Ieraci, A. and Herrera, D.G. Nicotinamide protects against ethanol-induced apoptotic neurodegeneration in the developing mouse brain.
Crossref | PubMed | Scopus (74)
PLoS Med. 2006; 3: e101
Ikeda, M., Tsuji, H., Nakamura, S., Ichiyama, A., Nishizuka, Y., and Hayaishi, O. STUDIES ON THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. II. A ROLE OF PICOLINIC CARBOXYLASE IN THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE FROM TRYPTOPHAN IN MAMMALS.
PubMed
J. Biol. Chem. 1965; 240: 1395–1401
Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.
Crossref | PubMed | Scopus (1692)
Nature. 2000; 403: 795–800
Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline.
National Academies Press (US), Washington (DC); 1998
Jackson, D.G. and Bell, J.I. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation.
PubMed
J. Immunol. 1990; 144: 2811–2815
Jacobson, E.L. Niacin deficiency and cancer in women.
Crossref | PubMed
J. Am. Coll. Nutr. 1993; 12: 412–416
Jacobson, E.L., Dame, A.J., Pyrek, J.S., and Jacobson, M.K. Evaluating the role of niacin in human carcinogenesis.
Crossref | PubMed
Biochimie. 1995; 77: 394–398
Jiang, J.C., Jaruga, E., Repnevskaya, M.V., and Jazwinski, S.M. An intervention resembling caloric restriction prolongs life span and retards aging in yeast.
PubMed
FASEB J. 2000; 14: 2135–2137
Jiang, H., Kim, J.H., Frizzell, K.M., Kraus, W.L., and Lin, H. Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases.
Crossref | PubMed | Scopus (21)
J. Am. Chem. Soc. 2010; 132: 9363–9372
Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R., Ge, E., Mostoslavsky, R. et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine.
Crossref | PubMed | Scopus (103)
Nature. 2013; 496: 110–113
Kaeberlein, M., McVey, M., and Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms.
Crossref | PubMed | Scopus (1135)
Genes Dev. 1999; 13: 2570–2580
Kaelin, W.G. Jr. and McKnight, S.L. Influence of metabolism on epigenetics and disease.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (136)
Cell. 2013; 153: 56–69
Kameshita, I., Matsuda, Z., Taniguchi, T., and Shizuta, Y. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain.
PubMed
J. Biol. Chem. 1984; 259: 4770–4776
Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z., and Cohen, H.Y. The sirtuin SIRT6 regulates lifespan in male mice.
Crossref | PubMed | Scopus (202)
Nature. 2012; 483: 218–221
Kang-Lee, Y.A., McKee, R.W., Wright, S.M., Swendseid, M.E., Jenden, D.J., and Jope, R.S. Metabolic effects of nicotinamide administration in rats.
PubMed
J. Nutr. 1983; 113: 215–221
Kannt, A., Sicka, K., Kroll, K., Kadereit, D., and Gögelein, H. Selective inhibitors of cardiac ADPR cyclase as novel anti-arrhythmic compounds.
Crossref | PubMed | Scopus (4)
Naunyn Schmiedebergs Arch. Pharmacol. 2012; 385: 717–727
Kellenberger, E., Kuhn, I., Schuber, F., and Muller-Steffner, H. Flavonoids as inhibitors of human CD38.
Crossref | PubMed | Scopus (15)
Bioorg. Med. Chem. Lett. 2011; 21: 3939–3942
Khan, N.A., Auranen, M., Paetau, I., Pirinen, E., Euro, L., Forsstrom, S., Pasila, L., Velagapudi, V., Carroll, C.J., Auwerx, J. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.
EMBO Mol Med, ; 2014
Klaidman, L., Morales, M., Kem, S., Yang, J., Chang, M.-L., and Adams, J.D. Jr. Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function.
Crossref | PubMed | Scopus (70)
Pharmacology. 2003; 69: 150–157
Kolthur-Seetharam, U., Dantzer, F., McBurney, M.W., de Murcia, G., and Sassone-Corsi, P. Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage.
Crossref | PubMed
Cell Cycle. 2006; 5: 873–877
Kraus, W.L. and Hottiger, M.O. PARP-1 and gene regulation: progress and puzzles.
Crossref | PubMed | Scopus (49)
Mol. Aspects Med. 2013; 34: 1109–1123
Kraus, D., Yang, Q., Kong, D., Banks, A.S., Zhang, L., Rodgers, J.T., Pirinen, E., Pulinilkunnil, T.C., Gong, F., Wang, Y.C. et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity.
Crossref | PubMed | Scopus (28)
Nature. 2014; 508: 258–262
Kumar, S. and Lombard, D.B. Mitochondrial sirtuins and their relationships with metabolic disease and cancer.
Crossref | PubMed | Scopus (1)
Antioxid. Redox Signaling. 2015; 22: 1060–1077
Lamming, D.W., Latorre-Esteves, M., Medvedik, O., Wong, S.N., Tsang, F.A., Wang, C., Lin, S.-J., and Sinclair, D.A. HST2 mediates SIR2-independent life-span extension by calorie restriction.
Crossref | PubMed | Scopus (148)
Science. 2005; 309: 1861–1864
Langley, E., Pearson, M., Faretta, M., Bauer, U.-M., Frye, R.A., Minucci, S., Pelicci, P.G., and Kouzarides, T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence.
Crossref | PubMed | Scopus (563)
EMBO J. 2002; 21: 2383–2396
Lau, C., Niere, M., and Ziegler, M. The NMN/NaMN adenylyltransferase (NMNAT) protein family.
Crossref | PubMed | Scopus (0)
Front Biosci (Landmark Ed). 2009; 14: 410–431
Laurent, G., German, N.J., Saha, A.K., de Boer, V.C., Davies, M., Koves, T.R., Dephoure, N., Fischer, F., Boanca, G., Vaitheesvaran, B. et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (51)
Mol. Cell. 2013; 50: 686–698
Lauring, B., Taggart, A.K.P., Tata, J.R., Dunbar, R., Caro, L., Cheng, K., Chin, J., Colletti, S.L., Cote, J., Khalilieh, S. et al. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression.
Crossref | PubMed | Scopus (45)
Lee, H.C. Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization.
Crossref | PubMed | Scopus (22)
J. Biol. Chem. 2012; 287: 31633–31640
Lehmann, M., Pirinen, E., Mirsaidi, A., Kunze, F.A., Richards, P.J., Auwerx, J., and Hottiger, M.O. ARTD1-induced poly-ADP-ribose formation enhances PPARγ ligand binding and co-factor exchange.
Crossref | PubMed
Nucleic Acids Res. 2015; 43: 129–142
Li, X., Millar, J.S., Brownell, N., Briand, F., and Rader, D.J. Modulation of HDL metabolism by the niacin receptor GPR109A in mouse hepatocytes.
Crossref | PubMed | Scopus (21)
Biochem. Pharmacol. 2010; 80: 1450–1457
Lin, S.-J., Ford, E., Haigis, M., Liszt, G., and Guarente, L. Calorie restriction extends yeast life span by lowering the level of NADH.
Crossref | PubMed | Scopus (376)
Genes Dev. 2004; 18: 12–16
Liszt, G., Ford, E., Kurtev, M., and Guarente, L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase.
Crossref | PubMed | Scopus (243)
J. Biol. Chem. 2005; 280: 21313–21320
Llopis, J., Westin, S., Ricote, M., Wang, Z., Cho, C.Y., Kurokawa, R., Mullen, T.M., Rose, D.W., Rosenfeld, M.G., Tsien, R.Y., and Glass, C.K. Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription.
Crossref | PubMed
Proc. Natl. Acad. Sci. USA. 2000; 97: 4363–4368
Lu, S.-P., Kato, M., and Lin, S.-J. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae.
Crossref | PubMed | Scopus (29)
J. Biol. Chem. 2009; 284: 17110–17119
Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. Negative control of p53 by Sir2alpha promotes cell survival under stress.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (1325)
Cell. 2001; 107: 137–148
Mack, T.G., Reiner, M., Beirowski, B., Mi, W., Emanuelli, M., Wagner, D., Thomson, D., Gillingwater, T., Court, F., Conforti, L. et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene.
Crossref | PubMed | Scopus (309)
Nat. Neurosci. 2001; 4: 1199–1206
Malavasi, F., Deaglio, S., Funaro, A., Ferrero, E., Horenstein, A.L., Ortolan, E., Vaisitti, T., and Aydin, S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology.
Crossref | PubMed | Scopus (214)
Physiol. Rev. 2008; 88: 841–886
Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A., and Gorbunova, V. SIRT6 promotes DNA repair under stress by activating PARP1.
Crossref | PubMed | Scopus (180)
Science. 2011; 332: 1443–1446
Massudi, H., Grant, R., Braidy, N., Guest, J., Farnsworth, B., and Guillemin, G.J. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue.
Crossref | PubMed | Scopus (56)
PLoS ONE. 2012; 7: e42357
Masutani, M., Suzuki, H., Kamada, N., Watanabe, M., Ueda, O., Nozaki, T., Jishage, K., Watanabe, T., Sugimoto, T., Nakagama, H. et al. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes.
Crossref | PubMed | Scopus (190)
Proc. Natl. Acad. Sci. USA. 1999; 96: 2301–2304
Mathias, R.A., Greco, T.M., Oberstein, A., Budayeva, H.G., Chakrabarti, R., Rowland, E.A., Kang, Y., Shenk, T., and Cristea, I.M. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (0)
Cell. 2014; 159: 1615–1625
McKenna, M.C., Waagepetersen, H.S., Schousboe, A., and Sonnewald, U. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
Crossref | PubMed | Scopus (121)
Biochem. Pharmacol. 2006; 71: 399–407
Mendoza-Alvarez, H. and Alvarez-Gonzalez, R. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular.
PubMed
J. Biol. Chem. 1993; 268: 22575–22580
Menzies, K.J., Singh, K., Saleem, A., and Hood, D.A. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis.
Crossref | PubMed | Scopus (39)
J. Biol. Chem. 2013; 288: 6968–6979
Mercken, E.M., Hu, J., Krzysik-Walker, S., Wei, M., Li, Y., McBurney, M.W., de Cabo, R., and Longo, V.D. SIRT1 but not its increased expression is essential for lifespan extension in caloric restricted mice.
Crossref | PubMed | Scopus (12)
Aging Cell. 2013; 13: 193–196
Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C., and Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.
Crossref | PubMed | Scopus (537)
Mol. Biol. Cell. 2005; 16: 4623–4635
Minor, R.K., Baur, J.A., Gomes, A.P., Ward, T.M., Csiszar, A., Mercken, E.M., Abdelmohsen, K., Shin, Y.K., Canto, C., Scheibye-Knudsen, M. et al. SRT1720 improves survival and healthspan of obese mice.
Crossref | PubMed | Scopus (69)
Sci. Rep. 2011; 1: 70
Mostoslavsky, R., Chua, K.F., Lombard, D.B., Pang, W.W., Fischer, M.R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S., Murphy, M.M. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (534)
Cell. 2006; 124: 315–329
Mouchiroud, L., Houtkooper, R.H., Moullan, N., Katsyuba, E., Ryu, D., Cantó, C., Mottis, A., Jo, Y.-S., Viswanathan, M., Schoonjans, K. et al. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (101)
Cell. 2013; 154: 430–441
Mukhopadhyay, P., Rajesh, M., Cao, Z., Horváth, B., Park, O., Wang, H., Erdelyi, K., Holovac, E., Wang, Y., Liaudet, L. et al. Poly (ADP-ribose) polymerase-1 is a key mediator of liver inflammation and fibrosis.
Crossref | PubMed | Scopus (9)
Hepatology. 2014; 59: 1998–2009
Nakagawa, T., Lomb, D.J., Haigis, M.C., and Guarente, L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (272)
Cell. 2009; 137: 560–570
Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., Guarente, L.P., and Sassone-Corsi, P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (499)
Cell. 2008; 134: 329–340
Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M., and Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.
Crossref | PubMed | Scopus (404)
Science. 2009; 324: 654–657
Nam, T.-S., Choi, S.H., Rah, S.-Y., Kim, S.-Y., Jang, W., Im, M.-J., Kwon, H.J., and Kim, U.-H. Discovery of a small-molecule inhibitor for kidney ADP-ribosyl cyclase: Implication for intracellular calcium signal mediated by cyclic ADP-ribose.
Crossref | PubMed
Exp. Mol. Med. 2006; 38: 718–726
Nikiforov, A., Dölle, C., Niere, M., and Ziegler, M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation.
Crossref | PubMed | Scopus (75)
J. Biol. Chem. 2011; 286: 21767–21778
North, B.J., Marshall, B.L., Borra, M.T., Denu, J.M., and Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (696)
Mol. Cell. 2003; 11: 437–444
Olmos, P.R., Hodgson, M.I., Maiz, A., Manrique, M., De Valdés, M.D., Foncea, R., Acosta, A.M., Emmerich, M.V., Velasco, S., Muñiz, O.P. et al. Nicotinamide protected first-phase insulin response (FPIR) and prevented clinical disease in first-degree relatives of type-1 diabetics.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (19)
Diabetes Res. Clin. Pract. 2006; 71: 320–333
Owusu-Ansah, E., Song, W., and Perrimon, N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (53)
Cell. 2013; 155: 699–712
Pacholec, M., Bleasdale, J.E., Chrunyk, B., Cunningham, D., Flynn, D., Garofalo, R.S., Griffith, D., Griffor, M., Loulakis, P., Pabst, B. et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1.
Crossref | PubMed | Scopus (443)
J. Biol. Chem. 2010; 285: 8340–8351
Pan, P.W., Feldman, J.L., Devries, M.K., Dong, A., Edwards, A.M., and Denu, J.M. Structure and biochemical functions of SIRT6.
Crossref | PubMed | Scopus (61)
J. Biol. Chem. 2011; 286: 14575–14587
Pearson, K.J., Baur, J.A., Lewis, K.N., Peshkin, L., Price, N.L., Labinskyy, N., Swindell, W.R., Kamara, D., Minor, R.K., Perez, E. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (559)
Cell Metab. 2008; 8: 157–168
Petesch, S.J. and Lis, J.T. Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (38)
Mol. Cell. 2012; 45: 64–74
Pfluger, P.T., Herranz, D., Velasco-Miguel, S., Serrano, M., and Tschöp, M.H. Sirt1 protects against high-fat diet-induced metabolic damage.
Crossref | PubMed | Scopus (395)
Proc. Natl. Acad. Sci. USA. 2008; 105: 9793–9798
Pieper, A.A., Xie, S., Capota, E., Estill, S.J., Zhong, J., Long, J.M., Becker, G.L., Huntington, P., Goldman, S.E., Shen, C.-H. et al. Discovery of a proneurogenic, neuroprotective chemical.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (108)
Cell. 2010; 142: 39–51
Pillai, J.B., Isbatan, A., Imai, S.-i., and Gupta, M.P. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity.
Crossref | PubMed | Scopus (210)
J. Biol. Chem. 2005; 280: 43121–43130
Pirinen, E., Cantó, C., Jo, Y.S., Morato, L., Zhang, H., Menzies, K.J., Williams, E.G., Mouchiroud, L., Moullan, N., Hagberg, C. et al. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (22)
Cell Metab. 2014; 19: 1034–1041
Pittelli, M., Formentini, L., Faraco, G., Lapucci, A., Rapizzi, E., Cialdai, F., Romano, G., Moneti, G., Moroni, F., and Chiarugi, A. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool.
Crossref | PubMed | Scopus (52)
J. Biol. Chem. 2010; 285: 34106–34114
Pittelli, M., Felici, R., Pitozzi, V., Giovannelli, L., Bigagli, E., Cialdai, F., Romano, G., Moroni, F., and Chiarugi, A. Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis.
Crossref | PubMed | Scopus (29)
Mol. Pharmacol. 2011; 80: 1136–1146
Price, N.L., Gomes, A.P., Ling, A.J.Y., Duarte, F.V., Martin-Montalvo, A., North, B.J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J.S. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (286)
Cell Metab. 2012; 15: 675–690
Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., Zhao, W., Thiyagarajan, M., MacGrogan, D., Rodgers, J.T. et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction.
Crossref | PubMed | Scopus (316)
J. Biol. Chem. 2006; 281: 21745–21754
Quarona, V., Zaccarello, G., Chillemi, A., Brunetti, E., Singh, V.K., Ferrero, E., Funaro, A., Horenstein, A.L., and Malavasi, F. CD38 and CD157: a long journey from activation markers to multifunctional molecules.
Crossref | PubMed | Scopus (20)
Cytometry B Clin. Cytom. 2013; 84: 207–217
Rajamohan, S.B., Pillai, V.B., Gupta, M., Sundaresan, N.R., Birukov, K.G., Samant, S., Hottiger, M.O., and Gupta, M.P. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1.
Crossref | PubMed | Scopus (123)
Mol. Cell. Biol. 2009; 29: 4116–4129
Ramsey, K.M., Mills, K.F., Satoh, A., and Imai, S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice.
Crossref | PubMed | Scopus (124)
Aging Cell. 2008; 7: 78–88
Ramsey, K.M., Yoshino, J., Brace, C.S., Abrassart, D., Kobayashi, Y., Marcheva, B., Hong, H.K., Chong, J.L., Buhr, E.D., Lee, C. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.
Crossref | PubMed | Scopus (385)
Science. 2009; 324: 651–654
Revollo, J.R., Grimm, A.A., and Imai, S.-i. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells.
Crossref | PubMed | Scopus (414)
J. Biol. Chem. 2004; 279: 50754–50763
Revollo, J.R., Körner, A., Mills, K.F., Satoh, A., Wang, T., Garten, A., Dasgupta, B., Sasaki, Y., Wolberger, C., Townsend, R.R. et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (376)
Cell Metab. 2007; 6: 363–375
Riederer, M., Erwa, W., Zimmermann, R., Frank, S., and Zechner, R. Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (0)
Atherosclerosis. 2009; 204: 412–417
Rippmann, J.F., Damm, K., and Schnapp, A. Functional characterization of the poly(ADP-ribose) polymerase activity of tankyrase 1, a potential regulator of telomere length.
Crossref | PubMed | Scopus (43)
J. Mol. Biol. 2002; 323: 217–224
Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.
Crossref | PubMed | Scopus (1398)
Nature. 2005; 434: 113–118
Rogina, B. and Helfand, S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction.
Crossref | PubMed | Scopus (715)
Proc. Natl. Acad. Sci. USA. 2004; 101: 15998–16003
Rongvaux, A., Shea, R.J., Mulks, M.H., Gigot, D., Urbain, J., Leo, O., and Andris, F. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis.
Crossref | PubMed | Scopus (312)
Eur. J. Immunol. 2002; 32: 3225–3234
Ryall, J.G., Dell’Orso, S., Derfoul, A., Juan, A., Zare, H., Feng, X., Clermont, D., Koulnis, M., Gutierrez-Cruz, G., Fulco, M. et al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (8)
Cell Stem Cell. 2015; 16: 171–183
Ryu, D., Jo, Y.S., Lo Sasso, G., Stein, S., Zhang, H., Perino, A., Lee, J.U., Zeviani, M., Romand, R., Hottiger, M.O. et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (0)
Cell Metab. 2014; 20: 856–869
Sadanaga-Akiyoshi, F., Yao, H., Tanuma, S.-i., Nakahara, T., Hong, J.S., Ibayashi, S., Uchimura, H., and Fujishima, M. Nicotinamide attenuates focal ischemic brain injury in rats: with special reference to changes in nicotinamide and NAD+ levels in ischemic core and penumbra.
Crossref | PubMed | Scopus (43)
Neurochem. Res. 2003; 28: 1227–1234
Sajish, M. and Schimmel, P. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol.
Crossref | PubMed
Nature. 2015; 519: 370–373
Sasaki, Y., Araki, T., and Milbrandt, J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.
Crossref | PubMed | Scopus (126)
J. Neurosci. 2006; 26: 8484–8491
Sasaki, Y., Vohra, B.P.S., Lund, F.E., and Milbrandt, J. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide.
Crossref | PubMed | Scopus (83)
J. Neurosci. 2009; 29: 5525–5535
Satoh, A., Brace, C.S., Rensing, N., Cliften, P., Wozniak, D.F., Herzog, E.D., Yamada, K.A., and Imai, S.-i. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (73)
Cell Metab. 2013; 18: 416–430
Sauve, A.A., Munshi, C., Lee, H.C., and Schramm, V.L. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
Crossref | PubMed | Scopus (73)
Biochemistry. 1998; 37: 13239–13249
Scheibye-Knudsen, M., Fang, E.F., Croteau, D.L., and Bohr, V.A. Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders.
Crossref | PubMed | Scopus (4)
Autophagy. 2014; 10: 1468–1469
Schein, P.S., Cooney, D.A., and Vernon, M.L. The use of nicotinamide to modify the toxicity of streptozotocin diabetes without loss of antitumor activity.
PubMed
Cancer Res. 1967; 27: 2324–2332
Schmeisser, K., Mansfeld, J., Kuhlow, D., Weimer, S., Priebe, S., Heiland, I., Birringer, M., Groth, M., Segref, A., Kanfi, Y. et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide.
Crossref | PubMed | Scopus (34)
Nat. Chem. Biol. 2013; 9: 693–700
Schmidt, M.T., Smith, B.C., Jackson, M.D., and Denu, J.M. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation.
Crossref | PubMed | Scopus (91)
J. Biol. Chem. 2004; 279: 40122–40129
Schwer, B., North, B.J., Frye, R.A., Ott, M., and Verdin, E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase.
Crossref | PubMed | Scopus (270)
J. Cell Biol. 2002; 158: 647–657
Seal, A.J., Creeke, P.I., Dibari, F., Cheung, E., Kyroussis, E., Semedo, P., and van den Briel, T. Low and deficient niacin status and pellagra are endemic in postwar Angola.
PubMed
Am. J. Clin. Nutr. 2007; 85: 218–224
Smith, B.C., Hallows, W.C., and Denu, J.M. A continuous microplate assay for sirtuins and nicotinamide-producing enzymes.
Crossref | PubMed | Scopus (49)
Anal. Biochem. 2009; 394: 101–109
Soga, T., Kamohara, M., Takasaki, J., Matsumoto, S., Saito, T., Ohishi, T., Hiyama, H., Matsuo, A., Matsushime, H., and Furuichi, K. Molecular identification of nicotinic acid receptor.
Crossref | PubMed | Scopus (201)
Biochem. Biophys. Res. Commun. 2003; 303: 364–369
Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M., and Prolla, T.A. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (313)
Cell. 2010; 143: 802–812
Stein, L.R. and Imai, S.-i. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging.
PubMed
EMBO J. 2014; 33: 1321–1340
Stone, T.W. and Darlington, L.G. Endogenous kynurenines as targets for drug discovery and development.
Crossref | PubMed | Scopus (370)
Nat. Rev. Drug Discov. 2002; 1: 609–620
Sydenstricker, V.P. The history of pellagra, its recognition as a disorder of nutrition and its conquest.
PubMed
Am. J. Clin. Nutr. 1958; 6: 409–414
Szczesny, B., Brunyánszki, A., Olah, G., Mitra, S., and Szabo, C. Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function.
Crossref | PubMed
Nucleic Acids Res. 2014; 42: 13161–13173
Tan, M., Peng, C., Anderson, K.A., Chhoy, P., Xie, Z., Dai, L., Park, J., Chen, Y., Huang, H., Zhang, Y. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (41)
Cell Metab. 2014; 19: 605–617
Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1.
Crossref | PubMed | Scopus (240)
J. Biol. Chem. 2007; 282: 6823–6832
Tesla, R., Wolf, H.P., Xu, P., Drawbridge, J., Estill, S.J., Huntington, P., McDaniel, L., Knobbe, W., Burket, A., Tran, S. et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.
Crossref | PubMed | Scopus (27)
Proc. Natl. Acad. Sci. USA. 2012; 109: 17016–17021
Tissenbaum, H.A. and Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans.
Crossref | PubMed | Scopus (1141)
Nature. 2001; 410: 227–230
Tummala, K.S., Gomes, A.L., Yilmaz, M., Graña, O., Bakiri, L., Ruppen, I., Ximénez-Embún, P., Sheshappanavar, V., Rodriguez-Justo, M., Pisano, D.G. et al. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (3)
Cancer Cell. 2014; 26: 826–839
Tunaru, S., Kero, J., Schaub, A., Wufka, C., Blaukat, A., Pfeffer, K., and Offermanns, S. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect.
Crossref | PubMed | Scopus (431)
Nat. Med. 2003; 9: 352–355
Turunc Bayrakdar, E., Armagan, G., Uyanikgil, Y., Kanit, L., Koylu, E., and Yalcin, A. Ex vivo protective effects of nicotinamide and 3-aminobenzamide on rat synaptosomes treated with Aβ(1-42).
Crossref | PubMed | Scopus (1)
Cell Biochem. Funct. 2014; 32: 557–564
Turunc Bayrakdar, E., Uyanikgil, Y., Kanit, L., Koylu, E., and Yalcin, A. Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1-42)-induced rat model of Alzheimer’s disease.
Crossref | PubMed | Scopus (16)
Free Radic. Res. 2014; 48: 146–158
Upadhya, R., Lee, J., and Willis, I.M. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (102)
Mol. Cell. 2002; 10: 1489–1494
Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., Braun, T., and Bober, E. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice.
Crossref | PubMed | Scopus (213)
Circ. Res. 2008; 102: 703–710
Valenzuela, M.T., Guerrero, R., Núñez, M.I., Ruiz De Almodóvar, J.M., Sarker, M., de Murcia, G., and Oliver, F.J. PARP-1 modifies the effectiveness of p53-mediated DNA damage response.
Crossref | PubMed
Oncogene. 2002; 21: 1108–1116
Van Beijnum, J.R., Moerkerk, P.T.M., Gerbers, A.J., De Bruïne, A.P., Arends, J.-W., Hoogenboom, H.R., and Hufton, S.E. Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer.
Crossref | PubMed | Scopus (87)
Int. J. Cancer. 2002; 101: 118–127
van de Weijer, T., Phielix, E., Bilet, L., Williams, E.G., Ropelle, E.R., Bierwagen, A., Livingstone, R., Nowotny, P., Sparks, L.M., Paglialunga, S. et al. Evidence for a direct effect of the NAD+ precursor Acipimox on muscle mitochondrial function in humans.
Crossref | PubMed
Diabetes. 2014; 64: 1193–1201
van Roermund, C.W., Elgersma, Y., Singh, N., Wanders, R.J., and Tabak, H.F. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions.
PubMed
EMBO J. 1995; 14: 3480–3486
Vaziri, H., Dessain, S.K., Ng Eaton, E., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L., and Weinberg, R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (1464)
Cell. 2001; 107: 149–159
Verdin, E., Hirschey, M.D., Finley, L.W.S., and Haigis, M.C. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (168)
Trends Biochem. Sci. 2010; 35: 669–675
Wang, R.-H., Sengupta, K., Li, C., Kim, H.-S., Cao, L., Xiao, C., Kim, S., Xu, X., Zheng, Y., Chilton, B. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (350)
Cancer Cell. 2008; 14: 312–323
Wang, B., Hasan, M.K., Alvarado, E., Yuan, H., Wu, H., and Chen, W.Y. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response.
Crossref | PubMed | Scopus (78)
Oncogene. 2011; 30: 907–921
Wang, J.T., Medress, Z.A., and Barres, B.A. Axon degeneration: molecular mechanisms of a self-destruction pathway.
Crossref | PubMed | Scopus (89)
J. Cell Biol. 2012; 196: 7–18
Wang, G., Han, T., Nijhawan, D., Theodoropoulos, P., Naidoo, J., Yadavalli, S., Mirzaei, H., Pieper, A.A., Ready, J.M., and McKnight, S.L. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (0)
Cell. 2014; 158: 1324–1334
Wang, L., Ding, D., Salvi, R., and Roth, J.A. Nicotinamide adenine dinucleotide prevents neuroaxonal degeneration induced by manganese in cochlear organotypic cultures.
Crossref | PubMed | Scopus (2)
Neurotoxicology. 2014; 40: 65–74
Warburg, O., Christian, W., and Griese, A. Hydrogen-transferring co-enzyme, its composition and mode of functioning.
Biochem. Z. 1935; 280: 157–205
Watson, M., Roulston, A., Bélec, L., Billot, X., Marcellus, R., Bédard, D., Bernier, C., Branchaud, S., Chan, H., Dairi, K. et al. The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors.
Crossref | PubMed | Scopus (71)
Mol. Cell. Biol. 2009; 29: 5872–5888
Williams, A.C. and Dunbar, R.I.M. Big brains, meat, tuberculosis and the nicotinamide switches: co-evolutionary relationships with modern repercussions on longevity and disease?.
Abstract | Full Text | Full Text PDF | PubMed
Med. Hypotheses. 2014; 83: 79–87
Wise, A., Foord, S.M., Fraser, N.J., Barnes, A.A., Elshourbagy, N., Eilert, M., Ignar, D.M., Murdock, P.R., Steplewski, K., Green, A. et al. Molecular identification of high and low affinity receptors for nicotinic acid.
Crossref | PubMed | Scopus (318)
J. Biol. Chem. 2003; 278: 9869–9874
Wu, J., Zhang, F., Yan, M., Wu, D., Yu, Q., Zhang, Y., Zhou, B., McBurney, M.W., and Zhai, Q. WldS enhances insulin transcription and secretion via a SIRT1-dependent pathway and improves glucose homeostasis.
Crossref | PubMed | Scopus (0)
Diabetes. 2011; 60: 3197–3207
Wu, Y., Williams, E.G., Dubuis, S., Mottis, A., Jovaisaite, V., Houten, S.M., Argmann, C.A., Faridi, P., Wolski, W., Kutalik, Z. et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (14)
Cell. 2014; 158: 1415–1430
Xie, G.-H., Rah, S.-Y., Kim, S.J., Nam, T.-S., Ha, K.-C., Chae, S.-W., Im, M.-J., and Kim, U.-H. ADP-ribosyl cyclase couples to cyclic AMP signaling in the cardiomyocytes.
Crossref | PubMed | Scopus (27)
Biochem. Biophys. Res. Commun. 2005; 330: 1290–1298
Yahata, N., Yuasa, S., and Araki, T. Nicotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration.
Crossref | PubMed | Scopus (78)
J. Neurosci. 2009; 29: 6276–6284
Yalowitz, J.A., Xiao, S., Biju, M.P., Antony, A.C., Cummings, O.W., Deeg, M.A., and Jayaram, H.N. Characterization of human brain nicotinamide 5′-mononucleotide adenylyltransferase-2 and expression in human pancreas.
Crossref | PubMed | Scopus (30)
Biochem. J. 2004; 377: 317–326
Yamamoto, H., Uchigata, Y., and Okamoto, H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets.
Crossref | PubMed
Nature. 1981; 294: 284–286
Yan, T., Feng, Y., Zheng, J., Ge, X., Zhang, Y., Wu, D., Zhao, J., and Zhai, Q. Nmnat2 delays axon degeneration in superior cervical ganglia dependent on its NAD synthesis activity.
Crossref | PubMed | Scopus (37)
Neurochem. Int. 2010; 56: 101–106
Yang, H., Yang, T., Baur, J.A., Perez, E., Matsui, T., Carmona, J.J., Lamming, D.W., Souza-Pinto, N.C., Bohr, V.A., Rosenzweig, A. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (413)
Cell. 2007; 130: 1095–1107
Yang, T., Chan, N.Y., and Sauve, A.A. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.
Crossref | PubMed | Scopus (32)
J. Med. Chem. 2007; 50: 6458–6461
Yang, S.J., Choi, J.M., Kim, L., Park, S.E., Rhee, E.J., Lee, W.Y., Oh, K.W., Park, S.W., and Park, C.-Y. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes.
Abstract | Full Text | Full Text PDF | PubMed
J. Nutr. Biochem. 2014; 25: 66–72
Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., and Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase.
Crossref | PubMed | Scopus (1097)
EMBO J. 2004; 23: 2369–2380
Yin, T.C., Britt, J.K., De Jesús-Cortés, H., Lu, Y., Genova, R.M., Khan, M.Z., Voorhees, J.R., Shao, J., Katzman, A.C., Huntington, P.J. et al. P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (9)
Cell Rep. 2014; 8: 1731–1740
Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.
Crossref | PubMed | Scopus (322)
Antioxid. Redox Signal. 2008; 10: 179–206
Ying, W., Alano, C.C., Garnier, P., and Swanson, R.A. NAD+ as a metabolic link between DNA damage and cell death.
Crossref | PubMed | Scopus (116)
J. Neurosci. Res. 2005; 79: 216–223
Yoon, M.J., Yoshida, M., Johnson, S., Takikawa, A., Usui, I., Tobe, K., Nakagawa, T., Yoshino, J., and Imai, S.-i. SIRT1-Mediated eNAMPT Secretion from Adipose Tissue Regulates Hypothalamic NAD(+) and Function in Mice.
Abstract | Full Text | Full Text PDF | PubMed
Cell Metab. 2015; 21: 706–717
Yoshino, J., Mills, K.F., Yoon, M.J., and Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (141)
Cell Metab. 2011; 14: 528–536
Yu, J., Sadhukhan, S., Noriega, L.G., Moullan, N., He, B., Weiss, R.S., Lin, H., Schoonjans, K., and Auwerx, J. Metabolic characterization of a Sirt5 deficient mouse model.
Crossref | Scopus (13)
Zhang, Q., Piston, D.W., and Goodman, R.H. Regulation of corepressor function by nuclear NADH.
PubMed
Science. 2002; 295: 1895–1897
Zhang, X., Kurnasov, O.V., Karthikeyan, S., Grishin, N.V., Osterman, A.L., and Zhang, H. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis.
Crossref | PubMed | Scopus (69)
J. Biol. Chem. 2003; 278: 13503–13511
Zhang, Y., Schmidt, R.J., Foxworthy, P., Emkey, R., Oler, J.K., Large, T.H., Wang, H., Su, E.W., Mosior, M.K., Eacho, P.I., and Cao, G. Niacin mediates lipolysis in adipose tissue through its G-protein coupled receptor HM74A.
Crossref | PubMed | Scopus (46)
Biochem. Biophys. Res. Commun. 2005; 334: 729–732
Zhang, T., Berrocal, J.G., Frizzell, K.M., Gamble, M.J., DuMond, M.E., Krishnakumar, R., Yang, T., Sauve, A.A., and Kraus, W.L. Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters.
Crossref | PubMed | Scopus (91)
J. Biol. Chem. 2009; 284: 20408–20417
Zhang, L.Q., Heruth, D.P., and Ye, S.Q. Nicotinamide phosphoribosyltransferase in human diseases.
Crossref | PubMed | Scopus (40)
J. Bioanal. Biomed. 2011; 3: 13–25
Zhang, T., Berrocal, J.G., Yao, J., DuMond, M.E., Krishnakumar, R., Ruhl, D.D., Ryu, K.W., Gamble, M.J., and Kraus, W.L. Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase.
Crossref | PubMed | Scopus (18)
J. Biol. Chem. 2012; 287: 12405–12416
Zhang, F., Xie, R., Munoz, F.M., Lau, S.S., and Monks, T.J. PARP-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ros-induced nonapoptotic cell death.
Crossref | PubMed | Scopus (1)
Toxicol Sci. 2014; 140: 118–134
Zhao, Y.J., Lam, C.M.C., and Lee, H.C. The membrane-bound enzyme CD38 exists in two opposing orientations.
Crossref | PubMed | Scopus (23)
Sci. Signal. 2012; 5: ra67
Zhong, L., D’Urso, A., Toiber, D., Sebastian, C., Henry, R.E., Vadysirisack, D.D., Guimaraes, A., Marinelli, B., Wikstrom, J.D., Nir, T. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha.
Abstract | Full Text | Full Text PDF | PubMed | Scopus (289)
Cell. 2010; 140: 280–293
Zhou, M., Ottenberg, G., Sferrazza, G.F., Hubbs, C., Fallahi, M., Rumbaugh, G., Brantley, A.F., and Lasmézas, C.I. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment.
Crossref | PubMed