vaughan, N. (2005). Modulation enhancement of speech by a pre-processing algorithm for improving intelligibility in reverberant environments. Speech communication, 45(2), 101-113.
Lasocka I. 2015. Szept w tłumie, czyli efekt cocktail party ???
Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485(7397), 233.
Mesgarani, N., David, S. V., Fritz, J. B., & Shamma, S. A. (2009). Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex. Journal of neurophysiology, 102(6), 3329-3339.
Mesgarani, N., David, S. V., Fritz, J. B., & Shamma, S. A. (2014). Mechanisms of noise robust representation of speech in primary auditory cortex. Proceedings of the National Academy of Sciences, 111(18), 6792-6797.
Milner, R. (2015). Cortical auditory evoked potentials–clinical applications and usability in central auditory processes evaluation.
Näätänen, R., Teder, W., Alho, K., & Lavikainen, J. (1992). Auditory attention and selective input modulation: a topographical ERP study. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience.
Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24(4), 375-425.
Nábělek, A. K., Letowski, T. R., & Tucker, F. M. (1989). Reverberant overlap‐and self‐masking in consonant identification. The Journal of the Acoustical Society of America, 86(4), 1259-1265.
Nábělek, A. K., & Robinson, P. K. (1982). Monaural and binaural speech perception in reverberation for listeners of various ages. The Journal of the Acoustical Society of America, 71(5), 1242-1248.
O'Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-Cunningham, B. G., ... & Lalor, E. C. (2014). Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cerebral Cortex, 25(7), 1697-1706.
O'Sullivan, J. A., Reilly, R. B., & Lalor, E. C. (2015, August). Improved decoding of attentional selection in a cocktail party environment with EEG via automatic selection of relevant independent components. In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE (pp. 5740-5743). IEEE.
Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., Shamma, S. A., Crone, N. E., ... & Chang, E. F. (2012). Reconstructing speech from human auditory cortex. PLoS biology, 10(1), e1001251.
Power, A. J., Foxe, J. J., Forde, E. J., Reilly, R. B., & Lalor, E. C. (2012). At what time is the cocktail party? A late locus of selective attention to natural speech. European Journal of Neuroscience, 35(9), 1497-1503.
Rieke, F., Bodnar, D. A., & Bialek, W. (1995). Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc. R. Soc. Lond. B, 262(1365), 259-265.
Sato, H., Sato, H., Morimoto, M., & Ota, R. (2007). Acceptable range of speech level for both young and aged listeners in reverberant and quiet sound fields. The Journal of the Acoustical Society of America, 122(3), 1616-1623.
Sato, H., Morimoto, M., Sato, H., & Wada, M. (2008). Relationship between listening difficulty and acoustical objective measures in reverberant sound fields. The Journal of the Acoustical Society of America, 123(4), 2087-2093.
Stanley, G. B., Li, F. F., & Dan, Y. (1999). Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus. Journal of Neuroscience, 19(18), 8036-8042.
Golumbic, E. M. Z., Ding, N., Bickel, S., Lakatos, P., Schevon, C. A., McKhann, G. M., ... & Poeppel, D. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron, 77(5), 980-991.
Zoefel, B., & VanRullen, R. (2015). The role of high-level processes for oscillatory phase entrainment to speech sound. Frontiers in human neuroscience, 9, 651.