Acknowledgments
The Sinclair lab is supported by the NIH/NIA, the Glenn Foundation for Medical Research, the United Mitochondrial Disease Foundation, the Juvenile Diabetes Research Foundation, and a gift from the Schulak family. A.P.G. was supported by the Portuguese Foundation for Science and Technology (SFRH/BD/44674/ 2008) and B.P.H. by an NSERC PGS-D fellowship. N.T. is supported by an Australian Research Council Future Fellowship. We are grateful to Michael Bonkowski, Carlos Daniel de Magalhaes Filho, Meghan Rego, Nikolina Dioufa, and David Zhang for technical advice and experimental assistance; William Kaelin Jr. for kindly providing the EglN1 KO mice; Daniel Kelly, John Rumsay, and Teresa Leone for unpublished PGC-1α/β KO myoblasts and advice; Bruce Spiegelman for PGC-1α null myoblasts and advice; and Pere Puigserver and Zachary Gerhart-Hines for a SIRT1 adenovirus. D.A.S. is a consultant to Cohbar, OvaScience, HorizonScience, Segterra, MetroBiotech, and GlaxoSmithKline. Cohbar, MetroBiotech, and GlaxoSmithKline work on mitochondrially derived peptides, NAD+, and sirtuin modulation, respectively.
References
Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444: 337–342
Bell, E.L., Klimova, T.A., Eisenbart, J., Schumacker, P.T., and Chandel, N.S. Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol. Cell. Biol. 2007; 27: 5737–5745
Bell, E.L., Emerling, B.M., Ricoult, S.J., and Guarente, L. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene. 2011; 30: 2986–2996
Berger, F., Lau, C., Dahlmann, M., and Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 2005; 280: 36334–36341
Braidy, N., Guillemin, G.J., Mansour, H., Chan-Ling, T., Poljak, A., and Grant, R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE. 2011; 6: e19194
Burnett, C., Valentini, S., Cabreiro, F., Goss, M., Somogyvári, M., Piper, M.D., Hoddinott, M., Sutphin, G.L., Leko, V., McElwee, J.J. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011; 477: 482–485
Cantó, C. and Auwerx, J. NAD+ as a signaling molecule modulating metabolism. Cold Spring Harb. Symp. Quant. Biol. 2011; 76: 291–298
Cantó, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458: 1056–1060
Carabelli, J., Burgueño, A.L., Rosselli, M.S., Gianotti, T.F., Lago, N.R., Pirola, C.J., and Sookoian, S. High fat diet-induced liver steatosis promotes an increase in liver mitochondrial biogenesis in response to hypoxia. J. Cell. Mol. Med. 2011; 15: 1329–1338
Chandel, N.S. and Schumacker, P.T. Cells depleted of mitochondrial DNA (rho0) yield insight into physiological mechanisms. FEBS Lett. 1999; 454: 173–176
Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R., and Sinclair, D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004; 305: 390–392
Dang, C.V. Links between metabolism and cancer. Genes Dev. 2012; 26: 877–890
Dillin, A., Hsu, A.L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. Rates of behavior and aging specified by mitochondrial function during development. Science. 2002; 298: 2398–2401
Durieux, J., Wolff, S., and Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011; 144: 79–91
Fernandez-Marcos, P.J. and Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 2011; 93
Finley, L.W., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., Teruya-Feldstein, J., Moreira, P.I., Cardoso, S.M., Clish, C.B. et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell. 2011; 19: 416–428
Geng, H., Harvey, C.T., Pittsenbarger, J., Liu, Q., Beer, T.M., Xue, C., and Qian, D.Z. HDAC4 protein regulates HIF1α protein lysine acetylation and cancer cell response to hypoxia. J. Biol. Chem. 2011; 286: 38095–38102
Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky, R., Alt, F.W., Wu, Z., and Puigserver, P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007; 26: 1913–1923
Gomes, A.P., Duarte, F.V., Nunes, P., Hubbard, B.P., Teodoro, J.S., Varela, A.T., Jones, J.G., Sinclair, D.A., Palmeira, C.M., and Rolo, A.P. Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. Biochim. Biophys. Acta. 2012; 1822: 185–195
Gordan, J.D., Thompson, C.B., and Simon, M.C. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007; 12: 108–113
Haigis, M.C. and Sinclair, D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010; 5: 253–295
Handschin, C., Choi, C.S., Chin, S., Kim, S., Kawamori, D., Kurpad, A.J., Neubauer, N., Hu, J., Mootha, V.K., Kim, Y.B. et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J. Clin. Invest. 2007; 117: 3463–3474
Harman, D. The biologic clock: the mitochondria?. J. Am. Geriatr. Soc. 1972; 20: 145–147
Houtkooper, R.H., Mouchiroud, L., Ryu, D., Moullan, N., Katsyuba, E., Knott, G., Williams, R.W., and Auwerx, J. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013; 497: 451–457
Ido, Y. and Williamson, J.R. Hyperglycemic cytosolic reductive stress ‘pseudohypoxia’: implications for diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 1997; 38: 1467–1470
Kaelin, W.G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer. 2008; 8: 865–873
Kim, J., Lee, J.H., and Iyer, V.R. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One. 2008; 3: e1798
Krishnan, J., Danzer, C., Simka, T., Ukropec, J., Walter, K.M., Kumpf, S., Mirtschink, P., Ukropcova, B., Gasperikova, D., Pedrazzini, T., and Krek, W. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev. 2012; 26: 259–270
Kwong, L.K. and Sohal, R.S. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch. Biochem. Biophys. 2000; 373: 16–22
Lanza, I.R. and Nair, K.S. Mitochondrial function as a determinant of life span. Pflugers Archiv. 2010; 459: 277–289
Lapointe, J. and Hekimi, S. When a theory of aging ages badly. Cell. Mol. Life Sci. 2010; 67: 1–8
Larsson, N.G. Somatic mitochondrial DNA mutations in mammalian aging. Annu. Rev. Biochem. 2010; 79: 683–706
Leiser, S.F. and Kaeberlein, M. The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol. Chem. 2010; 391: 1131–1137
Li, F., Wang, Y., Zeller, K.I., Potter, J.J., Wonsey, D.R., O’Donnell, K.A., Kim, J.W., Yustein, J.T., Lee, L.A., and Dang, C.V. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 2005; 25: 6225–6234
Libert, S. and Guarente, L. Metabolic and neuropsychiatric effects of calorie restriction and sirtuins. Annu. Rev. Physiol. 2013; 75: 669–684
Lim, J.H., Lee, Y.M., Chun, Y.S., Chen, J., Kim, J.E., and Park, J.W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell. 2010; 38: 864–878
Majmundar, A.J., Wong, W.J., and Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell. 2010; 40: 294–309
Mao, B., Zhao, G., Lv, X., Chen, H.Z., Xue, Z., Yang, B., Liu, D.P., and Liang, C.C. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association.
Crossref | PubMed | Scopus (46)
Int. J. Biochem. Cell Biol. 2011; 43: 1573–1581
Massudi, H., Grant, R., Braidy, N., Guest, J., Farnsworth, B., and Guillemin, G.J. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE. 2012; 7: e42357
Menssen, A., Hydbring, P., Kapelle, K., Vervoorts, J., Diebold, J., Lüscher, B., Larsson, L.G., and Hermeking, H. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc. Natl. Acad. Sci. USA. 2012; 109: E187–E196
Minamishima, Y.A., Moslehi, J., Bardeesy, N., Cullen, D., Bronson, R.T., and Kaelin, W.G. Jr. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood. 2008; 111: 3236–3244
Mouchiroud, L., Houtkooper, R.H., Moullan, N., Katsyuba, E., Ryu, D., Cantó, C., Mottis, A., Jo, Y.S., Viswanathan, M., Schoonjans, K. et al. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell. 2013; 154: 430–441
Price, N.L., Gomes, A.P., Ling, A.J., Duarte, F.V., Martin-Montalvo, A., North, B.J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J.S. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012; 15: 675–690
Ptitsyn, A., Hulver, M., Cefalu, W., York, D., and Smith, S.R. Unsupervised clustering of gene expression data points at hypoxia as possible trigger for metabolic syndrome. BMC Genomics. 2006; 7: 318
Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005; 434: 113–118
Sanders, E. Pseudohypoxia, mitochondrial mutations, the Warburg effect, and cancer. Biomed. Res. 2012; 23: 109–131
Satoh, A., Brace, C.S., Rensing, N., Cliften, P., Wozniak, D.F., Herzog, E.D., Yamada, K.A., and Imai, S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013; 18: 416–430
Wallace, D.C. Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 2010; 51: 440–450
Wallace, D.C., Fan, W., and Procaccio, V. Mitochondrial energetics and therapeutics. Annu. Rev. Pathol. 2010; 5: 297–348
Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 1995; 92: 5510–5514
Warburg, O. On the origin of cancer cells. Science. 1956; 123: 309–314
Williams, P.D. and Day, T. Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution. 2003; 57: 1478–1488
Williamson, J.R., Chang, K., Frangos, M., Hasan, K.S., Ido, Y., Kawamura, T., Nyengaard, J.R., van den Enden, M., Kilo, C., and Tilton, R.G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes. 1993; 42: 801–813
Yang, H., Baur, J.A., Chen, A., Miller, C., Adams, J.K., Kisielewski, A., Howitz, K.T., Zipkin, R.E., and Sinclair, D.A. Design and synthesis of compounds that extend yeast replicative lifespan. Aging Cell. 2007; 6: 35–43
Yoshino, J., Mills, K.F., Yoon, M.J., and Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011; 14: 528–536
Zechner, C., Lai, L., Zechner, J.F., Geng, T., Yan, Z., Rumsey, J.W., Collia, D., Chen, Z., Wozniak, D.F., Leone, T.C., and Kelly, D.P. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 2010; 12: 633–642
Zhong, L., D’Urso, A., Toiber, D., Sebastian, C., Henry, R.E., Vadysirisack, D.D., Guimaraes, A., Marinelli, B., Wikstrom, J.D., Nir, T. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell. 2010; 140: 280–293