1. Bi X., 
    2. Broach J.
    (1997) DNA in transcriptionally silenced chromatin assumes a distinct topology that is sensitive to cell cycle progression. Mol. Cell. Biol.17:7077–7087.
     
    Abstract/FREE Full Text
  1.  
    1. Boulton S.J., 
    2. Jackson S.P.
    (1998) Identification of a S. cerevisiae Ku80 homolog: Roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24:4639–4648.
     
    Abstract/FREE Full Text
  2.  
    1. Brachmann C.B., 
    2. Sherman J.M., 
    3. Devine S.E., 
    4. Cameron E.E., 
    5. Pillus L., 
    6. Boeke J.D.
    (1995) The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes & Dev.9:2888–2902.
     
    Abstract/FREE Full Text
  3.  
    1. Braunstein M., 
    2. Rose A.B., 
    3. Holmes S.G., 
    4. Allis C.D., 
    5. Broach J.R.
    (1993)Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes & Dev. 7:592–604.
     
    Abstract/FREE Full Text
  4.  
    1. Braunstein M., 
    2. Sobel R.E., 
    3. Allis C.D., 
    4. Turner B.M., 
    5. Broach J.R.
    (1996) Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16:4349–4356.
     
    Abstract/FREE Full Text
  5.  
    1. Bryk M., 
    2. Banerjee M., 
    3. Murphy M., 
    4. Knudsen K.E., 
    5. Garfinkel D.J., 
    6. Curcio M.J.
    (1997) Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast.Genes & Dev. 11:255–269.
     
    Abstract/FREE Full Text
  6.  
    1. Finch C.
    (1990) Longevity, senescence, and the genome. (University of Chicago Press, Chicago, IL).
     
    Google Scholar
  7.  
    1. Frye R.A.
    (1999) Characterization of five human cDNAs with homology to yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260:273–279.
    CrossRefMedlineWeb of ScienceGoogle Scholar
  8.  
    1. Gottlieb S., 
    2. Esposito R.E.
    (1989) A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776.
    CrossRefMedlineWeb of ScienceGoogle Scholar
  9.  
    1. Gottschling D.E., 
    2. Aparicio O.M., 
    3. Billington B.L., 
    4. Zakian V.A.
    (1990) Position effect at S. cerevisiae telomeres: Reversible repression of Pol ll transcription. Cell63:751–762.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  10.  
    1. Harman D.
    (1981) The aging process. Proc. Natl. Acad. Sci. 78:7124–7128.
    Abstract/FREE Full Text
  11.  
    1. Hecht A., 
    2. Laroche T., 
    3. Strahl-Bolsinger S., 
    4. Gasser S.M., 
    5. Grunstein M.
    (1995)Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast. Cell 80:583–592.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  12.  
    1. Howard B.
    (1996) Replicative senescence: Considerations relating to the stability of heterochromatin domains. Exp. Gerontol. 31:281–293.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  13.  
    1. Imai S.-I., 
    2. Kitano H.
    (1998) Heterochromatin islands and their dynamic reorganization: A hypothesis for three distinctive features of cellular aging. Exp. Gerontol. 33:555–570.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  14.  
    1. Imai S., 
    2. Armstrong C., 
    3. Guarente L.
    (2000) Silencing and aging protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  15.  
    1. Kaeberlein M., 
    2. McVey M., 
    3. Guarente L.
    (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Dev. 13:2570–2580.
     
    Abstract/FREE Full Text
  16.  
    1. Kennedy B.K., 
    2. Austriaco N.R., 
    3. Zhang J., 
    4. Guarente L.
    (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  17.  
    1. Kreimeyer A., 
    2. Wielckens K., 
    3. Adamietz P., 
    4. Hilz H.
    (1984) DNA repair-associated ADP-ribosylation in vivo: Modification of histone H1 differs from that of the principal acceptor proteins. J. Biol. Chem. 259:890–896.
     
    Abstract/FREE Full Text
  18.  
    1. Lakowski B., 
    2. Hekimi S.
    (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. 95:13091–13096.
    Abstract/FREE Full Text
  19.  
    1. Lee C.M., 
    2. Weindruch R., 
    3. Aiken J.M.
    (1997) Age-associated alteration of the mitochondrial genome. Free Radic. Biol. Med. 22:1259–1269.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  20.  
    1. Loo S., 
    2. Rine J.
    (1994) Silencers and domains of generalized repression. Science264:1768–1771.
     
    Abstract/FREE Full Text
  21.  
    1. Luger K., 
    2. Mader A., 
    3. Richmond R.K., 
    4. Sargent D., 
    5. Richmond T.J.
    (1997) Crystal structure of the nucleosome particle at 2.8 A resolution. Nature 389:251–260.
    CrossRefMedlineWeb of ScienceGoogle Scholar
  22.  
    1. Martin S.G., 
    2. Laroche T., 
    3. Suka N., 
    4. Grunstein M., 
    5. Gasser S.M.
    (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell97:621–633.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  23.  
    1. Melov S., 
    2. Shoffner J.M., 
    3. Kaufman A., 
    4. Wallace D.C.
    (1995) Marked Increase in the Number and variety of mitchondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res. 23:4122–4126.
     
    Abstract/FREE Full Text
  24.  
    1. Meyer T., 
    2. Hilz H.
    (1986) Production of anti-(ADP-ribose) antibodies with the aid of a dinucleotide-pyrophosphatase-resident hapten and their application for the detection of mono(ADP-ribosyl)ated polypeptides. Eur. J. Biochem. 155:157–165.
    MedlineWeb of ScienceGoogle Scholar
  25.  
    1. Mills K.D., 
    2. Sinclair D.A., 
    3. Guarente L.
    (1999) MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell97:609–620.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  26.  
    1. Mortimer R.K., 
    2. Johnston J.R.
    (1959) Life span of individual yeast cells. Nature183:1751–1752.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  27.  
    1. Muller I., 
    2. Zimmermann M., 
    3. Becker D., 
    4. Flomer M.
    (1980) Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech. Aging Dev. 12:47–52.
     
    Google Scholar
  28.  
    1. Ono T, 
    2. Cutler R.G.
    (1978) Age-dependent relaxation of gene repression: Increrase of endogenous murine leukemia virus related and globin related RNA in brain and liver of mice. Proc. Natl. Acad. Sci. 75:4431–4435.
    Abstract/FREE Full Text
  29.  
    1. Pero R.W., 
    2. Holmgren K., 
    3. Persson L.
    (1985) Gamma-radiation induced ADP-ribosyltransferase activity and mammalian longevity. Mutat. Res. 142:69–73.
    MedlineWeb of ScienceGoogle Scholar
  30.  
    1. Rine J., 
    2. Herskowitz I.
    (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22.
    Abstract/FREE Full Text
  31.  
    1. Roth G.S.
    (1999) Calorie restriction in primates: Will it work and how will we know? J. Am. Geriatr. Soc. 47:896–903.
     
    MedlineWeb of ScienceGoogle Scholar
  32.  
    1. Savitsky K., 
    2. Bar-Shira A., 
    3. Gilad S., 
    4. Rotman G., 
    5. Ziv Y., 
    6. Vanagaite L., 
    7. Tagle D.A.,
    8. Smith S., 
    9. Uziel T., 
    10. Sfez S., 
    11. et al.
    (1995) A single ataxia telangiextasia gene with a product similar to PI-3 kinase. Science 23:1749–1753.
     
    Google Scholar
  33.  
    1. Sinclair D.A., 
    2. Guarente L.
    (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1–20.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  34.  
    1. Smith J.S., 
    2. Boeke J.D.
    (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes & Dev. 11:241–254.
     
    Abstract/FREE Full Text
  35.  
    1. Tanny J.C., 
    2. Dowd G.J., 
    3. Huang J., 
    4. Hilz H., 
    5. Moazed D.
    (1999) An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99:735–745.
    CrossRefMedlineWeb of ScienceGoogle Scholar
  36.  
    1. Thompson J.S., 
    2. Ling X., 
    3. Grunstein M.
    (1994) Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature369:245–247.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  37.  
    1. Tsang A.W., 
    2. Escalante-Semerena J.C.
    (1998) CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273:31788–31794.
    Abstract/FREE Full Text
  38.  
    1. Tsukamoto Y., 
    2. Kato J., 
    3. Ikeda H.
    (1997) Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388:900–903.
    CrossRefMedlineGoogle Scholar
  39.  
    1. Vijg J.
    (2000) Somatic mutations and aging: A re-evaluation. Mutat. Res.447:117–135.
     
    MedlineWeb of ScienceGoogle Scholar
  40.  
    1. Villeponteau B.
    (1997) The heterochromatin loss model of aging. Exp. Gerontol.32:383–394.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  41.  
    1. Wakayama T., 
    2. Perry A.C., 
    3. Zuccotti M., 
    4. Johnson K.R., 
    5. Yanagimachi R.
    (1998) Full term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  42.  
    1. Wakimoto B.T.
    (1998) Beyond the nucleosome: Epigenetic aspects of position-effect variegation in Drosophila. Cell 93:321–324.
     
    CrossRefMedlineWeb of ScienceGoogle Scholar
  43.  
    1. Weindruch R.H., 
    2. Walford R.L., 
    3. Fligiel S., 
    4. Guthrie D.
    (1986) The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity, and lifetime energy intake. J. Nutrit. 116:641–654.
     
    Google Scholar
  44.  
    1. Wilmut I., 
    2. Schnieke A.E., 
    3. McWhir J., 
    4. Kind A.J., 
    5. Campbell K.H.S.
    (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813.
    CrossRefMedlineWeb of ScienceGoogle Scholar
  45.  
    1. Yu C.E., 
    2. Oshima J., 
    3. Fu Y.H., 
    4. Wijsman E.M., 
    5. Hisama F., 
    6. Alisch R., 
    7. Matthews S.,
    8. Nakura J., 
    9. Miki T., 
    10. Ouais S., 
    11. et al.
    (1996) Positional cloning of the Werner's Syndrome gene. Science 272:258–262.
     
    Abstract