Wang and colleagues administered blueberry juice to rats with CCl4-induced hepatic fibrosis and found an increase in the expression of the transcription factor, NF-E2-related factor 2 (Nrf-2), and its downstream target, the antioxidant enzyme NADPH quinone oxidoreductase (Nqo1), which are central to hepatic stellate cell cytoprotection [55]. Blueberry juice was shown to increase levels of the antioxidant enzymes SOD and GST and decrease malondialdehyde (MDA) levels in CCl4 treated mice. Levels of hyaluronic acid (HA) and alanine aminotransferase (ALT), two markers of acute hepatocyte injury, were also significantly decreased in blueberry treated rats. The study findings are consistent with results from a previous study, which found that blueberry juice increased expression of Nrf-2, Nqo1, and HO-1 [56]. Furthermore, rats treated with blueberries had increased frequency of CD3+ and CD4+ T-lymphocytes suggesting that blueberries have an immunomodulatory effect in vivo [56].
A study conducted by Osman and colleagues reported that pretreatment with blueberry powder led to decreased blood levels of bilirubin and ALT but not aspartate aminotransferase (AST) in rat models of D-galactosamine/lipopolysaccharide-induced hepatic injury [57]. Blueberry treated rats also exhibited decreased levels of proinflammatory cytokines tumor necrosis factor- (TNF-) and IL-1 and increased levels of GSH in liver tissue, indicating combined anti-inflammatory and antioxidative effects. Additional key findings included decreased lipid peroxidation measured by MDA levels and decreased myeloperoxidase (MPO), a marker of neutrophil-derived inflammation [57]. Treatment with blueberries also inhibited proliferation of hepatic cancer cells which was demonstrated by Schmidt et al. [58]. The cumulative evidence suggests that blueberry supplementation regulates hepatic cell dysfunction through alteration of various anti-oxidative, ant-inflammatory, and antiproliferative mechanisms.
Protection against hepatic cellular dysfunction has also been demonstrated by pterostilbene, which has been shown to thwart cellular dysfunction by inhibiting H2O2-induced inhibition of gap junctional intercellular communication (GJIC), a key facilitator of hepatic tumorigenesis [59]. Inhibition of GJIC results from activation of the extracellular receptor kinase (ERK) and p38 pathways and phosphorylation of the gap junctional protein connexin 43 (Cx43), resulting in aberrant gap cell communication. Kim and colleagues found that pretreatment with pterostilbene at doses of 0.5, 1.0, and 5.0 M for 24 hours negated the inhibitory effects of H2O2 through dephosphorylation of Cx43 with subsequent restoration of normal GJIC [59]. Pterostilbene’s antioxidant effect was found to correlate with repression of an established carcinogenic pathway, making it a potentially advantageous agent for hepatic tumor suppression.
Experiments conducted by Hasiah and colleagues found that antioxidant effects of pterostilbene were present in both cancerous and noncancerous hepatic cells [60]. Treatment with 6.25 to 100 M pterostilbene increased endogenous antioxidant activity in cancerous HepG2 hepatoma and normal Chang liver cells; however, the effect was higher in HepG2 cells. Pterostilbene also decreased cell viability of HepG2 cells that is consistent with its properties as an anticancer agent. The findings suggest that pterostilbene’s antioxidant activity is beneficial to normal cells but antagonistic to the growth of cancerous cells.
Pan and colleagues demonstrated antimetastasis effects of pterostilbene using a12-O-tetradecanoylphorbol 13-acetate- (TPA-) induced metastasis model in vitro and in vivo [61]. The results of the study found that pterostilbene treatment significantly inhibited TPA-induced vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and MMP activity in vitro and in vivo, without producing significant toxicity in rodents. The research findings demonstrate pterostilbene’s potential as an antimetastasis agent, and future studies may assess whether the anti-metastatic properties of pterostilbene are applicable to human cases of hepatoma as well.
Overall, blueberries and pterostilbene exert anti-inflammatory, antioxidant, and anticarcinogenic effects in models of CLD and liver cancer. The compound may afford clinical protection in a broad range of benign and malignant liver conditions through amelioration of OS and related hepatocyte pathology. Further research should focus upon the medicinal impact of pterostilbene in the management of CLD.
2.5.2. Pancreas
The etiology and pathogenesis of pancreatic cancer is multifactorial and involves various genetic and environmental components. It has been postulated that pancreatic cancer results from an accumulation of multiple genetic mutations making it a highly chemoresistant disease with low rates of survival [62]. Despite extensive scientific efforts, an efficacious strategy for prevention and cure of pancreatic cancer remains elusive.
Several studies have shown that pterostilbene inhibits pancreatic cancer in vitro and in vivo through mechanisms of mitochondrially derived apoptosis, modification of transcription factors, and inhibition of proliferation [63, 64]. Specifically, pterostilbene-induced apoptosis in the pancreatic cell lines MIA PaCa-2 and PANC-1 has been attributed to mitochondrial membrane depolarization, release of Cytochrome C, and Smac/DIABLO with subsequent activation of caspase 3/7 [63, 64]. A pancreatic cancer genomic analysis of pterostilbene revealed downregulation of multiple apoptosis-related genes including MnSOD, DNA-damage-inducible transcript 3 (DDIT-3), and growth differentiation factor 15 (GDF-15), also known as macrophage inhibitory cytokine 1 (MIC-1) [64]. Further experiments demonstrated that pterostilbene induced upregulation of MnSOD at the genomic level which translated into downstream increased enzymatic activity [64]. Pterostilbene’s ability to increase antioxidant activity by altering expression and enzymatic activity of MnSOD contributes to its credence as an anticancer agent because numerous studies show that pancreatic cancer cells have decreased expression of MnSOD when compared to normal cells and overexpression of MnSOD correlates with decreased pancreatic tumor volume [65–68]. In experiments conducted by Kostin et al., pterostilbene demonstrated synergistic inhibition of pancreatic cancer in vitro when combined with the green tea antioxidant epigallocatechin-3-gallate (EGCG) supporting previous evidence of an antioxidant effect [69]. In addition to inhibiting pancreatic cancer, recent research found that pterostilbene ameliorated inflammation and acinar damage in pancreatitis in vitro [70]. The collective findings indicate pterostilbene’s clinical relevance in the treatment of pancreatic disease. Further studies are warranted to examine the mechanisms involved in pterostilbene-induced antioxidant activity and inhibition of pancreatitis and pancreatic cancer in clinical trials.
2.6. Metabolic
Diabetes mellitus (DM) is a disease that consists of ineffective insulin regulation leading to derangements in carbohydrate, protein, and fat metabolism [71]. The disease is a component of the “metabolic syndrome,” a clinical spectrum of abnormal lipid and glucose metabolism. Over recent decades, the incidence of DM has increased worldwide due to sedentary lifestyle and the rising epidemic of obesity [72]. Lifestyle modification is one strategy employed to treat DM and associated complications; however, failure to respond to lifestyle modification is an indication for medical treatment [71]. Unfortunately, treatment with medical agents may have significant side effects, and multiple adjustments may become necessary to achieve positive clinical results. Therefore, the pursuit of new medical agents with minimal side effects remains an enviable option for the successful treatment of DM.
The heartwood of the plant Pterocarpus marsupium (PM) has been shown to exhibit antiglycemic properties in multiple studies. In a study performed by Grover et al., rats were fed high-fructose diets to induce hyperglycemia and insulin resistance and then treated with PM orally for thirty days [73]. The authors hypothesized that PM treatment would counteract the metabolic side effects of a high-fructose diet by mitigating hyperglycemia, hyperinsulinemia and hypertriglycemia. Results of the study show that rats fed high-fructose diets combined with PM treatment had lower levels of hyperinsulinemia, hypertriglycemia, and complete prevention of hyperglycemia. It has been hypothesized that the antiglycemic properties possessed by PM are attributed to pterostilbene. Experiments performed by Manickam and colleagues assessed the antiglycemic effects of pterostilbene isolated from PM in a streptozocin- (STZ-) induced rat model of hyperglycemia and found that oral dosing of 20 mg/kg pterostilbene significantly decreased plasma glucose levels by 42% and body weight by 20% [74].
Further studies were conducted by Pari and Satheesh evaluating the antiglycemic effects of pterostilbene in combination with its antioxidant effect in rodent models of STZ-induced DM [75, 76]. The findings of the studies show that treatment with oral 40 mg/kg of pterostilbene for 6 weeks produced a significant decrease in plasma glucose levels by 56.54% and an increase in plasma insulin levels. It was also discovered that pterostilbene treatment reduced glycosylated hemoglobin (HbA1c), a marker of chronic hyperglycemia, and decreased expression of the gluconeogenic enzymes glucose-6-phosphatase and fructose-1, 6-biphosphatase. In addition, pterostilbene increased expression of the glycolytic enzyme hexokinase. The authors concluded that the effects of pterostilbene were comparable to the experimental effects of 500 mg/kg oral metformin in the STZ-induced DM model.
One proposed mechanism for the antidiabetic effects exerted by pterostilbene is reduction of OS, which plays a critical role in aberrant glucose regulation. Satheesh and Pari hypothesized that pterostilbene treatment in diabetic rats would increase antioxidant activity and lessen the impact of OS on kidney and liver cells [76]. The experimental design measured OS using thiobarbituric acid reactive substance (TBARS) and hydroperoxide (HP) levels in diabetic rats treated with 40 mg/kg oral pterostilbene in comparison to diabetic rats treated with metformin. The authors also evaluated the effect of pterostilbene upon the activity of antioxidant enzymes catalase, SOD, GPx, and GST. Results of the experiments show that DM control rats exhibited marked increases in TBARS and HP in liver and kidney tissue that was subsequently inhibited by pterostilbene treatment [76]. In DM rats, pterostilbene decreased TBARS by 61.5% and 33.3% in liver and kidney tissue, respectively. HP expression in liver and kidney was also significantly decreased by pterostilbene treatment by 27.7% and 28.3%, respectively.
The authors found that activity of the antioxidant enzymes GSH, GST, SOD, GPx, and catalase were decreased in liver and kidney tissue of DM controls; however, pterostilbene treated DM rats had significant increases in activity of all five antioxidant enzymes [76]. Moreover, histopathological examination of the livers of pterostilbene treated DM rats did not show inflammation compared to the DM controls, which exhibited significant portal triad inflammation. Examination of diabetic rat kidneys revealed glomeruli mesangial capillary proliferation with tubular epithelial damage that was significantly reduced in DM rats treated with pterostilbene. Comparable antioxidant and histopathological results were observed in DM rats treated with metformin suggesting that pterostilbene may harbor clinically significant metabolic properties.
The reported antioxidant and antihyperglycemic activities of pterostilbene may confer a protective effect against complications in poorly controlled DM patients by preventing hyperglycemia and associated liver and kidney damage. The exact relationship between antioxidant activity and glucose regulation induced by pterostilbene treatment has not been elucidated; however, it is postulated that pterostilbene increases antioxidant activity leading to improved glucose metabolism. Increased antioxidant activity produced by pterostilbene may improve tissue resilience against hyperglycemia-generated ROS and prevent end-organ damage.
The human applicability of pterostilbene’s antidiabetic effects is still unknown. Nemes-Nagy et al. investigated the effect of blueberry extract on antioxidant activity in DM children and found that treatment with blueberry concentrate for two months significantly increased erythrocyte SOD and GPx activity and decreased levels of HbA1c [77]. It is possible that such results are attributable to the antioxidant activity of pterostilbene; however, additional studies are needed to identify the blueberry-derived mediator and investigate a plausible association with pterostilbene.
In addition to mitigating hyperglycemia, pterostilbene in vitro and in vivo has shown benefits in models of lipid metabolism. In 3T3-L1 preadipocytes, pterostilbene treatment decreased cell population growth, fat droplet formation, and triacylglycerol accumulation [78]. Pterostilbene also altered gene expression of peroxisome proliferator-activated receptor- (PPAR-) , CCAAT/enhancer binding protein- (C/EBP-) , resistin, and fatty acid synthase (FAS), possibly modifying early stage adipocyte differentiation and decreasing the risk of atherosclerosis [79]. Furthermore, pterostilbene demonstrated antiobesity properties by upregulating adiponectin and downregulating leptin, indicating an antilipogenic effect [79]. Expression of adiponectin negatively correlates with body mass index (BMI), glucose, insulin, and triacylglycerol levels in comparison to leptin, which positively correlates with adipocyte size, lipid content, and BMI. Rimando and colleagues found that hypercholesterolemic hamsters fed 20 ppm oral pterostilbene demonstrated a 29% decrease in plasma low density lipoprotein (LDL) cholesterol, 7% increase in high density lipoprotein (HDL) cholesterol, and 14% decrease in plasma glucose levels compared to controls [79]. The authors also found that pterostilbene in vitro increased PPAR- activation in rat liver cells that was significantly higher than the amount of PPAR- activation produced by the lipid-lowering agent clofibrate. Such findings are significant because derangements of glucose metabolism often accompany hyperlipidemia in diabetics and those diagnosed with metabolic syndrome. Ultimately, the glucose and lipid-lowering effects of the dietary compound pterostilbene may contribute to its clinical potential for prevention or treatment of diabetes. Further research is necessary to establish pterostilbene’s risk-reducing and therapeutic effects in DM individuals.
2.7. Neurology
The aging process in humans is associated with acquired deficiencies in cognition and motor function. The process is oftentimes innocuous; however, in certain neurological conditions such as Alzheimer’s Disease (AD), the effects of aging are pathological and accelerated leading to rapid and permanent neurological decline [80]. Increased OS due to progressive declines in antioxidant activity is a proposed mechanism of age-related neurological deterioration in older adults [81, 82]. Several studies show that consumption of berries rich in antioxidants may effectively thwart neurological deterioration associated with aging [83, 84].
In an experiment conducted by Joseph et al., dopamine (DA) treatment induced OS in fibroblast cells transfected with the striatal muscarinic receptors (MAChr) subtypes M1 and M3 AChR by increasing activation of pCREB and pPKC [85]. The MAChr subtypes M1 and M3 AChR exhibit increased sensitivity to OS and are implicated in neurodegeneration making them reliable markers of OS-induced dysfunction. The authors found that treatment with blueberry extract decreased dopamine- (DA-) induced upregulation of the oxidative mediators, CREB and pPKC, indicating a significant antioxidant effect [85].
Bickford and colleagues examined the effect of blueberry supplementation upon antioxidant activity in aged rats along with corresponding neurological pathways and behavioral outcomes [86]. In the cerebellar noradrenergic system, reduced -adrenergic function is associated with motor learning deficits in animal models. For example, cerebellar Purkinje cells in aged rats show a 30% response to -adrenergic (GABA) potentiation, compared to 70% in young rats. Furthermore, such changes correlate with impaired performance of motor learning and coordination. Bickford and colleagues found evidence that blueberry-fed aged rats had significant improvements in GABA potentiation and increased GSH compared to aged controls. In addition, blueberry-fed aged rats performed rod-running motor tasks at a faster pace compared to controls. The reported findings show that blueberries contain a compound that is capable of increasing GSH antioxidant activity and cerebellar Purkinje cell GABA potentiation resulting in enhanced psychomotor performance in aged rats. Comparable findings were obtained by Malin and colleagues who demonstrated that aged rats maintained on a 1- or 2-month blueberry diet showed significantly higher object memory recognition compared to control rats [87]. The cognitive benefits were seen after termination of the blueberry intervention diet where the 2-month blueberry diet had a longer benefit compared to the 1-month diet suggesting a time-dependent neuroprotective benefit.
Pathologic examination of the cerebellum, cortex, and hippocampal regions of blueberry fed rats that revealed significant expression of blueberry-derived polyphenolic compounds in regions important for learning and memory assessed the impact of blueberry supplementation on brain tissue [88]. The findings suggest that blueberry-derived compounds exert neuroprotective effects by crossing the blood brain barrier and altering central nervous system signals. The study results found that accumulation of polyphenolic compounds in the cortex correlated with Morris water maze (MWM) performance, which indicates a possible risk-reducing relationship between blueberry-derived polyphenolic compounds and memory and spatial learning abilities. Furthermore, in experiments performed by Casadesus et al., supplementation with blueberry extract was shown to enhance hippocampal plasticity and increase levels of insulin-like growth factor (IGF-) 1, IGF-2, and ERK resulting in improved spatial memory [89]. The findings are considerable because age-related memory decline has been attributed to hippocampal deficiencies that are mediated by IGF-1, IGF-2, and ERK pathways.
The beneficial effects of blueberries in the modulation of neurological function may also be applicable to clinical conditions such as stroke and AD. In a study conducted by Sweeney et al., which examined the role of dietary blueberry extract on ischemic brain damage outcomes in rat stroke models, rats that were treated with 14.3% blueberry extract for six weeks had 17% loss of hippocampal neurons compared to 40% in control rats [90]. In experiments using the APP/PS1AD mouse model, it was determined that blueberry supplementation reversed deleterious effects of aging due to observations that blueberry fed APP/PS1 mice did not exhibit deficits in maze performance or have high amyloid beta burden compared to controls [84].
The neuroprotective effects of a blueberry-enriched diet are numerous, and several studies have sought to identify and explain the blueberry-derived compound responsible for the multiple modulatory effects of blueberry supplementation in animal models. To determine whether pterostilbene was involved in neuroprotective outcomes, Joseph and colleagues treated aged rats with low (0.004%) and high (0.016%) dose pterostilbene and evaluated endpoints of cognitive and motor functions [83]. The study results show that pterostilbene fed aged rats performed better on cognitive and motor tasks compared to controls in a dose-dependent manner. Specifically, aged rats treated with pterostilbene had higher level MWM performance, which was similarly shown in a blueberry supplementation study conducted by Andres-Lacueva and colleagues [88]. The study findings suggest that pterostilbene may be involved in modulation of neural plasticity and associated cognitive and motor functions.
Furthermore, Joseph et al. found that low and high dose pterostilbene fed rats had serum levels of 3.951 ± 0.439 ng/mL and 25.576 ± 5.411 ng/mL pterostilbene, respectively [83]. Subsequent pathological examination of hippocampal samples found detectable levels of pterostilbene in high dose fed rats but did not reveal detectable levels in low dose fed animals. Hippocampal levels of pterostilbene correlated with working memory performance that suggests that improvements in neurological function may be directly related to pterostilbene consumption.
In a study performed by Chang and colleagues, the antioxidant potential of pterostilbene was examined in the accelerated aging mouse model SAMP8 to determine a possible relationship between the antioxidant capacity of pterostilbene and neurological markers of disease [91]. SAMP8 mice exhibit increased OS, hyperphosphorylation of tau, and cognitive decline, which were ameliorated in mice that were fed 120 mg/kg pterostilbene for eight weeks. Pterostilbene fed SAMP8 mice also showed improved performance in radial arm water maze trials and significant changes in MnSOD, PPAR-, phosphorylated JnK, and phosphorylated tau, all of which play an important role in the pathology of AD.
Pterostilbene-induced upregulation of MnSOD in SAMP8 mice indicates a modifiable defense mechanism against the harmful effects of ROS associated with neurological decline. Pterostilbene was also shown to increase levels of PPAR-, an upstream inducer of MnSOD, and decrease levels of phosphorylated JnK and tau, both of which are associated with OS signaling dysfunction [91]. Pterostilbene-induced upregulation of PPAR- may have potential clinical benefits since PPAR agonists have been shown to confer central nervous system protection and be therapeutic after stroke [96].
Overall, the antioxidant capacity of pterostilbene has significant effects upon neurological function that may translate into clinical benefits in human subjects. The free radical theory of aging claims that ROSs are involved in the pathogenesis of age-related neurological decline. Moreover, several studies suggest that AD results from decreased activity in major antioxidant defense systems and subsequent increased vulnerability to OS [80, 81]. Blueberry-induced increases in GSH and pterostilbene’s ability to increase PPAR- and MnSOD may abrogate the deleterious effects associated with aging and lead to improved cognition and motor function in older adults and those diagnosed with AD. Additional research is needed to evaluate clinical outcomes associated with pterostilbene treatment in AD and other severe forms of dementia.
2.8. Prostate
Epidemiological trials have shown an association between poor diets and increased risk of prostate cancer [97]. Consumption of dietary antioxidants is thought to reduce prostate cancer risk in some men by reducing inflammation and OS [97]. Specifically, blueberry juice was shown to inhibit proliferation and regulate cell cycle dysfunction in prostate cancer cells [16, 17, 58]. Schmidt and colleagues found that blueberry anthocyanins inhibited cell growth of prostate cancer by 11% and inhibited adhesion of Escherichia coli, the bacteria primarily associated with urinary tract infections [58]. Matchett and colleagues discovered that blueberry treatment decreased activity of metastasis mediators MMP-2 and MMP-9 through alteration of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase pathways and increased endogenous tissue inhibitors of metalloproteinases (TIMPs) [92, 93].
It has been postulated that the anticarcinogenic effect of blueberries in prostate cancer is predominantly a result of the anticancer mechanisms of pterostilbene. Studies show that pterostilbene treatment inhibits prostate cancer proliferation and reduces metastatic potential. In p53 wildtype prostate cancer cells, pterostilbene prevented cell cycle progression at the G1 phase by inducing p53 expression and upregulating p21 expression maintaining tight control of proliferation; however, in p53 negative PC3 cells, pterostilbene induced apoptosis [94]. Such findings may help to explain the beneficial effects of pterostilbene in normal cells in contrast to the cytotoxic effects observed in cancerous cells.
Pterostilbene treatment also modified the antioxidant activity of prostate cancer cells suggesting a possible relationship between mechanisms of oxidation and apoptosis. Chakraborty and colleagues found that pterostilbene modified Bcl-2, Bax, and caspase 3, markers of mitochondrial apoptosis, and increased expression of the antioxidant enzymes GPx, GR, and GSH by 1.4-, 1.6-, and 2.1-fold in prostate cancer cells [21]. The same study also determined that pterostilbene increased levels of ROS by 5-fold, which is thought to play a role in the facilitation of mitochondrial depolarization leading to intrinsic apoptosis.
The findings demonstrate the antioxidant properties of pterostilbene in human prostate cancer cells through upregulation of the enzymes GPx, GR, and GSH. The paradoxical increase in ROS production in pterostilbene treated cells may occur through alteration of specific carcinogenic mutations present in prostate cancer that lead to programmed cell death. The findings indicate that pterostilbene is capable of inducing apoptosis through ROS-mediated mechanism in prostate cancer cells, despite upregulation of basal antioxidant activity.
In a study by Wang and colleagues, pterostilbene treatment inhibited cell viability, induced cell cycle arrest at the G1/S phase, and upregulated cyclin-dependent kinase inhibitors, CDNK1A and CDNK1, in prostate cancer [95]. Pterostilbene also decreased prostate-specific antigen (PSA), a human marker of prostate malignancy, indicating potential use as a chemotherapeutic agent [95]. Currently, the preventive and chemotherapeutic potential of pterostilbene in human prostate cancer has not been established; however, the evidence suggests that pterostilbene may have alternate effects on prostate cells based upon genetic composition of each cell, becoming beneficial in the regulation of normal prostate cells and producing inhibition in cancerous cells. Further studies are warranted to investigate the relationship between the antioxidant effects of pterostilbene and clinical outcomes in prostate cancer.
3. Discussion
The antioxidant activity of pterostilbene is an essential component of the compound’s interrelated mechanisms of disease inhibition, and the studies presented in this review show that the mechanisms of pterostilbene are comparable to mechanisms exhibited by blueberry treatment in similar disease models (Table 1). The overlap is significant because blueberries are a widely consumed fruit comprised of various concentrations of pterostilbene with proven high antioxidant capacity [3, 4, 98]. Although it is postulated that the pterostilbene component of blueberries exerts clinical benefits, the direct correlation between pterostilbene’s therapeutic effects and blueberry consumption remains undetermined.