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Abstract. Main aim of the present paper is explore certain physical phenomena by means of p-adic
probability theory. To overcome this study, we deal with a more general setting to define p-adic Gibbs
measures. For the sake of simplicity of explanations, we restrict ourselves to the Ising model on the
Cayley tree, since such a model has broad theoretical and practical applications. To study p-adic quasi
Gibbs measures, we reduce the problem to the description of the fixed points of the Ising-Potts mapping.
Finding fixed points is not an easy job as in the real setting. Furthermore, the phase transition for the
model is established. In the real case, the phase transition yields the the singularity of the limiting
Gibbs measures. However, we show that the p-adic quasi Gibbs measures do not exhibit the mentioned
type of singularity, such kind of phenomena is called strong phase transition. Finally, we deal with the
solvability and the number of solutions of ceratin p-adic equation depending on several parameters.
Such a description allows us to find all possible translation-invariant pa-adic quasi Gibbs measures.

Mathematics Subject Classification: 46S10, 82B26, 12J12, 39A70, 47H10, 60K35.
Key words: p-adic numbers, Ising model; p-adic quasi Gibbs measure; translation-invariant; equation.

1. Introduction

It is well-known that the modern axiomatics of probability theory was given by A.N. Kolmogorov
[30]. Now, this theory was reduced to the theory of normalized σ-additive measures taking values in
the segment [0, 1] of the field of real numbers R. There is another path to the probability which is von
Mises’ frequency approach to probability [31]. It is stressed that von Mises’ approach (as many others)
could not compete with the precisely and simply formulated Kolmogorov theory. Here, the von Mises’
approach is mentioned not only because of its interest for applications, but also because his model
with frequency probabilities acted an essential part in the process of formulation of conventional
axiomatics of probability theory. It is natural to aks: is Kolomgorov’s theory enough? From the
pure mathematical point of view such theory is satisfactory. However, as a physicist, it is not be so
optimistic. It seems that Kolmogorov’s model, despite its generality, does not provide a reasonable
mathematical description of all probabilistic structures that appear in physics (as well as other natural
and social sciences) (see [25] for discussion). In particular, one can recall the old problem of negative
probabilities. There are many objects that must be probabilities by their physical origin, but they can
take negative values (as well as values larger than 1), (see, e.g., [17,32]). As a consequence, physicists
should work with such objects at the physical level of rigor. However, negative probabilities appear
again and again in different domains of physics.

We also pay attention to another probability-like structure that recently appeared in theoretical
physics. This is the so called p-adic probability [24]. Such probabilities have naturally appeared in
p-adic physical models, namely, the p-adic string, was suggested by I. Volovich [59]. Furthermore,
numerous applications of the p-adic analysis to mathematical physics have been proposed in [1]-
[5], [22]. We refer the reader to [13,14] for recent development of the subject.

In fact, there are two types of p-adic physical models:

(A) the variables are p-adic, but the functions are C-valued;
(B) both the variables and functions take p-adic values.

The (A)-models of p-adic physics and their relation to conventional probability theory on locally
compact groups (especially, totally disconnected) are briefly discussed in [8, 26, 58, 63], whereas the
(B)-models are the most interesting for our present considerations. In this setting, the probabilities (by
their physical origin) belong to fields of p-adic numbers Qp. However, in such a approach, Kolmogorov’s
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axiomatics can not be employed, see [23]. Furthermore, in [22,25,28,51], p-adic probability theory was
developed as the first example of mathematically rigorous formalism for probabilities taking values in
a topological group which differs from R. Its interpretation plays the fundamental role in applications
of probability (e.g., to physics). We stress that the main attention to a statistical interpretation of
these generalized probabilities was given [25]. Using that p-adic measure theory in [25,27], the theory
of p-adic and non-Archimedean stochastic processes has been further advanced. In the present paper,
we are going to employ the last model to the investigation of phase transitions in statistical mechanical
models.

One of the main aims of the present paper is explore certain physical phenomena by means of
p-adic probability theory. To overcome this study, we deal with a more general setting to define
p-adic Gibbs measures. For the sake of simplicity of explanations, we restrict ourselves to the Ising
model on the Cayley tree, since such a model has broad theoretical and practical applications [10].
We note that in [19–21], [33]- [41], [47–49] it has been started analysis of p-adic Gibbs measures
within p-adic probability framework, for spacial kinds of measures. It is known [15], in the classical
setting, the ferromagnetic Ising model with nearest-neighbor interaction on a Cayley tree exhibits
a phase transition. The occurrence of the phase transition is detected in a variety of models on
hierarchical lattices by means of renormalization group (RG) technique. Clearly, RG transformation
basically depends on the construction of hierarchical lattice and model. The simplest one is governed
by rational functions. In [12] an interesting relation between the phase transition and Julia sets of the
RG has been discovered (see [43]).

In [6, 36, 39] it has been developed the RG method to study phase transitions for several p-adic
models on Cayley trees. The RG method is closely related to the investigation of p-adic dynamical
system associated with a given model (see [9,28]). In [42,44] a connection between the existence of the
phase transition and chaoticity of the corresponding p-adic dynamical system has been established.
In this way, we notice that chaotic p-adic chaotic dynamical systems have immense applications in
coding theory [16,57,62].

In this paper, our main purpose to study the set of p-adic Gibbs measures of the Ising model on
the Cayley tree. To study such a model, in Section 3, we reduce the problem to the description of
the fixed points of the Ising-Potts mapping (3.8). Finding fixed points is not an easy job as in the
real setting. We refer the reader to [9, 46, 50, 55] for the differences. Furthermore, in this section,
the phase transition for the model is established. In the real case, the phase transition yields the the
singularity of the limiting Gibbs measures. However, in this paper, we show that the p-adic quasi
Gibbs measures do not exhibit the mentioned type of singularity, such kind of phenomena is called
strong phase transition. We notice that such kind of transition occurs if one considers more complex
interactions (see e.g. [33,36,41]). In Section 4, we deal with the solvability and the number of solutions
of ceratin p-adic equation depending on several parameters. Such a description allows us to find all
possible translation-invariant pa-adic quasi Gibbs measures.

2. Preliminaries

In this section, we recall some definitions related to the p-adic analysis and we introduce the
necessary notations.

2.1. p-adic numbers. Let Q be the field of rational numbers. For a fixed prime number p, every
rational number x 6= 0 can be represented in the form x = pr nm , where r, n ∈ Z, m is a positive integer,
and n and m are relatively prime with p: (p, n) = 1, (p,m) = 1. The p-adic norm of x is given by

|x|p =

{
p−r for x 6= 0
0 for x = 0.

This norm is non-Archimedean and satisfies the so called strong triangle inequality

|x+ y|p ≤ max{|x|p, |y|p}.
The completion of Q with respect to the p-adic norm defines the p-adic field Qp. We point out that

Qp is not an ordered field [56].
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Any p-adic number x 6= 0 can be uniquely represented in the canonical form

x = pγ(x)(x0 + x1p+ x2p
2 + . . . ), (2.1)

where γ(x) ∈ Z and the integers xj satisfy: x0 > 0, 0 ≤ xj ≤ p− 1. In this case, |x|p = p−γ(x).
In [45] we have introduced new symbols ”O” and ”o” which allow us to simplify our calculations.

Roughly speaking, these symbols replace the notation ≡ (mod pk) without noticing about power of
k. Let us recall such notions. A given p-adic number x by O[x] we mean a p-adic number with the

norm p−γ(x), i.e. |x|p = |O(x)|p. By o[x], we mean a p-adic number with a norm strictly less than

p−γ(x), i.e. |o(x)|p < |x|p. For instance, if x = 1 − p + p2, we can write O[1] = x, o[1] = x − 1 or
o[p] = x− 1 + p. Therefore, the symbols O[·] and o[·] make our work easier when we need to calculate
the p-adic norm of p-adic numbers. It is easy to see that y = O[x] if and only if x = O[y].

We give some basic properties of O[·] and o[·], which will be used later on.

Lemma 2.2. [45] Let x, y ∈ Qp. Then the following statements hold:

1◦. O[x]O[y] = O[xy];

2◦. xO[y] = O[y]x = O[xy];

3◦. O[x]o[y] = o[xy];

4◦. o[x]o[y] = o[xy];

5◦. xo[y] = o[y]x = o[xy];

6◦. O[x]
O[y] = O

[
x
y

]
, if y 6= 0;

7◦. o[x]
O[y] = o

[
x
y

]
, if y 6= 0.

For each a ∈ Qp and r > 0 we denote

Br(a) = {x ∈ Qp : |x− a|p < r}.
We recall that Zp = {x ∈ Qp : |x|p ≤ 1} and Z∗p = {x ∈ Qp : |x|p = 1} are the set of all p-adic integers
and p-adic units, respectively.

The following result is known as the Hensel’s lemma

Lemma 2.3. [11, 29] Let F (x) be a polynomial whose coefficients are p-adic integers. Let x∗ be a
p-adic integer such that for some i ≥ 0 one has

F (x∗) ≡ 0(mod p2i+1), F ′(x∗) ≡ 0(mod pi), F ′(x∗) 6≡ 0(mod pi+1).

Then F (x) has a p-adic integer root x∗ such that x∗ ≡ x∗(mod pi+1).

Remark 2.4. We emphasize that in [60,61] a generalization of Hensel Lemma is given for 1-Lipschitz
functions using van der Put decomposition.

Recall that the p-adic exponential is defined by

expp(x) =
∞∑
n=0

xn

n!
,

which converges for every x ∈ B1(0) if p 6= 2 and x ∈ B 1
2
(0) if p = 2. Denote

Ep =
{
x ∈ Qp : |x− 1|p < p−1/(p−1)

}
.

This set is the range of the p-adic exponential function [29,56]. In the sequel, the following well known
fact will be frequently used without noticing.
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Lemma 2.5. [56] The set Ep has the following properties:
(a) Ep is a group under multiplication;
(b) |a− b|p < 1 for all a, b ∈ Ep;
(c) if a, b ∈ Ep then |a+ b|p < 1 if p = 2 and |a+ b|p = 1 if p > 2.
(d) if a ∈ Ep, then there is an element h ∈ Bp−1/(p−1)(0) such that a = expp(h).

2.6. p-adic measures. Let (X,B) be a measurable space, where B is an algebra of subsets X. A
function µ : B → Qp is said to be a p-adic measure if for any A1, . . . , An ⊂ B such that Ai ∩ Aj = ∅
(i 6= j) the equality holds

µ

( n⋃
j=1

Aj

)
=

n∑
j=1

µ(Aj).

A p-adic measure is called a probability measure if µ(X) = 1. One of the important condition
(which was already invented in the first Monna–Springer theory of non-Archimedean integration [51])
is boundedness, namely a p-adic probability measure µ is called bounded if sup{|µ(A)|p : A ∈ B} <∞.
We pay attention to an important special case in which boundedness condition by itself provides a
fruitful integration theory (see for example [51]). Note that, in general, a p-adic probability measure
need not be bounded [23,27,29]. For more detail information about p-adic measures we refer to [9,28].

2.7. Cayley tree. Let Γk+ = (V,L) be a semi-infinite Cayley tree of order k ≥ 1 with the root x0

(whose each vertex has exactly k + 1 edges, except for the root x0, which has k edges). Here V is
the set of vertices and L is the set of edges. The vertices x and y are called nearest neighbors and
they are denoted by l = 〈x, y〉 if there exists an edge connecting them. A collection of the pairs
〈x, x1〉, . . . , 〈xd−1, y〉 is called a path from the point x to the point y. The distance d(x, y) on the
Cayley tree, is the length of the shortest path from x to y.

Let us set

Wn = {x ∈ V : d(x, x0) = n}, Vn =
n⋃

m=0

Wm, Ln = {〈x, y〉 ∈ L : x, y ∈ Vn}.

Recall a coordinate structure in Γk+: for the vertex x0 we put (0) and for the vertex x ∈ Wn, n ≥ 1
we put (i1, . . . , in), here im ∈ {1, . . . , k}, 1 ≤ m ≤ n. For x = (i1, . . . , in) we denote

S(x) = {(x, i) : 1 ≤ i ≤ k}, (2.2)

here (x, i) means that (i1, . . . , in, i). This set is called a set of direct successors of x.
Using the coordinate system one can define translations of Γk+ by

τ(i1,...,in)(j1, . . . , jm) = (i1, . . . , in, j1, . . . , jm). (2.3)

Let H ⊂ Γk+ be a sub-semigroup of Γk+ and h : Γk+ → Y be a Y -valued function defined on Γk+.

We say that h is H– periodic if h(τg(x)) = h(x) for all g ∈ H and x ∈ Γk+. A function h is called

translation invariant if it is a Γk+– periodic.

3. p-Adic generalized quasi Gibbs measures for the p-adic Ising model

In this section we define a notion of p-adic generalized quasi Gibbs measure in a general setting,
i.e. for the Ising model (see [18,53] for the real setting).

Let Φ = {−1, 1}, (Φ is called a state space) and is assigned to the vertices of the tree Γk+ = (V,Λ). A
configuration σ on V is then defined as a function x ∈ V 7→ σ(x) ∈ Φ; in a similar manner one defines
configurations σn and ω[n] on Vn and Wn, respectively. The set of all configurations on V (resp. Vn,

Wn) coincides with Ω = ΦV (resp. ΩVn = ΦVn , ΩWn = ΦWn). One can see that ΩVn = ΩVn−1 ×ΩWn .
Using this, for given configurations σn−1 ∈ ΩVn−1 and ω[n] ∈ ΩWn we define their concatenations by

(σn−1 ∨ ω[n])(x) =

{
σn−1(x), if x ∈ Vn−1,
ω[n](x), if x ∈Wn.

It is clear that σn−1 ∨ ω[n] ∈ ΩVn .
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The (formal) Hamiltonian of the p-adic Ising model on ΩVn is given by

Hn(σ) = N
∑

〈x,y〉∈Ln

σ(x)σ(y), ∀σ ∈ ΩVn , (3.1)

where N ∈ Z (N 6= 0) is a coupling constant.
Let us construct p-adic generalized quasi Gibbs measures of for the model (3.1) on Γk+.

Assume that h : V \ {x(0)} → QΦ
p is a function, i.e. hx = (h−1,x, h1,x), where h±1,x ∈ Qp,

x ∈ V \ {x(0)}. Given ρ ∈ Qp \ {0} let us consider a p-adic probability measure µ
(n)
h,ρ on ΩVn defined by

µ
(n)
h,ρ(σ) =

1

Z
(h)
n,ρ

ρHn(σ)
∏
x∈Wn

hσ(x),x (3.2)

Here Z
(h)
n,ρ is the corresponding normalizing factor or partition function given by

Z(h)
n,ρ =

∑
σ∈ΩVn

ρHn(σ)
∏
x∈Wn

hσ(x),x. (3.3)

Remark 3.1. Note that in general, Z
(h)
n,ρ could be zero for some h. In this case in formal we may

assume that µ
(n)
h,ρ(σ) =∞ for all σ ∈ ΩVn. But such kind of measures are not interested. Hence, when

it occurs we say that for h there is no measure.

In the present we are interested in a construction of an infinite volume distribution with given finite-
dimensional distributions in a p-adic setting. More exactly, we want to define a p-adic probability

measure µh,ρ on Ω which is compatible with defined ones µ
(n)
h,ρ, i.e.

µh,ρ({σ ∈ Ω : σ|Vn ≡ σn}) = µ
(n)
h,ρ(σn), for all σn ∈ ΩVn , n ∈ N. (3.4)

In general, à priori the existence such a kind of measure µ is not known, since there is not much
information on topological properties, such as compactness, of the set of all p-adic measures defined
even on compact spaces. To find we employ the p-adic Kolmogorov’s extension Theorem (see [27])

which is based on so called compatibility condition for the measures µ
(n)
h,ρ, n ≥ 1, i.e.∑

ω[n]∈ΩWn

µ
(n)
h,ρ(σn−1 ∨ ω[n]) = µ

(n−1)
h,ρ (σn−1), ∀σn−1 ∈ ΩVn−1 . (3.5)

This condition according to the theorem implies the existence of a unique p-adic measure µh,ρ defined
on Ω with a required condition (3.4). Such a measure µh,ρ is said to be a genaralized p-adic quasi
Gibbs measure corresponding to the model [35,36].

For given Hamiltonian H by GQGρ(H) we denote the set of all p-adic generalized quasi Gibbs
measures associated with functions h = {hx, x ∈ V }. If there are at least two distinct p-adic
generalized quasi Gibbs measures µ, ν ∈ GQGρ(H) such that µ is bounded and ν is unbounded, then
we say that a phase transition occurs. By another words, one can find two different functions s and h
defined on N such that there exist the corresponding measures µs and µh, for which one is bounded,
another one is unbounded. Moreover, if there is a sequence of sets {An} such that An ∈ ΩVn with
|µ(An)|p → 0 and |ν(An)|p →∞ as n→∞, then we say that there occurs a strong phase transition. It
is said to occur a quasi phase transition if there are two different functions s and h defined on N such
that there exist the corresponding measures µs,ρ, µh,ρ, and they are either bounded or unbounded.

Remark 3.2. 1. We point out, in the real case [18], that at low temperature for the classical Ising
model the phase transition is reflected in a mathematical model by the non-uniqueness of the Gibbs
measures, i.e. if one finds two different Gibbs measures µ± such that

µ+(σ(0) = 1) > 1/2, µ−(σ(0) = 1) < 1/2.

This yields that the measures µ+ and µ− are mutually singular. The strong phase transition (see
definition above), in the p-adic setting, has a similar meaning as singularity, i.e. the p-adic measures
µ and ν are ”singular” (in the above given sense). Here, we have to emphasizes that the absolutely
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continuity and the singularity of p-adic measures cannot be directly defined in a similar manner with
the real case.

Remark 3.3. Note that in [43] we have considered the following sequence of p-adic measures defined
by

µ
(n)
h (σ) =

1

Z̃
(h)
n

expp{Hn(σ)}
∏
x∈Wn

hσ(x),x, (3.6)

here as usual Z̃
(h)
n is the corresponding normalizing factor. A limiting p-adic measures generated by

(3.6) was called p-adic generalized Gibbs measure. By GG(H) we denote the set of all p-adic generalized
Gibbs measures associated with a given Hamiltonian. In [20, 21, 41] it was found conditions for the
uniqueness of p-adic generalized Gibbs measures, i.e. |GG(H)| = 1. In [49] we have shown that
|GG(H)| ≥ 2 for the p-adic Ising -Vannimenus model.

The following statement describes conditions on h guaranteeing compatibility of the sequence of

probability distributions {µ(n)
h }n≥1.

Theorem 3.4. [20] The sequence of probability distributions {µ(n)
h }n≥1 given by (3.2), are compatible

iff for any x ∈ V \ {x0} the following equation holds:

h̃x =
∏

y∈S(x)

θh̃y + 1

h̃y + θ
(3.7)

where h̃x =
h1,x

h−1,x
, x ∈ V \ {x0} and θ = ρ2N .

Remark 3.5. There are several approaches to derive the solutions of the equation which describe the
limit Gibbs measures for the lattice models on the Cayley tree. One approach is based on properties
of Markov random fields on Cayley tree [54]. Another approach is based on recurrence equations for
partition functions [10, 15].

We recall that a function h is translation-invariant if hx = hy for all x, y ∈ V . The corresponding
p-adic measure is also called translation-invariant. If h is translation-invariant then (3.7) reduces to
the equation fθ,k(h) = h, where h = hx for all x. Here, the function fθ,k is called Ising-Potts mapping
and is defined by

fθ,k(x) =

(
θx+ 1

x+ θ

)k
, θ = ρ2N ∈ Qp \ {−1, 0, 1}. (3.8)

In what follows, by Fix(fθ,k) we denote the set of all fixed points of (3.8). The following Proposition
shows a relation between the set Fix(fθ,k) and the set of all translation-invariant p-adic generalized
quasi Gibbs measures for Ising model.

Proposition 3.6. Let h 6= −1 be a fixed point of (3.8). Then µh := µh,ρ is a translation-invariant
p-adic generalized quasi Gibbs measure for Ising model, where hx = (1, h) for every x ∈ V \ {x0}.
Moreover, it holds

µh({σ ∈ Ω : σ|Vn ≡ σn}) =
ρHn(σ)h

∑
x∈Wn δ1σ(x)

(ρ−Nh+ ρN )
k(kn−1)
k−1 (h+ 1)

, ∀n ∈ N, (3.9)

where δij is a Kronecker symbol.

Proof. We notice that −1 ∈ Fix(fθ,k) if and only if k is odd. Let h ∈ Fix(fθ,k) \ {−1}. Put h−1,x = 1
and h1,x = h for every x ∈ V \ {x0}. Clearly, hx = (h−1,x, h1,x) is a solution of (3.7). Then thanks to
Theorem 3.4 we infer that µh,ρ is a p-adic generalized quasi Gibbs measure for Ising model. Due to
hx = hy for every x, y ∈ V \ {x0} we obtain that µh,ρ is a translation-invariant. Since h depends only
h we denote µh := µh,ρ.
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In order to show (3.9) it is enough to prove the following

µ
(n)
h,ρ(σ) =

ρHn(σ)h
∑
x∈Wn δ1σ(x)

(ρ−Nh+ ρN )
k(kn−1)
k−1 (h+ 1)

, ∀σ ∈ ΩVn , ∀n ∈ N. (3.10)

Let n ≥ 1 and σ ∈ ΩVn . Then we have

µ
(n)
h,ρ(σ) =

1

Z
(h)
n,ρ

ρHn(σ)
∏
x∈Wn:
σ(x)=1

h1,x

∏
x∈Wn:
σ(x)=−1

h−1,x

=
1

Z
(h)
n,ρ

ρHn(σ)h
∑
x∈Wn δ1σ(x) . (3.11)

On the other hand keeping in mind h(ρ−Nh + ρN )k = (ρNh + ρ−N )k, for any ω ∈ Ωn−1, n ≥ 2 from
(3.7) one finds∏

x∈Wn−1:

ω(x)=1

∏
y∈S(x)

(
ρNh+ ρ−N

) ∏
x∈Wn−1:

ω(x)=−1

∏
y∈S(x)

(
ρ−Nh+ ρN

)
=

∏
x∈Wn−1

(
ρ−Nh+ ρN

) ∏
x∈Wn−1:

ω(x)=1

h.

Multiplying by ρHn−1(ω) both side of the last one and denoting by card(Wn−1) a cardinality of Wn−1

we obtain ∑
σ∈ΩVn

:

σ|Vn−1
≡ω

ρHn(σ)
∏
x∈Wn:
σ(x)=1

h =
(
ρ−Nh+ ρN

)card(Wn−1)
ρHn−1(ω)

∏
x∈Wn−1:

ω(x)=1

h.

Since arbitrariness of ω, from the last equality we immediately get the following recurrence formula:

Z(h)
n,ρ =

(
ρ−Nh+ ρN

)card(Wn−1)
Z

(h)
n−1,ρ, ∀n ≥ 2. (3.12)

For n = 1 we have

Z
(h)
1,ρ =

(
ρ−Nh+ ρN

)k
+
(
ρNh+ ρ−N

)k
=

(
ρ−Nh+ ρN

)k
(h+ 1). (3.13)

Keeping in mind card(Wn−1) = kn−1 from (3.12), (3.13) one finds

Z(h)
n,ρ =

(
ρ−Nh+ ρN

) k(kn−1)
k−1 (h+ 1), ∀n ∈ N. (3.14)

Putting (3.14) into (3.11) we obtain (3.10). �

For the sake of convenience, we call the model ferromagnetic if |θ|p > 1, and antiferromagnetic if
|θ|p < 1. Such notions will be helpful when we consider several distinct cases w.r.t. |θ|p.

In order to study the existence phase transition (or strong, quasi types of phase transition) for Ising
model we need know boundedness (or unboundedness) given measures. For this reasons the following
Lemma plays a crucial role in our further investigations.

Lemma 3.7. Let fθ,k be a function given by (3.8). Then the following statements are true:

(A.) if |θ|p ≤ 1 then Fix(fθ,k) ⊂ Z∗p;
(B.) if |θ|p > 1 then Fix(fθ,k) ⊂

⋃
t∈{−1,0,1} θ

ktZ∗p.

Proof. (A.) Let |θ|p ≤ 1. Take arbitrary x ∈ Qp such that |x|p 6= 1. First we assume that |x|p < 1.
Then due to strong triangle inequality we find |θx + 1|p = 1 and |x + θ|p ≤ 1. Hence, |fθ,k(x)|p ≥
1, which implies that fθ,k(x) 6= x. Now we suppose that |x|p > 1. Again using strong triangle
inequality we get |x + θ|p = |x|p and |θx + 1|p ≤ max{|θx|p, 1}. From these one finds |fθ,k(x)|p ≤
max{|θk|p, |x−k|p} ≤ 1. Consequently, we infer that fθ,k(x) 6= x. Thus, we have shown that Fix(fθ,k)∩
(Qp \ Z∗p) = ∅. This means that

Fix(fθ,k) ⊂ Z∗p.
(B.) Let |θ|p > 1. First we show that f(θ−kZ∗p) ⊂ θ−kZ∗p and if y ∈ Fix(fθ,k) ∩ pZp then y ∈ θ−kZ∗p.
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Take an arbitrary y ∈ pZp, i.e. |y|p < 1. If |y|p > |θ−k|p then we have

|fθ,k(y)|p =
∣∣∣(y + θ−1

)k∣∣∣
p
≤ max

{∣∣∣yk∣∣∣
p
,
∣∣∣θ−k∣∣∣

p

}
< |y|p.

This means that y /∈ Fix(fθ,k). If |y|p ≤ |θ−k|p then we immediately get |θy|p < 1. Keeping in mind

that fact we obtain |fθ,k(y)|p = |θ−k|p. It yields that f(θ−kZ∗p) ⊂ θ−kZ∗p and there is no fixed point in

θ−kZ∗p \ pθ−kZp. So, we conclude that

Fix(fθ,k) ∩ pZp ⊂ θ−kZ∗p. (3.15)

Now we show that

Fix(fθ,k) ∩ (Qp \ Zp) ⊂ θkZ∗p. (3.16)

Pick an arbitrary z ∈ Qp \ Zp, i.e. |z|p > 1. If |z|p < |θk|p then we obtain

|fθ,k(z)|p ≥
|θz|kp

max{|zk|p, |θk|p}
> |z|p,

which yields that z /∈ Fix(fθ,k). If |z|p ≥ |θk|p then using strong triangle inequality one gets |fθ,k(z)|p =

|θk|p. From the last one we immediately obtain (3.16).
We notice that fθ,k(Z∗p) ⊂ Z∗p. Keeping in mind that fact and from (3.15), (3.16) we infer that

Fix(fθ,k) ⊂
⋃

t∈{−1,0,1}

θktZ∗p.

�

Theorem 3.8. Let ρ2N ∈ Qp \ {−1, 0, 1} and µh be a translation-invariant p-adic generalized quasi
Gibbs measures for Ising model. Then the followings are true:

(I) Let |ρ|p 6= 1. Then µh is bounded;
(II) Let |ρ|p = 1. Then µh is unbounded iff 0 < |h+ ρ2N |p < 1.

Proof. (I) We notice |ρ|p 6= 1 if and only if |ρ2N |p 6= 1. In this case thanks to Lemma 3.7 we obtain

|h|p ∈
{

1, |ρ|−2kN
p , |ρ|2kNp

}
for every h ∈ Fix(fθ,k).

Case |h|p = 1. Due to Proposition 3.6 for corresponding translation-invariant measure µh we obtain

|µh({ω ∈ Ω : ω|Vn ≡ σn})|p =

∣∣ρHn(σ)
∣∣
p

|(h+ 1)|p
min

{∣∣∣∣ρ k(kn−1)
k−1

N

∣∣∣∣
p

,

∣∣∣∣ρ− k(kn−1)
k−1

N

∣∣∣∣
p

}
, ∀σn ∈ ΩVn .

Keeping in mind the following fact

−k(kn − 1)

k − 1
N ≤ Hn(σ) ≤ k(kn − 1)

k − 1
N (3.17)

from the last one we get

|µh(ω)|p ≤
1

|(h+ 1)|p
, ∀ω ∈ Ω,

which implies boundedness of µh.
Case |h|p ∈

{
|ρ|−2kN

p , |ρ|2kNp

}
. According to Lemma 3.7 we have |ρ2N |p > 1. For any n ≥ 1 and

σ ∈ ΩVn using strong triangle inequality one has
|h|

∑
x∈Wn δ1σ(x)

p ≤ 1,

|h+ 1|p = 1,∣∣ρ−Nh+ ρN
∣∣
p

= |ρ|Np ,

for |h|p = |ρ|−2kN
p , (3.18)
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and 
|h|

∑
x∈Wn δ1σ(x)

p ≤ |ρ|2kn+1N
p ,

|h+ 1|p = |ρ|2kNp ,∣∣ρ−Nh+ ρN
∣∣
p

= |ρ|(2k−1)N
p ,

for |h|p = |ρ|2kNp . (3.19)

Thanks to Proposition 3.6 for corresponding translation-invariant measure µh after using (3.18), (3.19)
we obtain

|µh({ω ∈ Ω : ω|Vn ≡ σn})|p ≤

 |ρ|
Hn(ω)− k(kn−1)

k−1
N

p , if |h|p = |ρ|−2kN
p ;

|ρ|
Hn(ω)+2kn+1N− (2k−1)k(kn−1)

k−1
N−2kN

p , if |h|p = |ρ|2kNp .

Again keeping in mind (3.17) from the last one for |h|p ∈
{
|ρ−2kN |p, |ρ2kN |p

}
we get

|µh(ω)|p ≤ 1, ∀ω ∈ Ω.

This means that µh is bounded.
(II) Let us suppose that |ρ|p = 1. Then due to Lemma 3.7 (A.), from h ∈ Fix(fθ,k) we have |h|p = 1.

Using |h|p = |ρ|p = 1, thanks to Proposition 3.6 one has

|µh({σ ∈ Ω : σ|Vn ≡ σn})|p =

∣∣ρ−Nh+ ρN
∣∣− k(kn−1)

k−1
p

|h+ 1|p
, ∀σn ∈ ΩVn , ∀n ≥ 1. (3.20)

Hence,

µh is unbounded ⇐⇒ 0 <
∣∣h+ ρ2N

∣∣
p
< 1. (3.21)

The proof is completed. �

Corollary 3.9. Let p = 2 and µh be a translation-invariant p-adic generalized quasi Gibbs measures
for Ising model. Then µh is unbounded iff |ρ|2 = 1.

Proof. If |ρ|2 6= 1 then due to Theorem 3.8 (I) we infer that µh is bounded. If |ρ|2 = 1 then thanks
to Lemma 3.7 one has |h|2 = 1. Using 2-adic representation of ρ and h we can easily check that
0 < |h+ ρ2N |2 < 1. According to (3.21) we conclude that µh is unbounded. �

From Theorem 3.8 and Corollary 3.9 we immediately get the following result.

Corollary 3.10. On the set of all translation-invariant p-adic generalized quasi Gibbs measures for
Ising model a phase transition does not occur if p = 2 or |ρ|p 6= 1 for p > 2.

Now, keeping in mind (3.20) and Theorem 3.8 we infer the following important fact.

Corollary 3.11. On the set of all translation-invariant p-adic generalized quasi Gibbs measures for
Ising model the strong phase transition does not occur.

This result implies that the p-adic quasi Gibbs measures do not exhibit the ”singularity” which
mentioned in the definition of strong phase transition.

By Corollary 3.10 we infer under what conditions a phase transition does not occur. However, a
natural question arises: Can we find some p and ρ ∈ Qp such that for Ising model on Γk+ a phase
transition occurs? We are going to answer this question below.

Example 1. Let k = 2, p = 5 and ρ ∈ Ep. Then (3.8) has exactly three fixed points: h0 = 1 and

h±1 =
−2 + (ρ2N − 1)2 ± (ρ2N − 1)

√
−4 + (ρ2N − 1)2

2
.

We notice that
√
−4 + (ρ2N − 1)2 ∈ Q5. It is easy to check that

|h0 + ρ2N |5 = 1, 0 < |h± + ρ2N |5 < 1.

Then due to (3.21), µh0 is bounded and µh−1, µh+ are unbounded.
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Remark 3.12. We notice that if θ ∈ Ep, then in [43] we have investigated the dynamics of the p-adic
Potts-Bethe mapping and showed that the function has infinitely many periodic points which yields the
existence infinitely many periodic p-adic quasi Gibbs measures for the model.

4. Description of the set of all translation-invariant p-adic quasi Gibbs measures

This section is devoted to the existence of translation-invariant p-adic generalized quasi Gibbs
measures. To describe them, we are going to find the set of all fixed points of the function given by
(3.8). In what follows, we always assume that |ρ|p > 1 and k ≥ 2.

In what follows, we need some auxiliary facts.

Lemma 4.1. Let k ≥ 2. Then for any α, β ∈ Ep it holds

k−1∑
j=0

αk−j−1βj = O[k]. (4.1)

Proof. It is enough to prove (4.1) for the case p = 2, since the assertion of the lemma was established
in [44] for p ≥ 3.

Let p = 2. Take any α, β ∈ E2 which is equivalent to α, β ∈ 1 + 4Z2. If α = β then

k−1∑
j=0

αk−1−jβj = kαk−1.

By Lemma 2.5 (a) we get αk−1 ∈ E2 which implies (4.1).
Now, let us assume that α 6= β. Then, Lemma 2.5 yields α

β ∈ E2. For convenience, we denote

δ := α
β . Then

k−1∑
j=0

αk−1−jβj = αk−1
k−1∑
j=0

δj = αk−1 δ
k − 1

δ − 1
= αk−1

k +

k∑
j=2

Cjk(δ − 1)j−1

 . (4.2)

The last equality implies that to prove (4.1) it is suffices to establish

k∑
j=2

Cjk(δ − 1)j−1 = o[k]. (4.3)

First, we show that |n!|2 > 1
4n−1 for any n ≥ 2. Indeed, it is clear that

|n!|2 ≥ 2−
n
2

(1+ 1
2

+ 1
22 ··· ) = 2−n > 41−n.

Consequently, keeping in mind |δ − 1|2 ≤ 1
4 one gets

|(δ − 1)n−1|2 < |n!|2, for any n ≥ 2. (4.4)

It is easy to check that
|k!|2

|(k − n)!|2
≤ |k|2, for any 2 ≤ n ≤ k.

Therefore, the last one together with (4.4) yields

|Cnk (δ − 1)n−1|2 < |k|2, for any 2 ≤ n ≤ k. (4.5)

By the strong triangle inequality from (4.5) we infer that∣∣∣∣∣∣
k∑
j=2

Cjk(δ − 1)j−1

∣∣∣∣∣∣
2

< |k|2,

which is equivalent to (4.3). This completes the proof. �

It is well known [29] that one can decompose Z∗p =
⋃p−1
j=1 B1(j). Hence, as a corollary of Lemma 4.1

we obtain the following fact.
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Corollary 4.2. Let k ≥ 2. If x, y ∈ B1(j) for some j ∈ {1, 2, . . . , p− 1} then one has

xk − yk = o [pk(x− y)] .

4.3. Ferromagnetic case. In this subsection, we consider the case when N > 0, which yields |θ|p > 1.

Proposition 4.4. Let |θ|p > 1 then

card
(
Fix(fθ,k) ∩ (Qp \ Z∗p)

)
= 2, (4.6)

here card(H) stands for the cardinality of a set H.

Proof. From |θ|p > 1 and θ = ρ2N we infer that |θ|p ≥ p2. Due to Lemma 3.7 we already know that

Fix(fθ,k) ∩
(
Qp \ Z∗p

)
⊂ θ−kZ∗p ∪ θkZ∗p.

Therefor, one needs to consider only two cases.
Case Fix(fθ,k) ∩ θ−kZ∗p. Let us denote r =

∣∣θ−k∣∣
p
. One can see that fθ,k(Sr(0)) ⊂ Sr(0). We

clearly have |θx + 1|p = |θ−1x + 1|p = 1 if |x|p = r. This means that for any x ∈ Sr(0) there is

αx ∈ S1(0) such that fθ,k(x) = θ−kαkx. It is obvious that αx depends only to x and it has the following
form

αx =
1 + θx

1 + xθ−1
.

From |θ|p ≥ p2, we have |θ−1x|p < |θx|p ≤ p−2 for any x ∈ Sr(0). Hence, the strong triangle inequality
implies 1 + θx ∈ Ep and 1 + θ−1x ∈ Ep. Therefore, by Lemma 2.5 one get αx ∈ Ep.

For any y, z ∈ Sr(0), we obtain

fθ,k(y)− fθ,k(z) = θ−k
(
αky − αkz

)
= θ−k

(θ2 − 1)(y − z)
θ(1 + yθ−1)(1 + zθ−1)

k−1∑
j=0

αk−j−1
y αjz

=
y − z
O[θk−1]

k−1∑
j=0

αk−j−1
y αjz.

Hence, by Lemma 4.1 one finds

fθ,k(y)− fθ,k(z)
y − z

=
O[k]

O [θk−1]
= o[1],

this means that fθ,k is a contraction of Sr(0). Consequently, we get

card (Fix(fθ,k) ∩ Sr(0)) = 1. (4.7)

Case Fix(fθ,k) ∩ θkZ∗p. Let us denote R =
∣∣θk∣∣

p
. It is easy to check that SR(0) is invariant with

respect to fθ,k. Moreover, for any x ∈ SR(0), we have fθ,k(x) = θkβkx , here

βx =
1 + 1

θx

1 + θ
x

.

Clearly, βx ∈ Ep. Then, for every y, z ∈ Sr(0) one finds

fθ,k(y)− fθ,k(z) = θk
(
βky − βkz

)
= θk

(θ2 − 1)(y − z)
θ(1 + y−1θ)(1 + z−1θ)

k−1∑
j=0

βk−j−1
y βjz

=
y − z
O[θk−1]

k−1∑
j=0

βk−j−1
y βjz .
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Again by Lemma 4.1 we obtain

fθ,k(y)− fθ,k(z)
y − z

=
O[k]

O [θk−1]
= o[1]

which yields that fθ,k is a contraction of SR(0). Therefore,

card (Fix(fθ,k) ∩ SR(0)) = 1. (4.8)

Finally, from (4.7) and (4.8) we get (4.6). This completes the proof. �

Now we are going to find fixed points of (3.8) on Z∗p. In order to find such kind of points, we
consider the following polynomial

Fk(x) = x(θ−1x+ 1)k − (x+ θ−1)k,

with p-adic integer coefficients. We notice that all roots of Fk are fixed points of fθ,k and visa versa.
It is evident that 1 is a root of Fk for any k ≥ 1 and −1 is a root only for odd values of k.

By Np,k we denote a number of k-th roots of unity, i.e.

Np,k = card
(
{x ∈ Qp : xk = 1}

)
.

We point out that the description of this set has been carried out in [45,50].

Proposition 4.5. Let |θ|p > 1. If |θ−1|p < |(k − 1)2|p then

card
(
Fix(fθ,k) ∩ Z∗p

)
= Np,k−1. (4.9)

Proof. It is obvious that fθ,k(Z∗p) ⊂ Z∗p. Let a ∈ Z∗p. Then
fθ,k(a)

ak
∈ 1 + pZp. Hence,

fθ,k(a)− ak = o[1].

This means that if a ∈ Fix(fθ,k) then ak − a = o[1] or ak−1 − 1 = o[1]. In other words, there is no

fixed point of fθ,k in a+ pZp if ak−1 − 1 = O[1].

Now, we assume that xk−1
0 = 1 and show that the function fθ,k has exactly one fixed point belonging

to x0 + pnZp, where p−n+1 = |k − 1|p.
One has

Fk(x0) = x0

((
1 + x0θ

−1
)k − xk−1

0

(
1 + x−1

0 θ−1
)k)

= x0

((
1 + x0θ

−1
)k − (1 + x−1

0 θ−1
)k)

.

So, Lemma 4.1 together with the last one implies

|Fk(x0)|p ≤ |kθ−1|p. (4.10)

For F ′k at point x0 using |θ−1|p < |(k − 1)2|p ≤ |k − 1|p we find

F ′k(x0) =
(
1 + x0θ

−1
)k − kxk−1

0

(
1 + x−1

0 θ−1
)k−1

+ kx0θ
−1
(
1 + x0θ

−1
)k−1

= (1− k)
(
1 + x−1

0 θ−1
)k−1

+
(
1 + x0θ

−1
)k − (1 + x−1

0 θ−1
)k−1

+ kx0θ
−1
(
1 + x0θ

−1
)k−1

= 1− k +
(
1 + x0θ

−1
)k−1 −

(
1 + x−1

0 θ−1
)k−1

+O[(k + 1)θ−1]

= 1− k + o[pθ−1]

= O[k − 1].

Hence, the last one together with (4.10) implies that Fk satisfies all conditions of the Hensel’s Lemma.
Then the polynomial Fk has only one root belonging to x0 + pnZp, here, as before, p−n+1 = |k − 1|p.
Hence, fθ,k has only one fixed point in x0 + pnZp. Consequently,

card
(
Fix(fθ,k) ∩ Z∗p

)
= Np,k−1.

which completes the proof. �
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Corollary 4.6. Let |θ|p > 1. If p - (k − 1) then

card
(
Fix(fθ,k) ∩ Z∗p

)
= Np,k−1.

Proof. The condition p - (k − 1) implies that |k − 1|p = 1. From |θ|p > 1 we get |θ−1|p < |(k − 1)2|p.
Then due to Proposition 4.5 one has (4.9). �

By TIpGQGM we denote the set of all translation-invariant p-adic generalized quasi Gibbs measures
for the Ising model. As a corollary of Propositions 3.6, 4.4 and 4.5 we formulate the following result.

Theorem 4.7. Let k ≥ 2 and |ρN |p > 1. Then for the Ising model on Γk+ the following statements
hold:

(i) card (TIpGQGM) ≥ 3;

(ii) If |ρ−N |p < |k − 1|p then

card (TIpGQGM) =

{
Np,k + 2, if k is even;
Np,k + 1, if k is odd.

4.8. Antiferromagnetic case. In this subsection, we assume that |θ|p < 1.

Proposition 4.9. Let |θ|p < 1. If |θ|p < |(k + 1)2|p then

card (Fix(fθ)) = Np,k+1.

Proof. Thanks to Lemma 3.7 we infer that there is no fixed points of (3.8) in Qp \ Z∗p. One can see
that Z∗p is an invariant w.r.t. fθ,k.

Now, let us consider the polynomial

Pk(x) = x(θ + x)k − (θx+ 1)k.

According to θ ∈ Zp all coefficients of Pk are p-adic integers. Let x0 be a k + 1-th root of unit. Then

Pk(x0) = xk+1
0

(
1 + θx0

−1
)k − (1 + θx0)k

=
(
1 + θx0

−1
)k − (1 + θx0)k .

Hence, thanks to Lemma 4.1 one gets

|Pk(x0)|p ≤ |kθ|p. (4.11)

On the other hand, we obtain

P ′k(x0) = xk0

(
(1 + θx−1

0 )k−1(k + 1 + θx−1
0 )− kθx−k0 (1 + θx0)k−1

)
.

Using |θ|p < |(k + 1)2|p ≤ |k + 1|p from the last one, one finds

|P ′k(x0)|p = |k + 1|p. (4.12)

Consequently, (4.11) and (4.12) imply that Pk satisfies all condition of the Hensel’s Lemma. Hence,
Pk has exactly one root in x0 +O[p(k + 1)]Zp. So, we infer that

card (Fix(fθ,k)) = card
(
{x ∈ Qp : xk+1 = 1}

)
.

�

Corollary 4.10. Let |θ|p < 1. If p - (k + 1) then

card (Fix(fθ)) = Np,k+1.

As a corollary of Propositions 3.6 and 4.9 we formulate the following result.

Theorem 4.11. Let k ≥ 2 and |ρN |p < 1. Then for the Ising model on Γk+ the following statements
hold:

(i) card (TIpGQGM) ≥ 1;
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(ii) If |ρN |p < |k + 1|p then

card (TIpGQGM) =

{
Np,k + 1, if k is even;
Np,k, if k is odd.
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