Benjamin, R.C. and Gill, D.M. Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks. J. Biol. Chem. 1980; 255: 10502–10508
Benyó, Z., Gille, A., Kero, J., Csiky, M., Suchánková, M.C., Nüsing, R.M., Moers, A., Pfeffer, K., and Offermanns, S. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J. Clin. Invest. 2005; 115: 3634–3640
Berger, N.A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 1985; 101: 4–15
Berger, F., Lau, C., Dahlmann, M., and Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 2005; 280: 36334–36341
Bessede, A., Gargaro, M., Pallotta, M.T., Matino, D., Servillo, G., Brunacci, C., Bicciato, S., Mazza, E.M.C., Macchiarulo, A., Vacca, C. et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature. 2014; 511: 184–190
Bi, T.-Q., Che, X.-M., Liao, X.-H., Zhang, D.-J., Long, H.-L., Li, H.-J., and Zhao, W. Overexpression of Nampt in gastric cancer and chemopotentiating effects of the Nampt inhibitor FK866 in combination with fluorouracil. Oncol. Rep. 2011; 26: 1251–1257
Bieganowski, P. and Brenner, C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004; 117: 495–502
Birjmohun, R.S., Hutten, B.A., Kastelein, J.J., and Stroes, E.S. Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. J. Am. Coll. Cardiol. 2005; 45: 185–197
Bitterman, K.J., Anderson, R.M., Cohen, H.Y., Latorre-Esteves, M., and Sinclair, D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 2002; 277: 45099–45107
Blander, G. and Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 2004; 73: 417–435
Bobrowska, A., Donmez, G., Weiss, A., Guarente, L., and Bates, G. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington’s disease phenotypes in vivo. PLoS ONE. 2012; 7: e34805
Bogan, K.L. and Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 2008; 28: 115–130
Boily, G., Seifert, E.L., Bevilacqua, L., He, X.H., Sabourin, G., Estey, C., Moffat, C., Crawford, S., Saliba, S., Jardine, K. et al. SirT1 regulates energy metabolism and response to caloric restriction in mice.PloS One. 2008; 3DOI: http://dx.doi.org/10.1371/journal.pone.0001759
Bonhoure, N., Byrnes, A., Moir, R.D., Hodroj, W., Preitner, F., Praz, V., Marcelin, G., Chua, S.C. Jr., Martinez-Lopez, N., Singh, R. et al. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev. 2015; 29: 934–947
Borra, M.T., Langer, M.R., Slama, J.T., and Denu, J.M. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry. 2004; 43: 9877–9887
Boutant, M. and Canto, C. SIRT1 metabolic actions: Integrating recent advances from mouse models. Mol. Metab. 2014; 3: 5–18
Braidy, N., Guillemin, G.J., Mansour, H., Chan-Ling, T., Poljak, A., and Grant, R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE. 2011; 6: e19194
Brown, K.D., Maqsood, S., Huang, J.-Y., Pan, Y., Harkcom, W., Li, W., Sauve, A., Verdin, E., and Jaffrey, S.R. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 2014; 20: 1059–1068
Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005; 434: 913–917
Burnett, C., Valentini, S., Cabreiro, F., Goss, M., Somogyvári, M., Piper, M.D., Hoddinott, M., Sutphin, G.L., Leko, V., McElwee, J.J. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011; 477: 482–485
Cabrera-Rode, E., Molina, G., Arranz, C., Vera, M., González, P., Suárez, R., Prieto, M., Padrón, S., León, R., Tillan, J. et al. Effect of standard nicotinamide in the prevention of type 1 diabetes in first degree relatives of persons with type 1 diabetes. Autoimmunity. 2006; 39: 333–340
Cakir-Kiefer, C., Muller-Steffner, H., Oppenheimer, N., and Schuber, F. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling. Biochem. J. 2001; 358: 399–406
Cantó, C. and Auwerx, J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 2009; 20: 325–331
Cantó, C. and Auwerx, J. Targeting sirtuin 1 to improve metabolism: all you need is NAD(+). Pharmacol. Rev. 2012; 64: 166–187
Cantó, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature. 2009; 458: 1056–1060
Cantó, C., Jiang, L.Q., Deshmukh, A.S., Mataki, C., Coste, A., Lagouge, M., Zierath, J.R., and Auwerx, J. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010; 11: 213–219
Cantó, C., Houtkooper, R.H., Pirinen, E., Youn, D.Y., Oosterveer, M.H., Cen, Y., Fernandez-Marcos, P.J., Yamamoto, H., Andreux, P.A., Cettour-Rose, P. et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012; 15: 838–847
Cantó, C., Sauve, A.A., and Bai, P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol. Aspects Med. 2013; 34: 1168–1201
Ceni, C., Muller-Steffner, H., Lund, F., Pochon, N., Schweitzer, A., De Waard, M., Schuber, F., Villaz, M., and Moutin, M.J. Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38-deficient mice. J. Biol. Chem. 2003; 278: 40670–40678
Cerutti, R., Pirinen, E., Lamperti, C., Marchet, S., Sauve, A.A., Li, W., Leoni, V., Schon, E.A., Dantzer, F., Auwerx, J. et al. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014; 19: 1042–1049
Chang, H.-C. and Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013; 153: 1448–1460
Chen, D., Bruno, J., Easlon, E., Lin, S.J., Cheng, H.L., Alt, F.W., and Guarente, L. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008; 22: 1753–1757
Chen, S., Seiler, J., Santiago-Reichelt, M., Felbel, K., Grummt, I., and Voit, R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell. 2013; 52: 303–313
Chi, Y. and Sauve, A.A. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care. 2013; 16: 657–661
Chiang, Y.J., Nguyen, M.-L., Gurunathan, S., Kaminker, P., Tessarollo, L., Campisi, J., and Hodes, R.J. Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice. Mol. Cell. Biol. 2006; 26: 2037–2043
Cohen-Armon, M., Visochek, L., Rozensal, D., Kalal, A., Geistrikh, I., Klein, R., Bendetz-Nezer, S., Yao, Z., and Seger, R. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation.Mol. Cell. 2007; 25: 297–308
Collins, P.B. and Chaykin, S. The management of nicotinamide and nicotinic acid in the mouse. J. Biol. Chem. 1972; 247: 778–783
Conforti, L., Tarlton, A., Mack, T.G., Mi, W., Buckmaster, E.A., Wagner, D., Perry, V.H., and Coleman, M.P. A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc. Natl. Acad. Sci. USA. 2000; 97: 11377–11382
Conforti, L., Wilbrey, A., Morreale, G., Janeckova, L., Beirowski, B., Adalbert, R., Mazzola, F., Di Stefano, M., Hartley, R., Babetto, E. et al. Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. J. Cell Biol. 2009; 184: 491–500
Conforti, L., Janeckova, L., Wagner, D., Mazzola, F., Cialabrini, L., Di Stefano, M., Orsomando, G., Magni, G., Bendotti, C., Smyth, N., and Coleman, M. Reducing expression of NAD+ synthesizing enzyme NMNAT1 does not affect the rate of Wallerian degeneration. FEBS J. 2011; 278: 2666–2679
Costford, S.R., Bajpeyi, S., Pasarica, M., Albarado, D.C., Thomas, S.C., Xie, H., Church, T.S., Jubrias, S.A., Conley, K.E., and Smith, S.R. Skeletal muscle NAMPT is induced by exercise in humans. Am. J. Physiol. Endocrinol. Metab. 2010; 298: E117–E126
Curtin, N.J. and Szabo, C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Aspects Med. 2013; 34: 1217–1256
Cynamon, M.H., Sorg, T.B., and Patapow, A. Utilization and metabolism of NAD by Haemophilus parainfluenzae. J. Gen. Microbiol. 1988; 134: 2789–2799
De Flora, A., Guida, L., Franco, L., and Zocchi, E. The CD38/cyclic ADP-ribose system: a topological paradox. Int. J. Biochem. Cell Biol. 1997; 29: 1149–1166
De Jesús-Cortés, H., Xu, P., Drawbridge, J., Estill, S.J., Huntington, P., Tran, S., Britt, J., Tesla, R., Morlock, L., Naidoo, J. et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.Proc. Natl. Acad. Sci. USA. 2012; 109: 17010–17015
Devalaraja-Narashimha, K. and Padanilam, B.J. PARP1 deficiency exacerbates diet-induced obesity in mice. J. Endocrinol. 2010; 205: 243–252
Diani-Moore, S., Ram, P., Li, X., Mondal, P., Youn, D.Y., Sauve, A.A., and Rifkind, A.B. Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic gluconeogenesis by 2,3,7,8-tetrachlorodibenzo-p-dioxin and of nicotinamide as a corrective agent for this effect. J. Biol. Chem. 2010; 285: 38801–38810