Econometrics Homework 2

Felicia Cowley ${ }^{1}$
${ }^{1}$ George Mason University
February 20, 2018

Questions 2, 3, and 9 from Chapter 4 on pp. 141-143

Question 2. Consider an equation to explain the salaries of CEOs in terms of annual firms sales, return on equity (roe, in percentage form), and return on the firm's stock (ros, in percentage form): $\log ($ salary $)=\beta_{0}+\beta_{1} \log ($ sales $)+\beta_{2}$ roe $+\beta_{3}$ ros $+u$
(i) In terms of the model parameters, state the null hypothesis that, after controlling for sales and roe, ros has no effect on CEO salary. State the alternative that better stock market performance increases a CEO's salary.
$H_{0}: \beta_{3}=0$
$H_{1}: \beta_{3}>0$
(ii) Using the data in CEOSAL1, the following equation was obtained by OLS:
$\log ($ salary $)=4.32+.280 \log ($ sales $)+.0174$ roe +.00024 ros
(.035)
(.0041)
(.00054)
$\mathrm{n}=209, R^{2}=.283$
By what percentage is salary predicted to increase if ros increases by 50 points? Does ros have a practically large effect on salary?
$.00024(50)=0.012 \quad 0.012(100)=1.2$ practicallyasmalle f fectonsalary
(iii) Test the null hypothesis that ros has no effect on salary against the alternative that ros has a positive effect. Carry out the test at the 10% significance level.
$t \hat{\beta}=\frac{.00024}{.00054}=0.4 \overline{4} \quad$ and the $c=1.282$ because of the degrees of freedom at a 10% significance level.That is, $n-k-1=209-3-1=205$ which is greater than the largest numerical significance level on the critical values table (ie, use infinity). This means that we fail to reject the null at a 10% significance level. For all intensive purposes, the relationship between ros and salary is practically indistinguishable from zero.
(iv) Would you include ros in a final model explaining CEO compensation in terms of firm performance? Explain.

Including ros might not be a negative generally as its relationship is almost zero, however, this depends on its correlation with other variables.

Question 3. The variable rdintens is expenditures on research and development (R\&D) as a percentage of sales. Sales are measured in millions of dollars. The variable profmarg is profits
as a percentage of sales. Using the data in RDCHEM for 32 firms in the chemical industry, the following equation is estimated:
rdintens $=.472+.321 \log ($ sales $)+.050$ profmarg

$$
\begin{equation*}
(1.369) \quad(.216) \tag{.046}
\end{equation*}
$$

$\mathbf{n}=\mathbf{3 2}, R^{2}=.099$
(i) Interpret the coefficient on $\log ($ sales $)$. In particular, if sales increases by 10%, what is the estimated percentage point change in rdintens? Is this an economically large effect?

If sales goes upward by 10%, rdintens will increased by approximately .0321 percentage points ($\frac{.321}{100}$) which shows that the sales change is not practically large.
(ii) Test the hypothesis that R\&D intensity does not change with sales against the alternative that does increase with sales. Do the test at the 5% and 10% levels.
$t=\frac{.321}{216} \approx 1.486 \quad$ The degrees of freedom are $n-k-1=32-2-1=29$ which means using the critical values table, $\mathrm{c}=1.699$ at a 5% significance level and $\mathrm{c}=1.311$ at a 10% significance level. This means at 5% significance level, we can reject since $1.699>1.486$ and we cannot reject at a 10% significance level as $1.311<1.486$.
(iii) Interpret the coefficient on profmarg. Is it economically large?

The coefficient is not economically large. For instance, a 1% increase in profmarg only lends to a 0.05% increase in rdintens.
(iv) Does profmarg have a statistically significant effect on rdintens?
$t=\frac{\hat{\beta_{1}}-\hat{\beta_{2}}}{S E\left(\hat{\beta_{1}}-\hat{\beta_{2}}\right)}=\frac{0.05-0}{.046} \approx 1.087$ That answer is no since the t statistic is below the 10% critical value for the one-tailed test.

Question 9. In Problem 3 in Chapter 3, we estimated the equation

$$
\begin{equation*}
\text { slêep }=3638.25-.148 \text { totwrk }-11.13 e d u c+2.20 \text { age } \tag{112.28}
\end{equation*}
$$

$\mathrm{n}=706, R^{2}=.113$
where we now report standard errors along the estimates.
(i) Is either educ or age individually significant at the 5% level against a two-sided alternative? Show your work.
$t_{e d u c}=\frac{\hat{\beta_{1}}-\hat{\beta_{2}}}{S E\left(\hat{\beta_{1}}-\hat{\beta_{2}}\right)}=\frac{-11.13+0}{5.88} \approx-1.893$ and the critical value is 1.96 found by the critical values table when $n-k-1=706-3-1=702$. This means that since the absolute value of $1.893<1.96$, we fail to reject the null which is $H_{0}: \beta_{\text {educ }}=0$ at the 5% significance level.
$t_{\text {age }}=\frac{\hat{\beta_{1}}-\hat{\beta_{2}}}{S E\left(\hat{\beta_{1}}-\hat{\beta_{2}}\right)}=\frac{2.20-0}{1.45} \approx 1.517$ and the critical value is 1.96 found by the critical values table with 702 degrees of freedom. Accordingly, $1.517<1.96$ meaning that we fail to reject the null $H_{0}: \beta_{\text {age }}=0$. Both variables are not statistically significant at a 5% significance level.
(ii) Dropping educ and age from the equation gives
slêep $=3586.38-.151$ totwrk
$\mathrm{n}=706, R^{2}=.103$

Are educ and age jointly significant in the original equation at the 5% level? Justify your answer.
$F=\frac{\left(R_{u r}^{2}-R_{r}^{2}\right) / q}{\left(1-R_{u r}^{2}\right) / d f_{u r}}=\frac{(.113-.103) / 2}{(1-.113) /(702)}=\frac{0.01 /(2)}{0.887(1 / 702)}=0.005 / 0.00126353=3.96$
The 5% critical value is $\mathrm{c}=3.00$ with infinite degrees of freedom. This means that educ and age are jointly significant in the original equation.
(iii) Does including educ and age in the model greatly affect the estimated tradeoff between sleeping and working?
No it doesn't. While the variables are jointly significant, including the variables only change the coefficient on toturk from -. 151 to -1.48 which is practically small.
(iv) Suppose that the sleep equation contains heteroskedasticity. What does this mean about the tests computed in parts (i) and (ii)?

If heteroskedasticity existed, then the test computed in those parts are not valid and the results are biased.

