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1 Introduction

The human and earth systems are intricately linked, where human decisions influence the earth and changes

in the earth influence human decisions. The building sector is particularly susceptible to human-earth system

feedbacks due to the fact that the demand for cooling and heating is directly related to temperature. With

increasing temperatures, the global demand for heating is projected to decrease, while the demand for cool-

ing is projected to increase (Li, Yang, & Lam, 2012; Isaac & van Vuuren, 2009). The building sector is not

insignificant, for example in the USA, heating and cooling energy accounts for about 49% of all final energy

in residential buildings and 44% in commercial buildings in 2005 (Kyle et al., 2010). these increased tem-

peratures will alter the balance between heating and cooling needs, causing regions with moderate climates

to warm, shifting some locations from primarily heating to primarily cooling (Auffhammer & Mansur, 2014).

Typically research in building impacts has been conducted in one way, where changes in income and pop-

ulation influence the building sector. For example, (Yu, Eom, Zhou, Evans, & Clarke, 2014) investigated

different building energy scenarios across China. (Sharma, Chaturvedi, & Purohit, 2017) investigated

changes in CO2 and HFC emissions under different economic assumptions in India. Or studies have looked

at the system in the opposite direction, trying to understand the effects of a temperature change on the

building sector. For example, (Petri & Caldeira, 2015) used CMIP5 model output under RCP8.5 to inves-

tigate how HDD and CDD will vary regionally across the US. However, within in all of studies heating and

cooling degree days are exogenous to the model so therefore feedbacks between changes in temperature and

heating and cooling degree days are not represented.

These approaches fail to link the important two-way coupling between the human and earth systems at every

modeling time step. Recently, studies have identified the need for these fully coupled, interacting systems

(Palmer and Smith 2014; Hallegatte and Mach 2016; add in the snowmass report). In the study by (Labriet

et al., 2013), they investigated the feedbacks between heating and cooling demands and CO2 emissions, and

found close to no change in global CO2 emissions. However, they only investigated the feedbacks with regards

to CO2 and did not include feedbacks from emissions produced directly from increased cooling services. For

example, hydrofluorocarbons (HFCs) are used as coolants across the world in refrigeration, cooling units,
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and heat pumps, and are released during the operational lifetime of the equipment, during servicing or at

the end of the equipment’s life. HFCs typically have much longer lifetimes and stronger radiative forcing

properties than CO2, making them an extremely effective greenhouse gas.

Our approach relies on a fully coupled human-earth system in which we explore the two-way feedbacks

between the building sector and the earth system within GCAM (Edmonds et al., 2004). We implemented

a coupled modeling framework with statistical relationship between global mean temperature change and

heating and cooling degree days at every time step, allowing us to investigate impacts from this feedback on

both the human and earth systems.

2 Methodology and Data

2.1 Modeling Framework – GCAM and Hector

Assessing the combined impacts of socioeconomic changes, technological changes, earth system changes,

and other factors on the global buildings sector requires an internally consistent framework that can account

for these factors simultaneously. The global building energy model used in this study has been constructed

within the Global Change Assessment Model (GCAM) (Calvin et al., 2016). GCAM is a dynamic-recursive

market equilibrium model, combining models of the global energy system (J. and J., 1985; Edmonds et al.,

2004), global land use (M.A. Wise, 2011), and a reduced-form representation of the earth system (Hartin,

Patel, Schwarber, Link, & Bond-Lamberty, 2015). GCAM represents supplies and demands for energy in

each of 32 geopolitical regions. Demands are linked to region-specific assumptions of population growth,

labor participation rates, and labor productivity growth. Other important inputs include technology cost

and performance information, fossil and other resource information, and climate or other policies. The

model is solved by finding a set of prices in all markets at which supplies match demands. GCAM is

run in five-year time steps from 2010 to 2100. A detailed description and model code can be found

at http://www.globalchange.umd.edu/models/gcam.

2.2 Modeling global building energy consumption

This study builds on the technologically-detailed, service-based building energy modeling approach imple-

mented previously for China, India, and the U.S. in GCAM (Eom, Clarke, Kim, Kyle, & Patel, 2012;
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Chaturvedi, Eom, Clarke, & Shukla, 2013; Zhou, Eom, & Clarke, 2013), simplifying its detail and applying

it to all regions (Figure 1). Underlying socioeconomic drivers – population and income – drive the demand

for floorspace in representative residential and commercial buildings in each of GCAM’s 32 regions. There

are three types of energy service demands associated with this floorspace: space heating, space cooling, and

“other” services, which includes services such as appliances, lighting, and water heating. The change in

demand for these per unit of floorspace is related to the change in affordability of the energy services (the

ratio of per capita income to the price of providing the service) and to heating and cooling degree days. The

latter dependence allows the model to represent the impact of temperature change on service demands (Eom,

Clarke, Kim, Kyle, & Patel, 2012), and hence on energy expenditures.

Figure 1: Structure of the energy supply and demand within the building energy model within GCAM.
Figure from Clarke et al., 2017. - not publiushed yet. We should probably change the red box.

2.3 2.3 GCAM Fusion - PRALIT - do we want a description of this in the

paper?

2.4 Degree Days

Degree days are a metric that indicates requirements for building heating or cooling. Annual degree days

are the summation of temperature difference from a balance point over time and capture both the extremity

and duration of difference between outdoor temperatures and a reference temperature (Baumert and Selman

2003; Say 2006). In order to couple GCAM and Hector, this study required a relationship between global

mean temperature (a Hector output) and degree days (a GCAM input). This led to the development of a
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GLM (generalized linear model) to model both HDDs and CDDs for various ESMs used in CMIP5 (Table 1).

In order to obtain annual HDDs/CDDs for each GCAM region, daily average temperature data from the

ESMs was regridded to a 0.5° x 0.5° grid and used to calculate HDD/CDD within each grid cell using the

formula below, with balance temperature, Tb (18.3 ° F C or 65 ° F)and surface temperature, Ts:

HDD =


Tb − Ts amp; if Ts < Tb,

0 amp; if Ts ≥ Tb

CDD =


Ts − Tb amp; if Ts > Tb,

0 amp; if Ts ≤ Tb

(1)

The HDDs/CDDs in each grid cell were then summed annually and population-weighted from grid cell to

GCAM region in each year. Annual global mean temperature was also calculated for each ESM.

We treated the HDDs and CDDs as count data. For each region, there is a count, which is never less than

zero, of HDDs and CDDs for each year. As a result, a Poisson regression model was chosen for the GLM,

with a logarithmic link function and random error possessing a Poisson distribution. Let NHand NC be the

numbers of heating and cooling degree days in region r, with population-weighted latitude Lr. Then:

ln(NH) = α1T + α2TLr + α
(r)
3 T 2 + α

(r)
4 , (2)

and

ln(NC) = β1T + β2TLr + β
(r)
3 T 2 + β

(r)
4 , (3)

where T is the global mean temperature. The α and β are regression coefficients. Coefficients with a (r)

superscript are region-specific, while those without are the same for all regions.

At every time step, global emissions are used to calculate the global mean temperature from Hector, from

which heating and cooling degree days in each of the 32 regions are calculated within GCAM. The energy

system responds to this change in heating and cooling demands in each region.

2.5 Scenarios

Due to the coupled nature of the system, we can run numerous scenarios and investigate the uncertainty

associated with choice of climate model (Table 1), equilibrium climate sensitivity, and socioeconomics. For

each scenario, climate sensitivity was set to the range of climate sensitivity values for the CMIP5 models

(Table 9.5-1, IPCC)of 2.1 and 4.7 ° C plus the default Hector value of 3.0 ° C. Population and GDP follow

the assumptions of the Shared Socioeconomic Pathways (SSP) 1, 2 and 5 (Riahi et al., 2017). At a global

level for SSP1, population is assumed to peak in 2050 and decline to about 7 billion people by the end of
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Model Modeling Center
ACCESS

1-0
Australian Community Climate and Earth System Simulator Coupled Model, Australia

CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada
CCSM4 NSF/DOE, National Center for Atmopsheric Research, USA
CESM1-
CAM5

NSF/DOE, National Center for Atmopsheric Research, USA

CMCC-
CMS

Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate Model, Italy

CNRM-
CM5

Centre National de Recherches Météorologiques, France

GFDL-
CM3

NOAA, Geophysical Fluid Dynamic Laboratory, USA

HadGEM2-
ES

Meteorological Office Hadley Centre, U.K.

inmcm4 Institute of Numerical Mathematics, Russia
IPSL-

CM5A-
MR

Laboratoire de Meteorologique Dynamique, Institut Pierre-Simon Laplace, France

MIROC-
ESM

Atmosphere and Ocean Research Institute, National Institute for Environmental Studies
and Japan Agency for Marine-Earth Science and Technology, Japan

MPI-
ESM-MR

Max Planck Institute for Meteorology, Germany

NorESM1-
M

Norwegian Climate Centre, Norway

Table 1: Table of CMIP5 models emulated in this analysis.

the century (van Vuuren et al., 2017). This reference scenario run in GCAM results in a radiative forcing

change of 6.43 W m-2 and a 3.86 ° C temperature change in 2100. At a global level for SSP2, population

is assumed to peak in 2070 and then decline to about 9 billion people by the end of the century, with the

growth occurring mostly in a subset of the developing regions (Fricko et al., 2017). This reference scenario

run in GCAM results in a radiative forcing change of 6.31 W m-2 and a 3.68° C temperature change in 2100.

At the global level for SSP5, population is assumed to peak in about 2050 and decline to 7.4 billion people

by the end of the century. SSP5 is characterized by high levels of fossil fuel use and greenhouse gas emissions

over the century (Kriegler et al., 2017). This reference scenario run in GCAM results in a radiative forcing

change of 7.35 W m-2 and a 4.37° C temperature change in 2100. Since we aren’t changing energy-related

assumptions, the SSP1 used here has a higher raddiative forcing than the official SSP1 and the SSP5 has a

lower radiaitve forcing than the official.

For the feedback scenarios, we turn on the relationship between global mean temperature change and heating

and cooling degree days, allowing the model to endogenously calculate these within each region for each

6



climate sensitivity and SSP combination. Both reference and feedback scenario are run emulating each of

the 13 CMIP5 models. All figures and discussion are comparing the reference case from the feedback case.

3 Results

3.1 Global impacts

We start with highlighting the one scenario, SSP2 and a climate sensitivity of 3.0 ° C across all climate

models. As global mean temperature rises, the demand for heating in the high latitude regions decreases

while the demand for cooling in the mid latitudes increases (not shown atm). This change in heating and

cooling demand is further amplified by incorporating feedbacks between global mean temperature change

and heating and cooling degree days, leading to an increase in the median global temperature of 0.063° C

in 2100 with a range of 0.052° C and 0.079 ° C (Figure 2).

Figure 2: Building energy feedback effects on global mean temperature ( ° C )for scenarios with SSP2 and
climate sensitivity 3 ° C .

This modest change in global mean temperature leads to significant changes in the energy system. Figure 3

shows the increase in cooling demands by a median of 6.9 EJ, while the demand for heating decreases by

a median of 10.3 EJ. This shift in heating and cooling energy use has important implications for fuel mix
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Figure 3: Building energy feedback effects on global total energy (EJ) to building a) cooling and b)
heating for scenarios with SSP2 and climate sensitivity 3 ° C .

(Figure 4). If we break apart the global energy demand into their various components, we see the proportions

of energy use shift to higher demands in electricity, while all other energy inputs decrease. Final energy to

the building sector is roughly balanced out by the increased demands for cooling and the decreased demands

for heating. Similar to (Labriet et al., 2013), we find no significant change in global CO2 emissions (Figure

6).

However, there are some emissions that are linked directly to increases in cooling demands. The cooling

service is almost entirely delivered by electricity, whereas heating service is delivered by other primary and

secondary fuels, such as gas, coal and biomass. This increase for cooling demand leads to a median increase

in 2100 HFC134a and 143a emissions of 863 and 181 Gg (Figure 5). The increase in global mean temperature

is due to the change in HFC emissions and not due a change in CO2 emissions.

3.2 Uncertainty quantification

Due to the fact that these models are coupled in code we can easily run numerous scenarios we can run

numerous scenarios. If we consider all 126 scenarios, the difference in global mean temperature change in

2100 between the feedback and reference cases, ranges from 0.023° C to 0.302° C . We can break down

the relative importance of the sources of uncertainty across all 126 scenarios with a classic anova analysis

(Figure 7). We see that a change in climate sensitivity leads to the largest variance, with greater than
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Figure 4: Building energy feedback effects on global building energy demand (EJ) for each input for scenarios
with SSP2 and climate sensitivity 3 ° C .

Figure 5: Building energy feedback effects on a) HFC134a emissions (Gg) and b) HFC143a emissions (Gg)
for scenarios with SSP2 and climate sensitivity 3 ° C.

0.45K2 in 2100.

We can investigate sources of uncertainty across all GCAM outputs. For example, we can investigate the the

breakdown in variance for cooling and heating energy demands (Figure 8). Like global mean temperature

change, variance in cooling and heating energy demands is dominated by uncertanity in climate sensitivity,
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Figure 6: Building energy feedback effects on global CO2 emissions (MtC) for scenarios with SSP2 and
climate sensitivity 3 ° C . 3 ° C .

Figure 7: Total variance for global mean temperature change split into 4 sources of uncertainty, climate
sensitivity, SSPs, model, and anova residuals.

however, we see differences between heating and cooling. WHAT ELSE DO I WANT TO SAY?
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Figure 8: Total variance for a) cooling and b) heating energy demands split into 4 sources of uncertanity,
cliamte sensitivity, SSPs, model, and anova residuals.

3.3 Regional impacts

GCAM’s energy and economic sector is broken up into 32 regions, in which we can investigate regional

with the system. We see in Figure 6 that CO2 emissions globally are close to zero. However, if we look

regionally we can see differences under an SSP2 and climate sensitivity of 3.0C. Africa, India and Indonesia

have an increase in CO2 emissions while the USA, Canada, Europe, Asia and Russia all see a decrease in

emissions. An increase in HFC134a emissions corresponds to the regions with an increase in electricity

demands for cooling. Western Africa and India see both the largest increase in electricity demands for

cooling, at 1.15 EJ and 0.67 EJ respectively, as well as the largest increase in HFC134a emissions, at 165 Gg

and 100 Gg respectively.

4 Discussion and Conclusions

The GCAM modeling framework allow us the opportunity to investigate human-earth system feedbacks. To

highlight this capability we explore the effects of building energy feedbacaks on the human-earth sys-

tem. When accounting for the feedbacks between increased cooling demands and HFC emissions, global

mean temperature increases across all scenarios. The increase in temperature leads to increased cooling

demands for electricity while heating demands for delivered gas and coal decrease.
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Figure 9: 7Multi-model median difference between the feedback scenario and the reference for CO2 emissions
(MtC) in 2100.

Figure 10: Multi-model median difference between the feedback scenario and the reference for HFC134a
emissions (Gg) in 2100.

In this study we investigated 3 sources of uncertainty, 1. choice of ESM emulated, 2. choice of climate

sensitivity, and 3. socioeconomic assumptions . The different ESMs emulated provide different results for

the same emission pathway. Heating and cooling degree days along with energy demands are influenced

by model choice. This has also been documented in (Zhou, Eom, & Clarke, 2013), however, in a one way

12



Figure 11: Multi-model median difference between the feedback scenario and the reference for electricity
demand (EJ) for building cooling in 2100.

coupled simulation. The choice of climate sensitivity provides us with information on how the earth system

will respond to under the same emission pathway. Lastly, the choice of socioeconomics will influence both

the calculation of heating and cooling degree days in each region across difference emission pathways.

Most building energy studies emphasize the need for a regional focus when investigating energy demands

under a changing climate. (Isaac & van Vuuren, 2009) assessed global energy consumption for residential

heating and air conditioning under a changing climate and found considerable impacts in energy demands

on regional scales. (Industry, settlement and society. Climate Change 2007: Impacts, Adaptation and Vul-

nerability . Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental

Panel on Climate Change, 2007) emphasized the need to consider different fuels to use for heating and

cooling, since an increase in cooling demand may lead to an increase in electricity demand. (Zhou, Eom,

& Clarke, 2013) explored the effects of various climate scenarios on building energy demands in China and

the U.S. within the GCAM integrated assessment model, finding a 6% decrease in the building sector’s final

energy consumption. (Olonscheck, Holsten, & Kropp, 2011) analyzed the combined effect of future changes

of climate, building stock, renovation measures, and heating energy systems on residential energy demand in

Germany based on a simple building energy system model. In this study we find that Africa and India have

increased electricity demands and increased emissions when accounting for this simple feedback. Previous

studies investigating impacts may underestimate the energy demands under a changing climate.
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There are some limitations of an aggregate study. This study focuses on gross energy consumption and

not on the temporal or spatial characteristics of heating and cooling load. For example, heat waves would

increase peak load, resulting in different technology investment profiles and emissions (Zhou, Eom, & Clarke,

2013). Future efforts to reduce HFCs such as the Kigali amendment to the Montreal protocol would have

implications on our results, but are not considered in the current analysis.

What about a/c use assumptions in the SSPs?

Without accounting for these feedbacks global mean temperature could be up to 0.3° C less, and we would

be missing the significant changes to the energy system and regional changes. The community is moving

toward more fully coupled simulations of the human earth system. This framework developed sets the stage

for exploring feedbacks like, changes in water for energy, water for agriculture, [insert more feedbacks or give

one detailed example(?)].

5 Acknowledgements
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