Du, J., Zhou, Y., Su, X., Yu, J.J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J.H., Choi, B.H. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase.Science. 2011; 334: 806–809
Durieux, J., Wolff, S., and Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011; 144: 79–91
Elvehjem, C.A. The Biological Significance of Nicotinic Acid: Harvey Lecture, November 16, 1939. Bull. N. Y. Acad. Med. 1940; 16: 173–189
Emanuelli, M., Carnevali, F., Saccucci, F., Pierella, F., Amici, A., Raffaelli, N., and Magni, G. Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase.J. Biol. Chem. 2001; 276: 406–412
Erener, S., Mirsaidi, A., Hesse, M., Tiaden, A.N., Ellingsgaard, H., Kostadinova, R., Donath, M.Y., Richards, P.J., and Hottiger, M.O. ARTD1 deletion causes increased hepatic lipid accumulation in mice fed a high-fat diet and impairs adipocyte function and differentiation. FASEB J. 2012; 26: 2631–2638
Escande, C., Chini, C.C., Nin, V., Dykhouse, K.M., Novak, C.M., Levine, J., van Deursen, J., Gores, G.J., Chen, J., Lou, Z., and Chini, E.N. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J. Clin. Invest. 2010; 120: 545–558
Escande, C., Nin, V., Price, N.L., Capellini, V., Gomes, A.P., Barbosa, M.T., O’Neil, L., White, T.A., Sinclair, D.A., and Chini, E.N. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013; 62: 1084–1093
Fan, W. and Luo, J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell. 2010; 39: 247–258
Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T., Nilsen, H., Mitchell, J.R., Croteau, D.L., and Bohr, V.A. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 2014; 157: 882–896
Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N.J., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.Nature. 2005; 434: 917–921
Feige, J.N., Lagouge, M., Canto, C., Strehle, A., Houten, S.M., Milne, J.C., Lambert, P.D., Mataki, C., Elliott, P.J., and Auwerx, J. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008; 8: 347–358
Feldman, J.L., Baeza, J., and Denu, J.M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 2013; 288: 31350–31356
Felici, R., Lapucci, A., Ramazzotti, M., and Chiarugi, A. Insight into molecular and functional properties of NMNAT3 reveals new hints of NAD homeostasis within human mitochondria. PLoS ONE. 2013; 8: e76938
Feng, Y., Paul, I.A., and LeBlanc, M.H. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat. Brain Res. Bull. 2006; 69: 117–122
Fischer, F., Gertz, M., Suenkel, B., Lakshminarasimhan, M., Schutkowski, M., and Steegborn, C. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition. PLoS ONE. 2012; 7: e45098
Fjeld, C.C., Birdsong, W.T., and Goodman, R.H. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc. Natl. Acad. Sci. USA. 2003; 100: 9202–9207
Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O’Connor, M.J. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers.N. Engl. J. Med. 2009; 361: 123–134
Forbes, J.C. and Duncan, G.M. Effect of a tryptophan-niacin deficient diet on the adrenal response of rats exposed to cold and alcohol intoxication. Q. J. Stud. Alcohol. 1961; 22: 254–260
Fouquerel, E., Goellner, E.M., Yu, Z., Gagné, J.-P., Barbi de Moura, M., Feinstein, T., Wheeler, D., Redpath, P., Li, J., Romero, G. et al. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep. 2014; 8: 1819–1831
Fulco, M., Cen, Y., Zhao, P., Hoffman, E.P., McBurney, M.W., Sauve, A.A., and Sartorelli, V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell. 2008; 14: 661–673
Gale, E.A.M., Bingley, P.J., Emmett, C.L., Collier, T., Group, E.N.D.I.T.E., and European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet. 2004; 363: 925–931
Garten, A., Petzold, S., Körner, A., Imai, S.-i., and Kiess, W. Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol. Metab. 2009; 20: 130–138
Gensler, H.L., Williams, T., Huang, A.C., and Jacobson, E.L. Oral niacin prevents photocarcinogenesis and photoimmunosuppression in mice. Nutr. Cancer. 1999; 34: 36–41
Gerdts, J., Brace, E.J., Sasaki, Y., DiAntonio, A., and Milbrandt, J. Neurobiology. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science. 2015; 348: 453–457
Gerhart-Hines, Z., Dominy, J.E. Jr., Blättler, S.M., Jedrychowski, M.P., Banks, A.S., Lim, J.-H., Chim, H., Gygi, S.P., and Puigserver, P. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol. Cell. 2011; 44: 851–863
Gibson, B.A. and Kraus, W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs.Nat. Rev. Mol. Cell Biol. 2012; 13: 411–424
Gilley, J. and Coleman, M.P. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons.PLoS Biol. 2010; 8: e1000300
Goldberger, J. The etiology of pellagra. 1914. Public Health Rep. 2006; 121: 77–79
Gomes, A.P., Price, N.L., Ling, A.J.Y., Moslehi, J.J., Montgomery, M.K., Rajman, L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P. et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013; 155: 1624–1638
Gong, B., Pan, Y., Vempati, P., Zhao, W., Knable, L., Ho, L., Wang, J., Sastre, M., Ono, K., Sauve, A.A., and Pasinetti, G.M. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging. 2013; 34: 1581–1588
Gradwohl, G., Ménissier de Murcia, J.M., Molinete, M., Simonin, F., Koken, M., Hoeijmakers, J.H., and de Murcia, G. The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA.Proc. Natl. Acad. Sci. USA. 1990; 87: 2990–2994
Gross, C.J. and Henderson, L.M. Digestion and absorption of NAD by the small intestine of the rat. J. Nutr. 1983; 113: 412–420
Gwirtz, J.A. and Garcia-Casal, M.N. Processing maize flour and corn meal food products. Ann. N Y Acad. Sci. 2014; 1312: 66–75
Haffner, C.D., Becherer, J.D., Boros, E.E., Cadilla, R., Carpenter, T., Cowan, D., Deaton, D.N., Guo, Y., Harrington, W., Henke, B.R. et al. Discovery, Synthesis, and Biological Evaluation of Thiazoloquin(az)olin(on)es as Potent CD38 Inhibitors.J. Med. Chem. 2015; 58: 3548–3571
Haigis, M.C. and Sinclair, D.A. Mammalian sirtuins: biological insights and disease relevance.Annu. Rev. Pathol. 2010; 5: 253–295
Haigis, M.C., Mostoslavsky, R., Haigis, K.M., Fahie, K., Christodoulou, D.C., Murphy, A.J., Valenzuela, D.M., Yancopoulos, G.D., Karow, M., Blander, G. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells.Cell. 2006; 126: 941–954
Hall, J.A., Dominy, J.E., Lee, Y., and Puigserver, P. The sirtuin family’s role in aging and age-associated pathologies. J. Clin. Invest. 2013; 123: 973–979
Hallows, W.C., Yu, W., Smith, B.C., Devries, M.K., Ellinger, J.J., Someya, S., Shortreed, M.R., Prolla, T., Markley, J.L., Smith, L.M. et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction.Mol. Cell. 2011; 41: 139–149
Hara, N., Yamada, K., Terashima, M., Osago, H., Shimoyama, M., and Tsuchiya, M. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency.J. Biol. Chem. 2003; 278: 10914–10921
Hara, N., Yamada, K., Shibata, T., Osago, H., Hashimoto, T., and Tsuchiya, M. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells.J. Biol. Chem. 2007; 282: 24574–24582
Hara, N., Yamada, K., Shibata, T., Osago, H., and Tsuchiya, M. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma.PLoS ONE. 2011; 6: e22781
Harden, A. and Young, W.J. The Alcoholic Ferment of Yeast-Juice. Part II.–The Conferment of Yeast-Juice. Proc. R. Soc. Lond., B. 1906; 78: 369–375
Hasmann, M. and Schemainda, I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis.Cancer Res. 2003; 63: 7436–7442
Hassa, P.O., Buerki, C., Lombardi, C., Imhof, R., and Hottiger, M.O. Transcriptional coactivation of nuclear factor-kappaB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1.J. Biol. Chem. 2003; 278: 45145–45153
Hegyi, J., Schwartz, R.A., and Hegyi, V. Pellagra: dermatitis, dementia, and diarrhea. Int. J. Dermatol. 2004; 43: 1–5
Henderson, L.M. Tryptophan’s role as a vitamin precursor (Krehl et al., 1945). J. Nutr. 1997; 127: 1043S–1045S
Henderson, L.M. and Gross, C.J. Metabolism of niacin and niacinamide in perfused rat intestine. J. Nutr. 1979; 109: 654–662
Herbert, M., Sauer, E., Smethurst, G., Kraiss, A., Hilpert, A.K., and Reidl, J. Nicotinamide ribosyl uptake mutants in Haemophilus influenzae. Infect. Immun. 2003; 71: 5398–5401
Herranz, D., Muñoz-Martin, M., Cañamero, M., Mulero, F., Martinez-Pastor, B., Fernandez-Capetillo, O., and Serrano, M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010; 1: 3
Hikosaka, K., Ikutani, M., Shito, M., Kazuma, K., Gulshan, M., Nagai, Y., Takatsu, K., Konno, K., Tobe, K., Kanno, H., and Nakagawa, T. Deficiency of nicotinamide mononucleotide adenylyltransferase 3 (nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes.J. Biol. Chem. 2014; 289: 14796–14811
Hirschey, M.D., Shimazu, T., Jing, E., Grueter, C.A., Collins, A.M., Aouizerat, B., Stančáková, A., Goetzman, E., Lam, M.M., Schwer, B. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell. 2011; 44: 177–190
Ho, C.K. and Hashim, S.A. Pyridine nucleotide depletion in pancreatic islets associated with streptozotocin-induced diabetes.Diabetes. 1972; 21: 789–793
Hong, J., Kim, B.-W., Choo, H.-J., Park, J.-J., Yi, J.-S., Yu, D.-M., Lee, H., Yoon, G.-S., Lee, J.-S., and Ko, Y.-G. Mitochondrial complex I deficiency enhances skeletal myogenesis but impairs insulin signaling through SIRT1 inactivation.J. Biol. Chem. 2014; 289: 20012–20025
Horwitt, M.K., Harper, A.E., and Henderson, L.M. Niacin-tryptophan relationships for evaluating niacin equivalents. Am. J. Clin. Nutr. 1981; 34: 423–427
Houtkooper, R.H., Cantó, C., Wanders, R.J., and Auwerx, J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways Endocr. Rev. 2010; 31: 194–223
Houtkooper, R.H., Williams, R.W., and Auwerx, J. Metabolic networks of longevity. Cell. 2010; 142: 9–14
Houtkooper, R.H., Pirinen, E., and Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 2012; 13: 225–238
Houtkooper, R.H., Mouchiroud, L., Ryu, D., Moullan, N., Katsyuba, E., Knott, G., Williams, R.W., and Auwerx, J. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013; 497: 451–457
Hu, Y., Wang, H., Wang, Q., and Deng, H. Overexpression of CD38 decreases cellular NAD levels and alters the expression of proteins involved in energy metabolism and antioxidant defense. J. Proteome Res. 2014; 13: 786–795