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ABSTRACT
Single-subject RNA-Sequencing (RNA-Seq) analysis is a powerful

precision medicine tool for unveiling individual disease mechanisms.
Due to the scarcity of relevant tissue samples and the cost of
high-throughput technologies, the availability of replicates for a sin-
gle subject is often impractical. This constraint prohibits the use
of most conventional statistical techniques since replicates are typ-
ically needed to estimate data variability and make inferences. We
propose the iDEG method to identify individualized Differentially Ex-
pressed Genes from two conditions of a subject, each sampled once:
a baseline sample (e.g., unaffected tissue) vs. a case sample (e.g.,
cancer). iDEG gathers information across different genes from the
same individual while strategically bypassing the requirement of repli-
cates per condition to make valid inferences. The main idea of iDEG
is to transform RNA-Seq data such that, under the null hypothesis,
differences of transformed expression counts follow the same distribu-
tion with a constant variance. This transformation enables modeling
all genes with a two-group mixture model, from which the probabil-
ity of differential expression for each gene is then estimated by an
empirical Bayes approach with a local false discovery rate control.
Our extensive numerical studies demonstrate iDEG’s superior perfor-
mance compared to existing methods under a variety of scenarios.
Finally, iDEG is applied to a triple negative breast cancer single-
subject dataset in which a personal set of differentially expressed
genes are identified.
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INTRODUCTION
Single-subject Analysis for RNA-Seq Data
Precision medicine, also known as personalized medicine or indi-
vidualized medicine, aims to deliver “the right treatments, at the
right time, every time to the right person” Kaiser (2015). The
conventional one-size-fits-all drug development approach to the het-
erogeneous human population has led to the ten top-grossing USA
drugs being ineffective for more than 75% of users Schork (2015).
In contrast, precision medicine tailors the optimal treatment to in-
dividuals, and clinical trial designs are moving from cohort-based
to single-subject trials Schork (2015). The success of precision
medicine hinges on identifying personal disease mechanisms Topol
(2014) to optimize disease treatment regimens based on an indi-
vidual’s biology (e.g., response to stimuli, genomic profile, and
baseline risk among other factors).

Single-subject RNA sequencing (RNA-Seq) analysis considers
one patient at a time, with the goal of revealing the altered transcrip-
tomic mechanisms, for example, those associated to a disease state
of this patient. Compared to traditional cohort-based analysis, the
major challenge of single-subject RNA-Seq analysis is estimating
the variance of gene expression levels when there are no replicates
for each subject - i.e., the single-subject, single-transcriptome per
condition. Variance estimation is a central question in RNA-Seq
analysis, as it plays a key role in identifying altered mechanisms
such as differentially expressed genes (DEGs). Conventional statis-
tics estimate the variance from biological or technical replicates.
However, obtaining transcriptome replicates is difficult due to (i)
limited tissue availability, (ii) the risks associated with invasive
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tissue-sampling procedures, and (iii) general costs and inefficien-
cies with the current technology. As access to replicates in single
subjects is compromised for the above-mentioned reasons and in or-
der to advance precision medicine, the field requires novel methods
designed to handle single-subject transcriptome analyses.

A Motivating Study
Breast cancer is one of the most common cancers with ∼500,000
deaths worldwide each year Wild and Stewart (2014). Cohort-based
analyses have yielded valuable insights into providing personalized
treatments by classifying breast cancers into four major subtypes
Sørlie et al. (8418). However, no two cancers are alike, as signifi-
cant heterogeneity is present within each subtype Cancer Genome
Atlas Network (2012). Furthermore, minorities are underrepre-
sented in most clinical trials, and, therefore, knowledge derived
from such clinical trials may not be applicable to diverse popu-
lations. For example, triple negative breast cancer (TNBC) is a
subtype of breast cancer that has poor prognosis and considerable
heterogeneity, as well as disproportionately affects women from
African origin Dietze (2015). In The Cancer Genome Atlas (TCGA)
project, which collected RNA-Seq data on 1092 breast cancer pa-
tients, matched tumor/healthy samples were available from only
two African American (AA) patients who differed remarkably in
age, stage of tumor, survival, and other key features. In this case,
single-subject RNA-Seq analysis would be more appropriate for
discovering individual-specific DEGs and for identifying the best
therapeutic options. Our study is specifically motivated by this
single-subject RNA-Seq dataset downloaded from TCGA (Table
??).

TNBC example (RNA-Seq single-subject dataset). The expres-
sion of the first ten genes in alphabetical order among 20,501 gene
expression measurements, which are mapped to gene symbols for
both tumor and surrounding healthy tissue collected from an African
American female (subject TCGA-GI-A2C9) exhibiting TNBC. The
second and third column display the mRNA counts of her healthy
sample and the ones of her tumor sample. The last three columns
- Absolute Difference, Fold Change (FC), and indicator of FC ≥
3 or 1

FC
≥ 3 - illustrate the general complexity of working with

count data and the caution one must proceed with when developing
methods for both lowly and highly expressed genes. Using a sim-
ple heuristic of FC ≥ 3 or 1

FC
≥ 3 to label a DEG, we see two

potential extreme cases of misclassifying a gene by assuming that
genes of different orders of magnitude present the same behavior.
Gene A2M, for example, has an absolute difference of 17,560 and
1

FC
= 2.5, which could be a potential prime candidate for a down-

regulated DEG. Even though A4GNT has a FC=5, it may not be a
DEG since there tends to be more noise than signal at such low lev-
els of expression. Note, single-subject RNA-Seq analysis compare
isogenic tissues of the same subject, and isogenic refers to identi-
cal genomes as in tissues of the same subject, cell lines, or highly
inbred animal models (e.g., mice strains), while heterogenic condi-
tions are observed between individuals with distinct genomes (e.g.,
most human beings).

Gene Healthy Tumor Absolute Difference Fold Change(FC) FC ≥ 3 or 1
FC
≥ 3

A1BG 72 92 20 1.28 0
A1CF 0 1 1 NaN NA
A2BP1 2 0 2 0 NA
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Gene Healthy Tumor Absolute Difference Fold Change(FC) FC ≥ 3 or 1
FC
≥ 3

A2LD1 71 127 56 1.79 0
A2ML1 12 773 761 64.42 1
A2M 29385 11825 17560 0.4 0
A4GALT 891 871 20 0.98 0
A4GNT 5 1 4 0.2 1
AAA1 0 0 0 NaN NA
AAAS 460 414 46 0.9 0

Legend. NaN:not defined. NA: not applicable.
This study aims to discover which genes have significantly dif-

ferential expressions between tumor and normal samples for each
single patient . However, the main challenge lies in each gene being
measured only once under each condition. In single-subject anal-
yses, conventional analytics are either infeasible or underpowered
to detect changes. Therefore, we propose a novel strategy, iDEG
(Identifying individualized sets of Differentially Expressed Genes),
to overcome this challenge for identifying important genes effec-
tively. The new methodology is then applied to this TCGA dataset
and the results are presented in Section .

DEG Identification for Single-subject Analysis
The random variables Yg1 and Yg2 are used to denote the expression
counts of gene g under Condition 1 (e.g., normal) and Condition
2 (e.g., tumor). Furthermore, assume µg1 = E(Yg1) and µg2 =
E(Yg2), their respective mean expression levels. In single-subject
analyses, there is only one sample yg1 and only one sample yg2
observed for Yg1 and Yg2, respectively. The goal is to identify genes
whose mean expression is different between the two conditions, i.e.,
µg1 6= µg2, for each single subject.

Although there is a body of literature concerning methods for
identifying DEGs, very few methods have been developed to iden-
tify DEGs without transcriptome replicates. Typically, when no
replicates are available, investigators compare an heuristic cutoff
value to the absolute difference |yg2 − yg1| or the fold change
yg2/yg1, and genes exceeding the cutoff value are declared differen-
tially expressed. The cutoff is usually chosen based on the emipirical
experience. \Citeauthorwang-2009-degseq (\citeyearwang-2009-
degseq) developed DEGseq, which assumes the expression counts
follow a binomial distribution. Based on the binomial distribution,
they used a normal distribution to approximate the distribution of
the log2 fold change (log2 Yg1 − log2 Yg2) at a given expression
intensity (log2 Yg1 + log2 Yg2 ) and calculated a Z-score for each
gene. However, DEGSeq is not designed to model over-dispersed
count data due to the binomial distribution assumption. Anders and
Huber (2010) proposed DESeq to discover DEGs with small sample
sizes. When neither condition has replicates, DESeq is still applica-
ble but has low power and a high false negative rate. It assumes
that most genes are non-differentially expressed and estimates a
mean-variance relationship by treating two samples as if they are
replicates. Another popular method, edgeR Robinson and Smyth
(2007), assumes RNA-Seq data follow a negative binomial distri-
bution whose variance is determined only by the value of dispersion
with a given mean. Without replicates, edgeR assigns the same value
to the dispersion parameter of all genes and conducts a negative bi-
nomial (NB) exact test to compute p-values. Moreover, the value
of dispersion is predetermined based on the investigator’s biological

knowledge rather than estimated from the data. Therefore, edgeR
is not reliable when the assumption of a constant dispersion across
genes is invalid or the predetermined value of the dispersion is inac-
curate. Overall, there appears to be a lack of work in the literature on
individualized DEG identification for single-subject, single-sample
RNA-Seq analyses, which can hamper advances in personalized
medicine.

In this work, we propose a novel method, called iDEG, to iden-
tify individualized Differentially Expressed Genes without requiring
transcriptome replicates for either condition. iDEG first applies an
appropriate variance-stabilizing transformation (VST) technique to
RNA-Seq data such that, under null hypotheses, every gene’s dif-
ference between two transformed expression counts approximately
follows the same normal distribution with mean zero and a constant
variance. This bypasses the estimation of variance for each gene and
resolves the constraint of no replicates. Furthermore, iDEG models
gene differences using a two-group mixture model and then esti-
mates the probability of differential expression for each gene via
empirical Bayes approach. The two groups in the mixture model
correspond to differentially and non-differentially expressed genes,
and an empirical null distribution is computed from the data.

In practice, investigators sometimes encounter the problem of
unequal library sizes—the total starting material (input RNA) se-
quenced for one transcriptome is more than that for the other
transcriptome, i.e., E(Ygd) = kdµgd for d = 1, 2, where kd is the
library size for samples under condition d and k1 6= k2. Then, under
null hypothesis µg1 = µg2, E(Yg1) 6= E(Yg2) due to the unequal
library sizes. This makes the observed expression counts under two
conditions not directly comparable, requiring an extra data normal-
ization step before identifying DEGs. We first develop iDEG for
equal library sizes and then extend it to unequal library sizes.

The rest of this article is organized as follows. Section ?? pro-
poses the iDEG procedure for RNA-Seq data under the framework
of Poisson distribution. Section ?? generalizes the iDEG for overdis-
persion expression counts for the Negative Binomial distribution.
A practical issue of unequal library sizes is addressed in Section
. Section describes the computational algorithm and implemen-
tation of iDEG. Extensive numerical studies are shown in Section
to illustrate the performance of iDEG and compare it with exist-
ing methods. Section demonstrates the robustness of iDEG when
model assumptions are violated. Section applies iDEG to the TNBC
dataset described in Section . A final discussion is given in Section
??.

UNEQUAL LIBRARY SIZES
The problem of unequal library sizes is commonly encountered in
practice. If the total starting material (input RNA) sequenced for
one transcriptome is different from that of the other transcriptome,
then the observed expression counts under two conditions are not di-
rectly comparable. A normalization step is necessary prior to testing
E(Yg1) = E(Yg2) for any g.

Normalizing Poisson Data
For Poisson distribution, unequal library sizes are accounted for
by normalizing the data to reads per million (RPM; Mortazavi and
et al 2008). The normalized gene count Y ∗

gd is given by Y ∗
gd =
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Figure 1: Panel A depicts the raw difference Dg = Yg1 − Yg2 for
20, 000 genes, suggesting that the variance of Dg increases as the
mean µg increases; hence, there is no uniform cutoff to differen-
tiate DEGs and null genes. Panel B illustrates that, for null genes,
VST makes the variance of D∗

g = hPois(Yg1) − hPois(Yg2) con-
stant regardless of their expression mean µg . Panel C illustrates the
marginal distribution and the empirical null distribution computed
for calculating fdr; where the purple solid line represents marginal
density of Zg , scaled to overlay the histogram; the orange dashed
line displays the empirical null distribution of Zg , and the two tri-
angles are located at the decision boundary for calling DEGs. Panel
D represents the probability of a gene being null given zg (the solid
curve), and the red dashed line displays the cutoff (local fdr ≤ 0.2)
for defining a DEG.

Ygd∑G
g=1 Ygd

× 106 for all g, and d = 1, 2. After normalization, one

can test E(Y ∗
g1) = E(Y ∗

g2). Web Figure 1 (Panels A and B) of
the supplementary material illustrates the effect of normalization.
Before normalization, the median of expression levels in one tran-
scriptome is far away from that of the other transcriptome; after
normalization, the two medians are approximately at the same level
and comparable.

Since the normalized data no longer follow a Poisson distribution,
the transformation hPois(·) in (??) cannot be directly applied to
Y ∗
gd. Therefore, a different transformation for Y ∗

gd is needed to stabi-
lize variance. Recall that if Y ∼ Poisson(µ), then

√
Y

·∼ N(
√
µ, 1

4
)

Anscombe (1948). Using this fact, we propose the transformation√
Y ∗
gd, which is shown to approximately follow a normal distri-

bution with a constant variance across all the genes in Corollary
1.

Assume Ygd ∼ Poisson(µgd) for g = 1, . . . , G; d = 1, 2, and
they are all independent. Denote the library size for samples under
condition d by kd. Then

√
Y ∗
gd

·∼ N(µ̃gd, σ̃
2
d), g = 1, . . . , G; d = 1, 2,

where

µ̃gd =

√
µgd∑G
g=1 µgd

× 103, σ̃2
d =

1

4

1

kd
∑G

g=1 µgd

× 106.

Corollary ?? indicates σ̃2
d does not depend on g. The proof is

given in the Web Appendix A. Therefore, under the null hypothesis,
we have

D∗
g =

√
Y ∗
g1 −

√
Y ∗
g2

·∼ N(0,
√
σ̃2
1 + σ̃2

2), ∀g ∈ G.

It is noted that D∗
g follows a normal distribution with a common

variance σ̃2
1 + σ̃2

2 across all of the null genes. Following this, the
proposed iDEG procedure can be applied next.

Normalizing Data from Negative Binomial
When RNA-Seq data follow the NB distribution, we propose ap-
plying a quantile adjustment procedure by Robinson and Smyth
(\citeyearrobinson-2007-small-sampl) for normalization. Specifi-
cally, this technique adjusts the observed expression counts up if
the library size is below the geometric mean and vice versa. For the
null genes, this procedure creates pseudo-data that follow approxi-
mately an identical NB distribution. In Figure S1, the bottom row
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shows roughly equal library sizes of the pseudo-data after normal-
ization. Since the pseudo-data follow NB, the VST hnb(·) in (??)
can be applied, which is then followed by the iDEG for NB data
(Section ??).

COMPUTATIONAL ALGORITHMS
Sections and describe the iDEG algorithms for Poisson and Neg-
ative Binomial distributed RNA-Seq data, respectively. In practice,
investigators need to specify the distribution assumption according
to their understanding of the data. The Negative Binomial distribu-
tion is more general, and its limiting case is the Poisson distribution
when the dispersion parameter δg goes to zero. We have developed
an R package iDEG, available at https://github.com/QikeLi/iDEG.

iDEG Algorithm for Poisson RNA-Seq data described in
Table ??
iDEG algorithm

For negative binomial RNA-Seq data:

• Step 0 Normalize the data (for unequal library sizes only).
• Step 1. Group genes into windows based on their gene expres-

sion levels as in (??).
• Step 2. Compute ˆ̄µw and ˆ̄σ2

w for each window w, and obtain a
“raw” estimate of δg .
• Step 3. Obtain a “refined” estimate of δg by fitting a smoothing

spline.
• (Step 3’. Alternatively, if a constant dispersion is more ap-

propriate, fit a linear regression model (??) to estimate the
dispersion value δ̂0.)
• Step 4. Apply the VST hnb (??) to each gene expression count.
• Step 5. Compute the standardized summary statistics Zg for

each gene.
• Step 6. Estimate the local false discovery rate locfdr for each

gene.

When the library sizes of two samples under comparison are
clearly different, Step 0 is applied to normalize RNA-Seq data prior
to implementation. The normalization procedures are described in
Section . In addition, the estimated locfdr reflects the probability
of gene g being differentially expressed, and the—\citetefron-2001-
empir-bayes— have shown its close connection tofalse discovery
rate (FDR) controlled by Benjamini and Hochberg procedure Ben-
jamini and Hochberg (1995). The algorithm is easy to implement,
and the computation is efficient for a large G.

iDEG Algorithm for Negative Binomial Data described
in Table ??
Remark 1: At Step 3, when there is no prior knowledge or strong
evidence to suggest a constant dispersion across genes, the smooth-
ing spline fit should be used. Our simulated experiments show that
the smoothing spline can produce a nearly constant δ̂g in the con-
stant dispersion case. Furthermore, the linear regression model (??)
has slightly better performance when the dispersion is constant, but
considerably worse when δg is not a constant across genes.

Remark 2: In most single-subject analyses, δ̂g is small. But in
rare cases, when δ̂g ≥ 2

3
, the VST hnb in Step 4 is not numer-

ically stable. To avoid this numerical issue, we suggest replacing
the VST hnb by h∗

nb \begin{equation*}—Montgomery (2008)—,
h nbˆ*(Y gd) = 1δgsinhˆ-1Y gd δ g g = 1,[?],G; d = 1,2.

Compared to hnb, h∗
nb is less effective in stabilizing variances

when µgd is small.

NUMERICAL STUDIES
Extensive numerical studies were conducted to evaluate the perfor-
mance of iDEG and to compare it with existing methods, including
edgeR Robinson and Smyth (2007), DEGSeq Wang et al. (2009),
and DESeq Anders and Huber (2010), under three experimental
settings:

(1) RNA-Seq data follow the Poisson distribution;
(2) RNA-Seq data follow the NB distribution, and the dispersion

parameter is a constant; and
(3) RNA-Seq data follow the NB distribution, with a varying

dispersion parameter δg .
Under each setting, single-subject RNA-Seq datasets are sim-

ulated with different percentages of DEGs, including p =
5%, 10%, 15%, 20%. Each experiment is repeated 1000 times, and
for each time, a baseline transcriptome and a case transcriptome are
generated to compose a RNA-Seq dataset. Performance of the meth-
ods are assessed by their precision, false positive rate (FPR), recall,
and F1 score, which is a harmonic mean of precision and recall. The
average number of identified DEGs are also reported.

Comparison of Different Methods for the two numerical Studies.
Note: the numbers in parentheses represent the standard devia-

tions
Study 2
proportion
Method
Precision
Recall/TPR
FPR
F1
Predicted DEG
5%
iDEG
0.957 (1.0×10−2)
0.733 (1.9×10−2)
0.002 (4.7×10−4)
0.83 (1.1×10−2)
766 (26)
edgeR
0.532 (1.1×10−2)
0.935 (7.7×10−3)
0.043 (1.9×10−3)
0.678 (9.0×10−3)
1760 (39)
DESeq
1 (0)
0.07 (3.6×10−2)
0 (0)
0.131 (6.1×10−2)
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Figure 2: Comparison of F1 scores for iDEG and other existing
methods. Each point represents the average F1 scores resulted from
1000 repeated experiments, and the horizontal bars represent one
standard deviation. Each panel presents one distributional assump-
tion of RNA-Seq data (right: Study 1 = Poisson distribution, Study
2 = NB distribution with a constant dispersion parameter, Study 3
= NB distribution with a varying dispersion parameter as a function
of expression mean). FDR Benjamini and Hochberg (1995) cutoff
is set to 0.1 for edgeR and DESeq; local fdr cutoff is set to 0.2 for
iDEG. DESeq produced no results for the Poisson case and for some
datasets in the other two panels. For visualization clarity, horizontal
axes are set to different ranges.

70.35 (36)
DEGseq
0.102 (9.0×10−4)
0.985 (3.9×10−3)
0.459 (4.4×10−3)
0.184 (1.5×10−3)
9699 (85)
10%
iDEG
0.966 (8.2×10−3)
0.78 (1.9×10−2)
0.003 (8.2×10−4)
0.863 (9.7×10−3)
1616 (50)
edgeR
0.639 (8.8×10−3)
0.947 (5.2×10−3)
0.06 (2.3×10−3)
0.763 (6.8×10−3)
2966 (42)
DESeq
NA (NA)
0 (0)
0 (0)
NA (NA)
0 (0)
DEGseq

0.19 (1.6×10−3)
0.986 (2.8×10−3)
0.468 (4.5×10−3)
0.318 (2.3×10−3)
10394 (80)
15%
iDEG
0.969 (5.1×10−3)
0.814 (1.5×10−2)
0.005 (8.3×10−4)
0.884 (7.7×10−3)
2519 (54)
edgeR
0.699 (7.2×10−3)
0.954 (4.1×10−3)
0.073 (2.5×10−3)
0.807 (5.2×10−3)
4098 (44)
DESeq
NA (NA)
0 (0)
0 (0)
NA (NA)
0 (0)
DEGseq
0.266 (2.1×10−3)
0.987 (2.1×10−3)
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0.48 (5.0×10−3)
0.419 (2.6×10−3)
11128 (86)
20%
iDEG
0.974 (4.2×10−3)
0.828 (1.5×10−2)
0.006 (1.0×10−3)
0.895 (7.8×10−3)
3402 (74)
edgeR
0.741 (6.0×10−3)
0.96 (3.2×10−3)
0.084 (2.6×10−3)
0.836 (4.1×10−3)
5182 (45)
DESeq
NA (NA)
0 (0)
0 (0)
NA (NA)
0 (0)
DEGseq
0.333 (2.3×10−3)
0.987 (1.9×10−3)
0.494 (5.0×10−3)
0.498 (2.6×10−3)
11858 (80)
Study 3
proportion
Method
Precision
Recall/TPR
FPR
F1
Predicted DEG
5%
iDEG
0.926 (1.5×10−2)
0.652 (2.2×10−2)
0.003 (6.3×10−4)
0.765 (1.4×10−2)
704 (29)
edgeR
0.305 (6.3×10−3)
0.956 (6.0×10−3)
0.115 (3.4×10−3)
0.463 (7.3×10−3)
3133 (65)
DESeq
0.999 (2.1×10−3)
0.152 (3.8×10−2)
0 (1.8e-05)
0.262 (5.8×10−2)
152 (38)
DEGseq
0.086 (6.7×10−4)
0.985 (3.9×10−3)
0.549 (3.9×10−3)

0.159 (1.2×10−3)
11409 (74)
10%
iDEG
0.945 (1.1×10−2)
0.708 (2.2×10−2)
0.005 (1.1×10−3)
0.809 (1.2×10−2)
1500 (59)
edgeR
0.447 (6.2×10−3)
0.96 (4.3×10−3)
0.132 (3.3×10−3)
0.61 (6.0×10−3)
4296 (60)
DESeq
1 (0)
0 (5.2×10−4)
0 (0)
0.002 (1.4×10−3)
1 (1)
DEGseq
0.165 (1.1×10−3)
0.986 (2.5×10−3)
0.556 (4.2×10−3)
0.282 (1.6×10−3)
11975 (76)
15%
iDEG
0.953 (7.0×10−3)
0.746 (1.6×10−2)
0.006 (1.1×10−3)
0.837 (9.1×10−3)
2349 (58)
edgeR
0.537 (5.7×10−3)
0.964 (3.7×10−3)
0.147 (3.4×10−3)
0.69 (4.8×10−3)
5384 (59)
DESeq
1 (NA)
0 (3.3e-05)
0 (0)
0.001 (NA)
0 (0)
DEGseq
0.235 (1.4×10−3)
0.986 (2.1×10−3)
0.565 (4.2×10−3)
0.38 (1.9×10−3)
12562 (73)
20%
iDEG
0.962 (4.6×10−3)
0.763 (1.3×10−2)
0.008 (1.0×10−3)
0.851 (7.8×10−3)
3175 (64)
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edgeR
0.602 (5.7×10−3)
0.966 (2.8×10−3)
0.16 (3.9×10−3)
0.742 (4.4×10−3)
6419 (64)
DESeq
NA (NA)
0 (0)
0 (0)
NA (NA)
0 (0)
DEGseq
0.299 (1.6×10−3)
0.986 (2.0×10−3)
0.577 (4.2×10−3)
0.459 (1.9×10−3)
13180 (68)

Negative Binomial Distribution (NB) with a Varying
Dispersion Parameter
This study assumes that Yg1 ∼ NB(µg1, δg) and Yg2 ∼
NB(µg2, δg), where δg is a constant across all genes. Besides these
two assumptions, the data is generated by following the same pro-
cedure used in Section ??. For the dispersion parameter, we set
δg = 0.02 for all g = 1, . . . , 20000.

The middle panel of Figure ?? compares the F1 scores for all
methods. It is clear that iDEG is the best across the entire range
of p, followed by edgeR and DEGseq. Since one main assumption
in edgeR is constant dispersion, this setting actually favors edgeR.
Nonetheless, iDEG still produces the higherF1 scores across p com-
pared to edgeR. When implementing edgeR, different values for
the parameter BCV were tried and 0.1 was found to work the best.
Therefore, 0.1 will be set as the default parameter value for the rest
of this study. Although DESeq is able to identify some DEGs when
p is small, its performance degrades quickly when p increases. This
is partially due to DESeq treating two samples as replicates, which is
improper when larger portions of DEGs are present in the transcrip-
tome. It is observed that the average F1 scores of all the methods
are lower than those from Study 1, which may be due to the higher
variation associated with the NB distribution.

Study 2 of Table suggests that iDEG works competitively in
terms of having a combined high precision and low FPR among
all methods. Take p = 5% as an example. Despite, its lower recall,
iDEG has a substantially higher precision (0.957) and lower FPR
(0.002) than edgeR (precision = 0.532; FPR = 0.043) and DEGseq
(precision = 0.102; FRP = 0.459). DESeq occasionally yields high
precision, however, its low recall leads to an overall consistently
poor performance.

In this simulation , the RNA-Seq data is assumed to follow the
NB distribution, where the dispersion parameter δg\delta {g}δg is
a function of μg1\mu {g1}μg1. The simulation procedure is the
same as the one described in Section 4.2 except that the dispersion
parameter has been adapted to the one used by \citeauthoranders-
2010-differ-expres (\citeyearanders-2010-differ-expres) and set
δg=0.005+9/(μg1+100)\delta {g}=0.005+9/(\mu {g1}+100)δg=0.005+9/(μg1+100).
The bottom panel in Figure ??? suggests that iDEG produces the
highest F1F {1}F1 scores across ppp. Study 3 in Table ??? has

a similar pattern as Study 2 in Table ???, suggesting that iDEG
has the best overall performance in terms of high precision and
low FPR,regardless of whether δg\delta {g}δg is a constant or a
function of expression mean μg\mu {g}μg.

Unequal Library Sizes
Three numerical studies (Sections ??-) with single-subject, single-
sample RNA-Seq data with unequal library sizes (where the library
size of one transcriptome is 1.5 times that of the other transcriptome)
were also conducted. The results are shown in the Web Figure 2.
These results demonstrate that the iDEG can adjust unequal library
sizes well and its performance is still superior to existing methods.

SENSITIVITY ANALYSIS
The proposed iDEG procedure makes two assumptions about the
data: 1) a functional mean-variance relationship in RNA-Seq data
exists, and 2) the majority of the genes are null genes. Both assump-
tions are commonly accepted and used in the literature; however,
the performance of iDEG is unknown when these assumptions are
violated. Therefore, this section examines the sensitivity of iDEG to
these two assumptions.

Robustness of iDEG to Random Dispersions
We simulate RNA-Seq data from the NB distribution with δg drawn
from a uniform distribution Uniform(0.001, 0.1). In this setup, δg
is no longer a function of µg . As shown in Panel A of Figure ??, all
methods perform worse than in previous studies, but iDEG is still
best among the four in terms of the highest F1 scores.

Figure 3: iDEG is robust to its the assumptions. Panel A indicates
robustness of iDEG to the assumption that δg is a function of ex-
pression mean µg . The F1 scores of iDEG are the highest among
the four methods, when the values of δg are randomly drawn from
a uniform distribution Uniform(0.001, 0.1). Panel B indicates ro-
bustness of iDEG that the majority of the genes are null genes. In
this panel, the F1 scores of edgeR approach the scores of iDEG at
unrealistically high percentages of DEGs.
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Robustness of iDEG to high percentages of DEG
The four methods were compared on RNA-Seq data with p as high
as 40%. As shown in Panel B of Figure ??, iDEG still performs
better than edgeR even though the latter does not make the low-
p assumption. Note, p = 40% is an unrealistic extreme case in
biology since this would result in nearly half of the genes in the
transcriptome being associated or altered by a disease.

APPLICATION OF IDEG TO TRIPLE NEGATIVE
BREAST CANCER (TNBC) STUDY
The method iDEG was applied to a triple negative breast cancer
(TNBC) dataset queried from TCGA, which has been described ear-
lier in Section . Recall this single-subject RNA-Seq data provide
measures of a breast tumor transcriptome and a surrounding healthy
tissue transcriptome of a TNBC African American patient (Patient
ID: TCGA-GI-A2C9). The goal of this study is to apply iDEG for
the discovery of individualized DEGs for this single patient.

The expression counts are assumed to follow the NB distribution
and were normalized as described in Section . Since there is no
prior evidence suggesting the constant dispersion across all genes,
a smoothing spline (Section ??) was fit to estimate the relation-
ship between δg and µg . The empirical null obtained by iDEG is
N(0.065, 0.8372). A local false discovery rate (fdr ) was produced
for each of the 20,501 genes. Figure ?? indicates that DEGs are de-
termined with an adaptive cutoff that accounts for the high noise
of the lowly expressed genes. For patient TCGA-GI-A2C9, iDEG
identified 1,430 DEGs (approximately 7% of all genes) by control-
ling a local fdr below 20%. Table ?? displays the top 10 DEGs
detected by iDEG, in the ascending order of a local fdr. In con-
trast, edgeR identified 9,921 genes as DEGs (FDR ≤ 0.1), which
amounts to almost half of the transcriptome. DESeq, on the other
hand, only identified 194 genes (FDR ≤ 0.1), which is far fewer
than one would expect from a cancer patient. While it is impossible
to know which genes are truly differentially expressed, the range of
the number of DEGs in cancer patients is common knowledge for
cancer researchers Cancer Genome Atlas Network (2012). We con-
clude that iDEG can identify a reasonable number of DEGs for this
patient.

Let us now take a careful look at the genes listed in Table ??.
Adiponectin (gene product of gene ADIPOQ) and leptin (gene prod-
uct of LEP) are considered mediators for the association of breast
cancer with obesity, a major risk factor for breast cancer Grossmann
(2010). It has been shown that the reduction in adiponectin and
leptin levels increases breast cancer risk Miyoshi and et al (5699);
Duggan and et al (2011); Karim and et al (2016), and the treatment
of adiponectin induces growth arrest and apoptosis of breast cancer
cell lines Jarde and et al (1197); Kang (1263). Our finding of the de-
creased expression of ADIPOQ and LEP suggests that obesity may
substantially contribute to this patient’s cancer development. On the
other hand, although PLA2G2A has not been extensively studied in
breast cancer, many studies have shown that it inhibits invasion and
metastasis of gastric and colon cancer Ganesan and et al (4277) and
may predict survival Xing (2011). Informed by her individualized
DEG, we speculate that successful treatments for gastric and colon
cancer may benefit patient TCGA-GI-A2C9. \citeauthorbubnov-
2012-hypermethylation (\citeyearbubnov-2012-hypermethylation)
has demonstrated the down-regulation of TUSC5 induced by DNA

methylation in breast cancer. In contrast to mutated genes, DNA
methylation is reversible. If the TUSC5 of patient TCGA-GI-A2C9
is suppressed by DNA methylation, pharmacologic inhibition of
methylation-mediated TUSC5 suppression could potentially treat
this patient Baylin (2005). Futher investigation of these discov-
ered DEGs may unveil this patient’s disease etiology, progression,
and possible therapeutic targets, which can eventually lead to an
improved personalized treatment plan.

The top-10 hits, smallest local false discovery rate (fdr), DEGs
identified by iDEG and their local fdr for TNBC patient TCGA-GI-
A2C9.

Gene fdr Z

ADIPOQ 2.85e-34 -11.17
PLA2G2A 2.85e-34 -11.65
PI16 1.15e-33 -10.78
LEP 2.25e-33 -10.70
SFTPB 1.44e-32 -10.59
IL33 4.24e-31 -10.36
TUSC5 6.74e-31 -10.32
CSF3 2.89e-29 -10.04
COL6A6 3.24e-29 -10.04
CCL21 1.99e-28 -9.90

Figure 4: Adaptive cutoffs were determined by iDEG. In terms of
the log2 transformed fold change, iDEG, in general, sets cutoffs
with larger values for lowly expressed genes and cutoffs with lower
values for the highly expressed genes, which accounts for the pre-
cision of the gene expression measurement. Data are displayed in
a typical MA plot. The x axis is the average of the log2 trans-
formed expression counts, and the y axis is the log2 transformed
fold change.
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DISCUSSION
By focusing on one patient at a time in which each subject serves
as his/her own control, single-subject analyses, including the one
we propose, have the potential to ascertain meaningful biomolecu-
lar mechanisms for decision-making in precision medicine Gardeux
et al. (1116). However, the prohibitive cost and access to clinical
tissue in a single subject undermines the replication requirements
of conventional statistical methods. In this work, we introduce a
novel and powerful method for identifying DEGs based on only
two transcriptomes for a single subject (case vs. baseline tran-
scriptome). The core idea is the application of variance-stabilizing
transformation (VST), which effectively solves the single-subject,
single-sample problem and makes it possible to “borrow strength”
across genes. Through simulation studies and a clinical dataset
analysis, it was demonstrated that iDEG has a high accuracy of
discovery even when gene expression counts are over-dispersed.

While the simulations demonstrate that iDEG presents increased
accuracy at both precision (positive predictive value) and recall (sen-
sitivity) over other methods, there are some caveats and potential
extensions. First, iDEG strives to mine the most information from
limited data; however, we need to keep in mind that no statistical
inferences can replace data Hansen et al. (2011), and that replica-
tion is still preferable if the tissue is available and the associated
cost is reasonable. Second, the application of iDEG is not restricted
to RNA-Seq data but also applicable to count data in general, such
as immunoprecipitated DNA Ross-Innes (2012) (e.g., ChIP-Seq),
proteomic spectral counts Johnson (4351), protein antibody arrays,
or metagenomics data, that follow Poisson or Negative Binomial
distribution with the parallel structure. An important extension of
iDEG can be made by incorporating suitable variance-stabilizing
techniques that are suitable for high-throughput data following other
distributions. Another valuable extension would be the incorpo-
ration of external knowledge, such as a gene ontology, to define
a set of genes and aggregate gene-level metrics to a gene set Li
et al. (2017a); Schissler et al. (2015); Li et al. (2017b). Lastly, fu-
ture single-subject experiments may study more than two conditions
beyond the current Case-vs.-Baseline design; therefore, it would
be interesting to extend iDEG to identify DEGs under multiple
conditions or multiple ’omics measures.

SUPPLEMENTARY MATERIALS
Web Appendices and Figures referenced in Sections , , and are
available with this paper at the Biometrics website on Wiley Online
Library

11



Qike Li et al

REFERENCES
Anders, S. and Huber, W. (2010). Differential Expression Analysis

for Sequence Count Data. Genome biology 11, R106.
Anscombe, F. J. (1948). The Transformation of Poisson, Binomial

and Negative-Binomial Data. Biometrika 35, 246.
Baylin, S. B. (2005). Dna Methylation and Gene Silencing in

Cancer. Nature Clinical Practice Oncology 2, S4–S11.
Benjamini, Y. and Hochberg, Y. (1995). Controlling the False

Discovery Rate: a Practical and Powerful Approach to Multi-
ple Testing. Journal of the royal statistical society. Series B
(Methodological) pages 289–300.

Cancer Genome Atlas Network (2012). Comprehensive Molecular
Portraits of Human Breast Tumours. Nature 490, 61–70.

Dietze, E. C., e. a. (2015). Triple-Negative Breast Cancer in
African-American Women: Disparities Versus Biology. Nature
Reviews Cancer 15, 248–254.

Duggan, C. and et al (2011). Associations of Insulin Resistance
and Adiponectin with Mortality in Women with Breast Cancer.
Journal of Clinical Oncology 29, 32–39.

Ganesan, K. and et al (4277). Inhibition of Gastric Cancer Invasion
and Metastasis by Pla2g2a, a Novel -Catenin/tcf Target Gene.
Cancer Research 68, 4277–4286.

Gardeux, V., Berghout, J., Achour, I., Schissler, A. G., L. Q.,
Kenost, C. Li, J., Shang, Y., Bosco, A., Saner, D., and
et al (1116). A Genome-By-Environment Interaction Classi-
fier for Precision Medicine: Personal Transcriptome Response to
Rhinovirus Identifies Children Prone to Asthma Exacerbations.
Journal of the American Medical Informatics Association 24,
1116–1126.

Grossmann, M. E., e. a. (2010). Obesity and Breast Cancer: Status
of Leptin and Adiponectin in Pathological Processes. Cancer and
Metastasis Reviews 29, 641–653.

Hansen, K. D., W. Z., Irizarry, R. A., and Leek, J. T. (2011). Se-
quencing Technology Does Not Eliminate Biological Variability.
Nature Biotechnology 29, 572–573.

Jarde, T. and et al (1197). Involvement of Adiponectin and Leptin in
Breast Cancer: Clinical and in Vitro Studies. Endocrine Related
Cancer 16, 1197–1210.

Johnson, E. K., e. a. (4351). Proteomic Analysis Reveals New
Cardiac-Specific Dystrophin-Associated Proteins. PLoS ONE 7,
e43515.

Kaiser, J. (2015). Obama Gives East Room Rollout to Precision
Medicine Initiative. Science .

Kang, J. H., e. a. (1263). Adiponectin Induces Growth Arrest
and Apoptosis of Mda-Mb-231 Breast Cancer Cell. Archives of
Pharmacal Research 28, 1263–1269.

Karim, S. and et al (2016). Low Expression of Leptin and Its Asso-
ciation with Breast Cancer: A Transcriptomic Study. Oncology
reports 36, 43–48.

Li, Q., Schissler, A. G., G. V., Berghout, J., Achour, I., Kenost,
C. Li, H., Zhang, H. H., and Lussier, Y. A. (2017a). Kmen :
Analyzing Noisy and Bidirectional Transcriptional Pathway Re-
sponses in Single Subjects. Journal of biomedical informatics 66,
32–41.

Li, Q., Schissler, A. G., G. V., Achour, I., Kenost, C., Berghout,
J. Li, H., Zhang, H. H., and Lussier, Y. A. (2017b). N-
Of-1-Pathways Mixenrich : Advancing Precision Medicine Via
Single-Subject Analysis in Discovering Dynamic Changes of
Transcriptomes. BMC Medical Genomics 10, 27.

Miyoshi, Y. and et al (5699). Association of Serum Adiponectin
Levels with Breast Cancer Risk. Clinical Cancer Research 9,
5699–5704.

Montgomery, D. C. (2008). Em Design and Analysis of Experi-
ments. John Wiley & Sons.

Mortazavi, A. and et al (2008). Mapping and Quantifying Mam-
malian Transcriptomes by Rna-Seq. Nature Methods 5, 621–628.

Robinson, M. D. and Smyth, G. K. b. (2007). Small-Sample Es-
timation of Negative Binomial Dispersion, with Applications to
Sage Data. Biostatistics 9, 321–332.

Ross-Innes, C. S., e. a. (2012). Differential Oestrogen Receptor
Binding Is Associated with Clinical Outcome in Breast Cancer.
Nature 481, 389–393.

Schissler, A. G., G. V., Li, Q., Achour, I., Li, H., Piegorsch,
W. W., and Lussier, Y. A. (2015). Dynamic Changes of Rna-
Sequencing Expression for Precision Medicine N-Of-1-Pathways
Mahalanobis Distance Within Pathways of Single Subjects Pre-
dicts Breast Cancer Survival. Bioinformatics 31, i293–i302.

Schork, N. J. (2015). Personalized Medicine: Time for One-Person
Trials. Nature 520, 609–611.

Sørlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J., No-
bel, A. Deng, S., Johnsen, H., Pesich, R., Geisler, S., and et al
(8418). Repeated Observation of Breast Tumor Subtypes in Inde-
pendent Gene Expression Data Sets. Proceedings of the National
Academy of Sciences 100, 8418–8423.

Topol, E. J. (2014). Individualized Medicine from Prewomb to
Tomb. Cell 157, 241–253.

Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X. (2009).
Degseq: an R Package for Identifying Differentially Expressed
Genes from Rna-Seq Data. Bioinformatics 26, 136–138.

Wild, C. P. and Stewart, B. W. (2014). Em World Cancer Report
2014. World Health Organization.

Xing, X.-F., e. a. (2011). Phospholipase A2 Group Iia Ex-
pression Correlates with Prolonged Survival in Gastric Cancer.
Histopathology 59, 198–206.

12


