For which we use the following formula \(Sin\theta_2=\frac{n1}{n2}Sin\theta_1\)
We know that \(\theta_3=\theta_3-\theta_2\)
We also have the values of.
a=1.0003
air=1.33
removing the \(Sin\theta_2\)
\(Sin\theta_2=\frac{n_1}{n_2}\ \ \ \ \)\(Sin\theta_1=\frac{\left(1.33\right)}{\left(1.0003\right)}\ \ \)\(Sin\)\(33º\)\(Sin\theta_2=\frac{n_1}{n_2}\ \ \ \ \)\(Sin\theta_1=\frac{\left(1.33\right)}{\left(1.0003\right)}\ \ \)\(Sin\)\(33º\)
taking the following
\(\theta_2=Sin^{-1}\)\(\frac{\left(1.33\right)}{\left(1.0003\right)}\ \ \)Sin33º] \(=46.90\)
as a result fall  \(\theta_3=90-46.90=43.60\)

Probelm 7

A ray of light in the air collides with a glass earthenware n=1.56 and is partiallay reflected and partially refracted. Determine the angle of incidence if the  of reflection is 2 times the angle of refraction.