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Abstract

This work deals with the analysis in the frequency domain of the temperature signal and mechanical

energy rate of  C45 steel under two different fatigue stepwise loading series at stress ratios of 0.1

and -1. 

It was first investigated the energy distribution among the harmonic components of the signals to

understand possible variations caused by a different stress ratio.

In addition, the second amplitude harmonic (SAH) of heat dissipated and mechanical energy rates

have been considered in the analysis and their relationship was investigated. It has been shown as it

depends  only  on  the  material,  hence  it  is  valid  whatever  the  kind  of  the  test  is  without  any

assumption on the energy supplied to the material or material hysteresis loop stabilisation.

The adopted approach allows the analysis of intrinsic dissipations by means of rapid, full-field and

contactless techniques without any specific requirement on loading condition or temperature signal

stabilisation.

Keywords:  Fatigue  strength,  second amplitude  harmonic  of  heat  dissipated  energy rate,  cyclic

stress/strain curve, strain energy density

Nomenclature

ρ material density [Kg/m3]

cp Specific heat at constant pressure [J/kg K]

σ a stress semi-amplitude [MPa]

ΔT2ω SAH (second amplitude harmonics) of temperature signal [K]

R stress ratio

f mechanical frequency [Hz]

Ėd heat energy rate dissipated by a unit volume of material [W/m3]

∆ Ėd peak to peak amplitude of the heat energy rate dissipated by a unit volume of material [W/ m3]
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∆ Ėd1ω FAH (first amplitude harmonics) of heat energy rate dissipated by a unit volume of material 

estimated by using the ∆T 2ω [W/m3]

∆ Ėd2ω SAH (second amplitude harmonics) of heat energy rate dissipated by a unit volume of 

material estimated by using ∆T 2ω  [W/m3]

Ẇ  strain energy density rate or mechanical energy rate [W/ m3]

∆Ẇ  peak to peak amplitude of the strain energy density rate [W/ m3]

∆Ẇ 1ω  FAH (first amplitude harmonics) of strain energy density rate [W/ m3]

∆Ẇ 2ω  SAH (second amplitude harmonics) of strain energy density rate [W/ m3]

Wp strain energy density per cycle or area under hysteresis loop [J/m3cycle]

Ė s stored energy rate [W/ m3]

Q̇ heat energy rate exchanged by a unit volume of material [W/ m3]

U̇ rate of variation of internal energy per unit volume of material [W/ m3]

fc sampling frequency of mechanical data [frame/s]

φ phase shift between stress and strain [rad]

1.Introduction

It  is  well-established  that  during  cyclic  loading,  the  energy  is  dissipated  because  of  plastic

deformations  and  a  portion  of  this  energy  is  converted  into  heat  while  another  portion  is

irrecoverable at every cycle due to the plastic strain energy absorption [1-10]. 

The energy dissipated  in  the material  (cyclic  plastic  energy)  because of mechanical  loading,  is

related to the number of cycles for failure and can be used as a damage parameter for the material

fatigue life estimation [4-6]. Such an energy dissipation is of critical importance for setting up energy-

based fatigue life prediction approaches  [10-14] based on the assessment  of mechanical  energy

input [10-19] or heat converted energy by measuring the material surface temperature [20-30]. 

Even if many efforts have been made to better understand the relationships between surface thermal

measurements  and  heat  converted  energy,  and  between  heat  converted  energy  and  intrinsic

dissipations,  is  still  unclear  how such relationships  vary from a loading condition  or regime to

another [30-42]. 

Referring to the assessment of mechanical energy input, the aim is to assess the area under the

hysteresis loop that represents the  energy dissipated, by investigating the constitutive stress-strain

law  [9,10] or  by  modelling  the  strain  hardening  behaviour  [7,11].  Both  the  approaches  require  the

definition  of a model  and the experimental  assessment  of coefficients  (i.e.  hardening exponent,

coefficient,  etc.)  that  depend  on  imposed  loading,  fatigue  regime,  material.  In  addition,  to



implement  these  models  some assumptions  need  to  be  made:  the  identical  tensile/compressive

stress-strain  behaviour,  material  cyclic  stabilisation  (shape  and  hardening  do  not  change)  and

absence of ratcheting. 

Under an experimental point of view, the energy dissipated can be obtained by strain measurements

carried out by means of ad-hoc tests assisted by an extensometer [15-17] or full-field techniques such

as the Digital Imaging Correlation (DIC) [18-20]. The first cannot be applied for the real component

under operating conditions while the second can be not accurate for a higher loading frequency and

low strain values [18-20] and could be not feasible for in-situ applications on components.  

The assessment of cyclic plastic energy [3,7] by evaluating heat converted energy via rapid tests and

an ease experimental setup [21,31-34] is a valid tool to overcome, as an example, the issues related to

the  applicability  of  measurement  sensors  to  the  components.  La  Rosa  [19],  recently  found

qualitatively a link between thermal increments and the  cyclic plastic energy for AISI 304 steel

under stepwise loading at  R=-1 while Nourian-Avval  [23] adopted an approach based on entropy

estimations  and  found  that  the  dissipating  energy  is  directly  proportional  to  the  steady-state

temperature  during  a  stepwise  test  for  DP  steel  and  1045  steel  (data  assessed  by  literature).

However, the steady-state temperature is affected by several ‘disturbing heat sources’ not strictly

related  to  the  fatigue  damage,  so  that  suitable  processing  is  required  to  analyse  the  data,  as

explained by [31]. Another interesting point is represented by the ratio between heat converted energy

and  cyclic  plastic  energy  [26,35-37] that  can  be  supposed  unitary  only  in  fully  reversed  loading

conditions while the validity of this assumption in presence of the mean stress in the load has not

been yet widely investigated by using thermal methods.

In the last years, several works [25-37] focused their attention on the second amplitude harmonic of the

temperature (SAH) as a parameter for estimating the heat dissipated during fatigue [29-32]. De Finis et

al.  [32-33]  by following Enke [27], showed as the decomposition of the temperature signal by using a

suitable  temperature  model  allows  a  multi-analysis  of  the  thermal  behaviour  by  different

perspectives. Krapez [30] used the SAH for qualitatively estimating the fatigue limit of metals while

Sakagami [29] linked the SAH with fatigue damage in terms of persistent slip bands that lead to crack

initiation in AISI 316 steel under a fully reversed load application. De Finis  [30] also used SAH

during constant amplitude tests of CFRP composites to demonstrate the capability of the parameter

for the damage monitoring. 

The major part of these works [19,22-23], however, is carried out at a stress ratio of -1, where the SAH

is the fundamental dissipative temperature component  [25]. To date, no considerations on the ratio

between heat converted energy provided by SAH and cyclic plastic energy were made for  R≠-1

conditions.



In general, the stress ratio R not only can determine a different thermal-to-mechanical energies ratio
[36] but also can influence the way the energy content (mechanical and thermal) distributes among

the  components  of  the  frequency  spectrum.  Such  an  harmonic  energy  distribution  represents

important information for understanding the link between thermal and mechanical data and in spite

of many valuable works reported in the literature [25-37], more research is still needed to establish the

connection between the thermography approach and traditional energy-based approaches.

In the present work, the frequency spectra of mechanical energy rate and heat dissipated energy rate

are investigated with the aim of:

 studying the harmonic energy distribution depending on stress ratios,

 investigating  the  relationship  between  SAH  dependence  on  stress  ratio  and  loading

conditions,

 investigating the capability of SAH of temperature signal as a useful parameter to estimate

the heat dissipated energy in different loading conditions. 

Two experimental campaigns were set-up: one at R=-1 and the other at R=0.1, both involving the

application to six samples of a stepwise loading sequence up to material failure.

Mechanical data in terms of stress and strain allowed the evaluation of mechanical energy rate and

area under hysteresis loop, while temperature data allowed the assessment of the heat dissipated

energy rate.

The main novelty of the work refers to the investigation of both the mechanical and the thermal

energy  rates  in  the  frequency  domain  and the  assessment  of  a  relationship  between SAHs.  In

addition, some considerations between SAH of mechanical energy rate and area under the hysteresis

loop were drawn.

The adopted technique is full-field and contactless, involves ease material preparation and a rapid

fatigue characterisation. 

2. Theory

During fatigue processes a portion of energy supplied to the material converts in heating according

to the following energy balance (first Law of Thermodynamic) [24-28,32] in terms of rate of energies [9]:

Ẇ+Q̇=U̇=Ė s+ Ėd (1)

Eq. (8) shows that the sum of mechanical energy rate Ẇ  and the heat energy rate exchanged with

environment Q̇ is balanced by the rate of variation of internal energy U̇  where Ė sis the fraction of

energy that does not converts in heating and is related to the accumulation of plastic deformation

while Ėd is heat dissipated energy rate which surface temperature T is a sentinel [32], Fig. 1(a).

The energy during a cyclic process, Ẇ , can be defined by defining stress and strain over time [10]:



σ ( t )=σm+σ asin (2πft )                (2)

ε (t )=εm(R ,σm)+ε a(R ,σa)sin (2πft−φ) (3)

where, σm, σa,,  εm and εa are mean and amplitude of the stress, mean and amplitude of the strain, φ

the phase shift between stress and strain, f  the loading frequency. As it is possible to observe εm and

εa values are clearly dependent on stress ratio (R) and stress amplitude.

A simple viscoelastic model that defines the constitutive stress-strain law [10,11] can be used to draw

some considerations on the energy involved in fatigue damage during a stepwise uniaxial loading

sequence imposed to samples at two stress ratios. The model provides synthetic data that represent

just a reference for comparing experimental results.

By differentiating the strain:

ε̇ (t )=2 πf εa [cos (2πft ) cosφ+sin (2 πft ) sinφ ] (4)

Considering the product between Eq. (2) and Eq. (3), it is possible to assess the mechanical energy

rate  Ẇ  that is the derivative along the time of work increment of the external forces treated as a

scalar product of the instantaneous values of stress and strain [11], also called instantaneous power

density [10]: 

Ẇ ( t )=σ (t ) ε̇ ( t )=σm2πf ε a [cos (2 πft ) cosφ+sin (2πft ) sinφ ]+σa   2πf ε a [sin (2 πft )cos (2πft ) cosφ+sin (2πft )
2 sinφ ]

(5)

By considering that the system pulsation is ω=2πf, and the relation between σmax ,σm, σa, and R, and by 

considering that ε a=σ a/E [15], it is possible to write:

Ẇ ( t )=ω 
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2
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2
[sin (ωt ) cos (ωt ) cosφ+sin (ωt )

2
sinφ]=   ω 

1−R2

4 E
σmax

2   [cos (ωt ) cosφ+sin (ωt ) sinφ ]  + ω 
(1−R)

2

4 E
σmax

2  [
1
2

sin (2ωt)cosφ+
1
2

(1−cos (2ωt)) sinφ ]

 (6)

Eq.(6) shows the mechanical energy rate dependence to stress ratio, stresses, loading frequency and

phase shift between stress and strain. 

By considering trigonometric addition formulas, Eq. (6) becomes more compact:

Ẇ ( t)=∆Ẇ 1ω [cos (ωt−φ ) ]+∆Ẇ 2ω[ [sin (2ωt−φ ) ]+K ]  (7)

where

∆Ẇ 1ω=ω
1−R2

4 E
σ max

2                                                                                                          (8)

∆Ẇ 2ω=ω
(1−R)

2

8 E
σmax

2                                                                                                        (9)

K=
1
2

sin (φ)                                                                                                            (10)



From Eq.(7) it is possible to highlight that  Ẇ  is a function described by 1ω and  2ω components

whose amplitudes  are respectively  ∆Ẇ 1ω and  ∆Ẇ 2ω and an offset  represented by  K.  Fig. 1(b),

represents graphically the function  Ẇ ( t) ,  ∆Ẇ  that is the peak to peak variation of  Ẇ , and the

spectral components ∆Ẇ 1ω and ∆Ẇ 2ω for a specific stress value of the test.

When R=-1, the change of Ẇ  during one cycle of stress and strain makes two cycles, and there is a

turn of energy input to the system by the work of the external forces [10,25-27]. In effect, the first term

of Eq. (5) is null and the only non-zero component is the one running at 2ω. If R≥0, in presence of

mean stress, the Ẇ   function shows additional components running at a frequency different from the

fundamental one (2ω), so that, the energy component related to intrinsic dissipation is also the one

running at  1ω.  The presence of just two harmonic components is due to the adopted simplified

viscoelastic model. By considering another model, the strain/stress law clearly varies, and other

high-other harmonics can be present.

Ẇ  function must be integrated over a period (T=1/f) in order to obtain the  area under hysteresis

loop:

W p=∫
0

T

Ẇ (t)dt    (11)

The   Wp value depends  on  stress  ratio,  Fig.  1(b),  and can  be  obtained by estimating  the  heat

converted energy (Ed) that in turns can be assessed by analysing the surface temperature of the

sample [33,19]. 

In a previous research, Jordan [26]  found a direct relation between the mechanical energy variation

(Wp) and heat converted energy during fatigue, while Enke  [25]  proposed a model to represent the

temperature changes where the SAH of thermal signal was the fundamental in presence of damage

under a fully reversed loading where the energy is supposed to convert totally in heating. 

More investigations are required to understand if the SAH of the temperature signal can be also

useful for the estimation of the heat dissipated when the loading condition involves a non-zero

mean stress. 

In present work, the attention is focused on the study of the SAH of Ėd and Ẇ  for two stress ratio 

conditions to understand their relationship by supposing that stored energy rate Ė s is negligible.  

In  the  same way as  Ẇ ,  the  heat  dissipated  energy rate,  Ėd,  is  a  periodic  function  that  can  be

considered as the superposition of different sinusoidal signals of suitable amplitude and frequency,

phase shifted each other:

Ėd (t )=∆ Ėd0+∑
n=1

∞

∆ Ėdnωsin(nωt+φn)=∆ Ėd0+∆ Ėd1ωsin (1ωt+φ1)+∆ Ėd2ω sin (2ωt+φ2 )+… 

(12)



where  ∆ Ėd1ω represents the amplitude of the first  harmonics of heat dissipated rate (FAH) and

∆ Ėd2ω represents the SAH one while ∆ Ėdnω the -nth one and ∆ Ėd0 is the mean value. The function

has been truncated at the second term for simplicity.  

To understand the derivation of such an energy rate, the following considerations on temperature

signal are necessary.

In Fig. 1(b), a sketch of the temperature variations during fatigue test at a stress above the fatigue

limit or more in general above the elastic limit [39], is reported. In real conditions, the temperature of

the steady state is achieved during a balance between the energy supplied and heat exchanges [40,22-

23]. 

Considering a steady state condition, whatever the stress ratio is, the temperature signal spectrum

can be represented by a number of harmonic components, for sake of simplicity in  Fig. 1(b) are

represented just three: the one  running at the pulsation 1ω (∆T1ω), the SAH component (∆T2ω)  and

the one at 3ω (∆T3ω). 

Under a fully reversed load, as demonstrated by Enke [25] the fundamental dissipative component is

∆T2ω while in presence of the mean stress in the loading, the dissipative components are distributed

over other harmonics, i.e. on ∆T1ω,  ∆T3ω. In this case, ∆T1ω will represent not only the well-known

temperature variations related to  the thermoelastic effect  [32,38]  but also the temperature variations

related to irreversible processes. In case one would consider also the ∆T1ω as damage parameter, it is

required to filter out thermoelastic contribution to the temperature. 

In present study, we focused the attention on the 2ω temperature variations as a component related

to  the  damage  [31-34] useful  for  estimating  the  energy  dissipated,  this  allows  to  investigate  the

relationship between ∆ Ėd2ω and ∆Ẇ 2ω . 

The ∆ Ėd2ω term can be obtained by directly assessing the ΔT2ω 
[32] component of temperature signal,

according to the following equation:

Δ Ėd2ω=f ∆ Ed2ω=f ρ c p ΔT 2ω (13)

where ∆ Ed2ω is SAH of the heat energy dissipated by a unit volume of material obtained according

to the procedure presented in [31-34], and f is the mechanical frequency. In Eq.(13),  ρ is the density

and cp is the specific heat at constant pressure. It is important to underline that ∆ Ed2ωrepresents just

an estimation of the total dissipated energy due to the fatigue damage,  then it is an index of how

much energy is dissipated as heat, that clearly depends on stress ratio. 



(a)

Figure 1. (a) Energies involved during a fatigue process Eq. (1), and surface temperature, (b)

sketch of mechanical energy rate and its frequency spectrum and temperature behaviour for

stress level above the fatigue limit (σend) and frequency spectrum



2. Experimental Campaign

2.1. Experimental Tests 

The tested material is the EN/DIN C45 steel that presents a good compromise between strength and

toughness. It is used in many mechanical applications: shafts, cranks, key cards, hinges, rods, gears.

Thermophysical properties assumed are: ρ=7800Kg /m3, c p=486
J

Kg K
.

The carried out tests are:

 tensile tests (five samples tested), in order to obtain the static characterisation of the C45,

 fatigue tests by using a stepwise loading procedure at  R=0.1 (three samples being tested)

and at R=-1 (three samples being tested). The samples are hereinafter referred to as S1, S2,

S3.

Samples geometry and dimensions were according the Standard [41], Fig. 2(a).

The samples  for  fatigue  tests  have  been preliminarily  polished by using acetone  while  surface

asperities and irregularities were removed by using a mechanical air die grinder. Moreover, a matt

black coating was applied on the surface to increase the surface emissivity and then improve the

acquired thermal signal. 

Tensile and fatigue tests were performed with the MTS model 370 servo-hydraulic loading frame

(100 kN of capacity) and during the tests the samples were equipped with a clip-on extensometer

(gage length 25 mm). Mechanical data from extensometer were acquired by elaborating unit of the

loading machine at frequency of 204 Hz. 

Tensile  tests  were  performed  under  displacement  control  with  a  rate  of  2  mm/min.  Estimated

Young’s modulus, Yield strength and Ultimate Tensile Strength (UTS) were respectively 205 MPa

(sd.10 MPa), 450 MPa (sd. 25 MPa) and 760 MPa (sd 20 MPa). 

The fatigue tests were performed at R=0.1 (frequency of 17 Hz) and at R=-1 (frequency of 11 Hz) in

load  control,  in  this  latter  case  the  mechanical  frequency  was  lower  to  avoid  an  excessive

temperature increasing.

Two  different  incremental  stress  blocks  sequences  (one for  the  tests  of  each  stress  ratio)  were

adopted for performing stepwise loading tests. Each block foresees the application of a fixed stress

amplitude and mean stress for 20,000 cycles. The loading sequence runs up to the material failure. 

The UTS value was useful to establish the maximum load of each block of the test sequence. As

described in previous works [21,24,31,32], the maximum stresses of the initial loading blocks were less

than the 50% of  UTS.  In effect  the applied  loadings  for  the tests  at  R=-1 ranged between 25-

61%UTS while at R=0.1 the loadings ranged between 30-91%UTS. 



During fatigue tests, the thermal signal was acquired by using the FLIR X6540sc cooled infrared

detector with In-Sb sensor and windowing of 640x512. The detector was positioned in front of the

sample, Fig. 2(b), and the millimetre-to-pixel ratio was of 0.25. The thermographic sequences were

acquired for 10 seconds at 175 Hz (tests at R=0.1) and 123 Hz (tests at R=-1), the used integration

time was 0.97 milliseconds while the used temperature interval was 10-90 °C (tests at R=0.1) and

10-90 °C; 80-200 °C (tests at R=-1). 

Each infrared sequence acquisition corresponded to respectively 170 and 110 mechanical loading

cycles imposed to samples.

         

(a)                                                          (b)

Figure 2. (a) Sample geometry and (b) experimental set-up

2.2. Acquisition strategy: correlation between thermal and mechanical acquired 

data

Thermal  acquisitions  of  each  loading  block  (20,000  cycles  in  total)  were  performed  in

correspondence of 5,000-10,000-15,000 cycles. This allowed us to study damage evolution during

the loading cycles. 

Obviously, a correlation between the data in terms of stress, strain and time and the thermal data

was performed with the aim to analyse the same data for a specific time instant.

Fig. 3 shows both mechanical data in terms of hysteresis loops (vectors of stress, strain and time

acquired) and thermal data in terms of signal maps during loading cycles of a single loading block

carried out at fixed σa. The region of interest corresponds to the gauge length area between the clips

of the extensometer.

Substep 1 corresponded to the data acquired between 5,000 and 5,170 cycles (5,000-5,110 cycles, at

R=-1) while Substep 2 corresponded to the data between 10,000 and 10,170 cycles (10,000-10,110

cycles, at R=-1).  Substep 3 corresponded to the data between 15,000-15,170 cycles (15,000-15,110

cycles,  at  R=-1).  As  represented  in  Fig.  3  the  analysed  mechanical  and  thermographic  data



correspond to the same time instant (loading cycles) and they have been acquired for the same

duration (Substep). 

Figure 3. Strategy of data acquisitions and quantities acquired.

2.3. Data adopted for synthetic analysis of Ẇ  and Wp

The  mechanical  energy  rate  Ẇ  according  to  the  model  of  Eq.  5,  have  been  also  analytically

evaluated  with  the  aim of  understanding the energy distribution  among the components  of  the

frequency spectrum, such that can be considered as a guideline to understand mechanical data. To

this purpose two stress levels in terms of σa have been selected: 147 MPa and 258 MPa for the test

at  R=0.1 and  230 MPa and 320 MPa  for the test at  R=-1. The first stress level of each couple

represents an initial stress level where damage is supposed to be absent or negligible and the second

is where damage is significant. 

The input parameters introduced in the model to evaluate Ẇ  are reported in the following Table I:

Table I. Input parameters for synthetic data

Loading Substep R εm  [mm/ εa σm σa φ [rad]



block mm] [mm/mm] [MPa] [MPa]

n. 3

1
0.

1

0.0040 0.0007 176 147 π /1000

2 0.0040 0.0007 176 147 π /1000

3 0.0040 0.0007 176 147 π /1000

n. 13

1
0.

1

0.0280 0.0123 316 258 π /50

2 0.0290 0.0123 316 258 π /50

3 0.0300 0.0123 316 258 π /50

n. 3

1

-1

0.0002 0.0011 0 230 π /800

2 0.0002 0.0011 0 230 π /800

3 0.0003 0.0011 0 230 π /800

n. 10

1

-1

0.0004 0.0015 0 320 π /70

2 0.0005 0.0015 0 320 π /45

3 0.0006 0.0015 0 320 π /35

The strain, εm,εa values were selected close to the measured experimental data.  A ratcheting on εm

was  assumed  toward  the  cycles  of  three  substeps  depending  on  imposed  mean  stress  [8] and

becoming significant at higher imposed stress levels. The parameter  φ was assumed constant in

each load step and through the substep, except for the second stress level at R=-1, where due to high

intrinsic dissipations, it cannot be assumed constant. 

The  time  vector  used  for  the  analysis  was  built  in  function  of  the sampling  frequency  (fc)  of

mechanical data (204 Hz) and the period (1/ fc) which determines the step increment of the vector

between the initial/final time of each substep.

4. Methods and data processing

In the present section,  the overall  methodologies  used for analyses of both the mechanical  and

thermographic data are presented. 

Fig. 4 resumes the  workflow of the activity. The SAH of heat dissipated  energy rate has been

evaluated through the assessment of  ∆T 2ω component, and then correlated to the corresponding

SAH of mechanical energy rate ∆Ẇ 2ωto investigate the dependence and to assess the coefficients of

the model function  f ¿).

The same experimental data measured by extensometer and used for evaluating Ẇ  were adopted to

estimate the area under the hysteresis loop (Wp). 

In the following paragraphs the methodologies will be explained more in detail.



Figure 4. Workflow of the performed analysis and investigated relations.

4.1.  Mechanical data

The data acquired by the extensometer are in the present section processed to obtain the mechanical

energy rate function Ẇ . The data output is represented by stress (σ), strain (ε) and time (t) vectors. 

The following list (according to Fig. 4) reports the detailed analysis carried out to obtain ∆Ẇ 2ω via

the assessment of Ẇ :

1. Assessing the vectors of σ and ε.

2. Evaluating ε̇=Δε /Δt, the approximate time derivative of the strain by using the Matlab operator

‘diff’ that calculates finite differences between adjacent elements of a vector along a specific

array dimension.

3. Evaluating Ẇ  as the product between σ and ε̇ .

4. Performing the Discrete Fourier Transform (DFT) of Ẇby using a specific algorithm [43] based

on Matlab fast Fourier transform tool. 

5. Assessing the SAH of mechanical energy rate, ∆Ẇ 2ω .

Ẇ  has been also evaluated analytically by using the stress-strain constitutive law approach, Eq. 5.

From the frequency spectrum of Ẇ  it is possible to extract the synthetic peak to peak amplitude of

the second harmonic, ∆Ẇ 2ω. 

The  data  processing  to  estimate  the  area  under  the  hysteresis  loop  is  based  on  the  procedure

presented in [42]. In particular, for each time instant the coupled values of the vector σ and ε, were

evaluated computing the approximate integral of the vectors via the trapezoidal method with unit

spacing. To perform the numerical integration on discrete data sets with N+1 evenly spaced point,

the approximation is provided by the following formula:

 W p=∫
εm

εM

σdε ≈
εM−εm

2 N ∑
n=1

N

(σ (εn )+σ ( εn+1 )) (14)



where εM and εm are respectively the maximum and minimum strain of the vector ε. 

4.2. Thermal data

The processing of thermal data involved the following stages:

1. Acquisition of the temperature signal, T(t), from infrared thermal camera.

2. Selection of a region of interest (ROI) whose data (temperature over the time) are exported.

3. Evaluation of the mean value (Tm(t)) of the ROI in each frame of the temporal sequence.

4. Performing the Discrete Fourier Transform (DFT) of the temperature signal by using a specific 

algorithm [43] based on Matlab® fast Fourier transform tool.

5. Assessing the SAH of temperature signal, ∆T 2ω.

6. Evaluating SAH of heat energy rate dissipated ∆ Ėd2ω by using Eq. 13 .

5. RESULTS 

In present section, the results for the tests carried out at R=-1 and R=0.1 in terms of ∆T 2ω, ∆ Ėd2ω,

∆Ẇ 2ω,W p
. 

5.1. Hysteresis loops: qualitative and quantitative assessment

The hysteresis loops (through 170 cycles) are reported for the stepwise tests at R=0.1, Fig. 5 (a) at

σa= 147 MPa and Fig. 5 (b) at σa= 258.3 MPa, for the sample S1. Synthetic data (S1 sim) and measured

data (S1 exp) are reported with the same colour line for each sub-step.

The hysteresis loops in Fig. 5(a) are stretched while they become wider at a higher applied stress

level  and after  the specific  loading history provided by stepwise loading (Fig.  5(b)),  while  the

ratcheting is  present  and it  becomes important  at  higher  imposed mean stresses.  Moreover,  the

Young’s modulus variation can be also observed from the first to the last test as further sentinel of

the ongoing damage. 

The model adopted for simulating synthetic data, runs quite well at higher imposed stress levels (no

difference between S1 sim and S1 exp in Fig. 5(b)) while it has some difficulties to represent the data at

lower applied stresses (quite significant data scatter between S1 sim and S1 exp in Fig. 5(a)). This can be

explained by considering that when the load is in pure elastic range it is difficult to fit the data by

using a visco-elastic model. 

The hysteresis loops (110 cycles) for the S1 of test at R=-1 are reported in Fig. 5: (c) at σa= 230 MPa

and (d) at σa=320 MPa. They are stretched at lower imposed stresses while they become wider at a

higher  applied  stress  level.  The ratcheting  is  less  accentuated  than  the  ratcheting  behaviour  of

previous Fig. 5(a)-(b) due to zero mean stress. The Young’s modulus variation can be observed

between the curves of the test at σa=320 MPa.



Even  in  this  case  the  model  adopted  for  simulating  hysteresis  loops  runs  quite  well  at  higher

imposed stress levels (very small scatter between  S1 sim and  S1 exp   in Fig. 5 (d) while it has some

difficult  to fit the data at lower applied stresses as the cycle approximates a straight line (cycle

flattened).

A general consideration observing Fig. 5 is such that the hysteresis loops are wider in the case of

the tests at R=-1 clearly due to a higher energy dissipation. 

 

(a)                                                                    (b)

 

(c)                                                                    (d)

Figure 5. Hysteresis loops measured and simulated at R=0.1: (a) σa=147 MPa and (b) σa=258 MPa

and R=-1 (c) σa=230 MPa and (d) σa=320 MPa

The curves reported in Fig. 6 show for the S1 of the series at R=0.1 and R=-1, the hysteresis loops

corresponding to one cycle acquired in the substep 2 at each imposed stress level. 

The coupling effect of increasing imposed amplitude and mean stress determines  a shift  of the

curves that  is  more accentuate  for the tests  at  R=0.1,  Fig.  6(a).  It  is  interesting  to observe the

significant variation in terms of strains between hysteresis loops at 200 MPa and those at 217 MPa,

also present in the curves at  R=-1 (Fig. 6(b)) between σa=290 MPa and σa=300 MPa, even if it is

less  pronounced.  These differences  in  the behaviours  at  both  stress  ratios  can  be explained by



considering that changes in the regime of damage accumulation occurs depending on the stress

ratio. In the work of Nourian-Avval  [23] that point corresponded to the inelasticity point transition

where a change in the mechanisms of strains occurs, and above it the permanent movement of the

dislocations determines an unrecoverable deformation status of the material [44-46]. 
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Figure 6. Hysteresis loop of a stepwise test for samples S1 tested at R=0.1 and R=-1.

5.2. Mechanical energy rate Ẇand components of the frequency spectrum

In present section, the  Ẇ  values of  S1 are presented at a specific imposed stress level:  σa= 258.3

MPa for R=0.1 and σa= 320 MPa for R=-1. 

Fig.  7(a)  reports  Ẇ  over  ten cycles  (0.588 s)  where  synthetic  data  are  superimposed on those

measured. The synthetic and measured spectra, Fig. 7(b)-(c), in terms of amplitudes are similar.

This confirms the goodness of the adopted simple visco-elastic model in reproducing experimental

data. It is interesting to observe that the presence of the mean stress in the imposed loads determines

an hump in the Ẇ  function and the energy is divided into two major contributions: the first at 17 Hz

and the second at 34 Hz, twice of the loading frequency. 



In Fig. 8, the Ẇ  values over ten cycles (0.9 s) are presented for sample S1 tested at  R=-1. In this

case,  the there is a little difference between synthetic  and measured data due to data sampling,

however it is evident that the fundamental frequency of the Ẇ spectrum is 22 Hz (twice the loading

frequency of 11 Hz).  As previously said, the mean stress effect on mechanical energy rate acts by

shifting fundamental angular frequency from  2ω to  1ω.  Fig. 8(b)-(c), in terms of amplitudes are

similar.
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Figure 7. (a) Ẇ  for S1 tested at R=0.1 (simulated and experimental), spectrum of Ẇ  (b)

experimental and (c) simulated.
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Figure 8. (a) Ẇ  for S1 tested at R=-1 (simulated and experimental), spectrum of Ẇ  (b) experimental

and (c) simulated.

Another way to observe the difference at two stress ratios in harmonic energy distribution for the

tested samples is provided by Fig. 9 where, the experimental data are presented in terms of  ∆Ẇ ,

and ∆Ẇ 2ω. One can firstly note that the total amount of energy supplied to the material is totally

ascribed to SAH for those tests at R=-1(whited diamond markers,  R2=0.98 ) while at  R=0.1 the

energy contribution of ∆Ẇ 2ω, is fifth times lower than ∆Ẇ  as demonstrated by frequency spectra

previously reported.
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Figure 9. Relation between ∆Ẇ  and ∆Ẇ 2ω



The ∆Ẇ 2ω curves of overall samples (and related measured values in the sub-steps) are presented

for the R=0.1 (Fig.10 (a)) and R=-1 (Fig. 10 (b)) where the SAH values are higher due to higher

intrinsic energy dissipations. 

In Fig.10(a), the increase of ∆Ẇ 2ω during the test for all the samples is continuous, even if a small

slope changing few stress levels before 200 MPa can be observed. At R=-1, Fig.10(b), ∆Ẇ 2ω data

presents a marked slope variation in correspondence of 300 MPa due to inelastic point transition
[23,44-46].

In general, a major data dispersion is observed for the points above 200 MPa and points above 300

MPa, more accentuated for the data of Fig.10(b)due to highest energies involved for the material

damaging but a good reproducibility of the results is evident. 

The ∆Ẇ 2ω behaviour at two stress ratios is presented versus the loading cycles in Fig.10(c)-(d). The

rectangular blocks represent the data of the substep for each imposed stress level. 

For the test results at R=0.1 a double slope change is observable after 136 MPa and 200 MPa(Fig.

10(c)) and in general for each sample the  ∆Ẇ 2ωincrease through the substep is evident just after

200 MPa. Before this  point the  ∆Ẇ 2ω variation  in  the loading step is  roughly zero.  The same

behaviour is observed in Fig. 10(d) for the ∆Ẇ 2ω values at R=-1 around the inelastic point of 300

MPa.

In addition, the ratcheting in  ∆Ẇ 2ωis absent before the inelastic point transition where the signal

stabilisation is present. As a consequence, it is possible to conclude that the signal stabilisation does

not occur in presence of accumulated damage and then a careful attention must be paid in the

evaluation of energy-based parameters for fatigue damage investigations.
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Figure 10. ∆Ẇ 2ω assessed for each imposed σa: (a) R=0.1 and (b) R=-1 and

evolution through cycles: (c) R=0.1 and (d) R=-1.

5.3. Thermal data analysis: from temperature to heat dissipated energy rate 

The curves of  TΔ 2ω for  each sample and related sub-step  at  R=0.1 (Fig. 11(a)) and  R=-1 (Fig.

11(b))  are reported. The Fig. also show the spectra of the temperature signal and a focus on SAH.

In both cases, the fundamental component is at the loading frequency (respectively 17 Hz and 11

Hz for the data of Fig. 11 (a)-(b)) while the SAH component is lower.  This can be explained by

considering the effect of thermoelastic temperature variations added to the signal from dissipative

temperature variations [38]. 

By observing  Fig.11(a),  it  is evident a good reproducibility  of the tests  and a little data scatter

especially at higher imposed stress levels.  The curves also present a continuous increase with a

slight slope change between 150- 200 MPa.  The same good reproducibility of the tests can be

found for the test at R=-1, Fig.11(b), while a major data scatter is observed in the data points after

the inelasticity point transition, in good agreement with mechanical data behaviour. 

The higher TΔ 2ω values at R=-1 than at R=0.1 can be explained by the major intrinsic dissipations

in agreement with the results presented in literature [19,32]. 

In Fig. 12(a)-(b), the parameter  ∆ Ėd2ω is represented respectively versus stress amplitude and the

loading cycles. ∆ Ėd2ω data reflects those of ΔT2ω, Fig.11(a)-(b).  As for Fig.12 (c)-(d), it is possible

to observe that the ∆ Ėd2ω trend is the same of ∆Ẇ 2ω (Fig. 10(c)) presenting two slope variations in

correspondence of the same loading cycles, and it is interesting to highlight the great correlation

between the two quantities. The same consideration can be drawn for the  ∆ Ėd2ω of Fig. 12(d) in

agreement with those of  ∆Ẇ 2ω (Fig. 10(d)), however in this case the slope variation of  ∆Ẇ 2ω at

150,000.0 cycles is less marked in ∆ Ėd2ω. It is possible also to note that thermal parameter is very



sensitive to loading history (more than ∆Ẇ 2ω), in effect, even at low imposed stresses it is difficult

to assume that thermal signal stabilises. 

The values of  ∆ Ėd2ω are clearly smaller than  ∆Ẇ 2ω as they represent an estimation of the heat

dissipated energy rate. 

(a)

(b)

Figure 11. TΔ 2  ω  at (a) R=0.1 and (b) R=-1.



(a)                                                                                    (b)

  

(c)                                                                                    (d)

Figure 12. ∆ Ėd2ω assessed at (a) R=0.1 and (b) R=-1 and through the cycles at (c) R=0.1 and (d)

R=-1.

6. Discussion: 

6.1. Investigation on the relationship between ∆ Ėd2ω and ∆Ẇ 2ω

In present section, finally the relation between ∆ Ėd2ω and ∆Ẇ 2ω has been here investigated for each

sample of the tests at R=0.1 and R=-1. 

In Fig. 13(a) for S1 R=0.1 one can observe a linear correlation between ∆ Ėd2ω and ∆Ẇ 2ω with high

R2 coefficient with all the data that lying within the prediction bounds defined with a 95% level of

confidence. These bounds measure the confidence that the new observation lies within the interval

given by a single predictor value. 

The same kind of data for the test at R=-1 in Fig. 13(b), show a linear relationship between ∆ Ėd2ω

and ∆Ẇ 2ω with a quite wider scatter due to the less number of acquired thermal data.

For overall data of the two experimental campaign the relationship between ∆ Ėd2ω and  ∆Ẇ 2ω has

been investigated, Fig. 13(c). It is very important to observe as all the data can be approximated

with a high coefficient of determination by the unique linear relationship that does not depend on



damage accumulation mechanisms and cycles. The following formula describe the linear relation

between ∆ Ėd2ω and ∆Ẇ 2ω:

∆Ẇ 2ω=A1∆ Ėd2ω+A2 (15)

where the coefficients A1, A2 depend on material. The first is dimensionless while the A2 dimension

is the same of ∆ Ėd2ω and ∆Ẇ 2ω . The values of coefficients and related statistics for all the tested

samples are reported in Table II.
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(a)                                                                                    (b)

(c)

Figure 13. Relation between ∆ Ėd2ω and ∆Ẇ 2ω for S1 tested at (a) R=0.1 (b) R=-1,

and (c) overall data for the six samples tests at R=0.1 and R=-1.



Table II. Coefficients A1 A2 with 95% confidence bounds (lower/upper) on coefficients of linear

model

Samples tested at R=0.1
Sample A1[ad] A2  [J/m3s]

1 54.01±2.45 -7.27 105±7.73 105

2 41.27±3.55 +2.32 106 ±1.10 106

3 48.86±2.13 -1.86 104±6.55 105

Samples tested at R=-1
Sample A1[ad] A2  [J/m3s]

1 40.75±4.25 +9.06 106±2.82 106

2 39.03±2.98 +8.17 106±2.21 106

3 38.86±3.13 +8.97 106±2.34 106

Overall data
Sample A1[ad] A2 [J/m3s]
All 
tested 
samples

41.70±1.74 +4.32 106±9.10 105

6.2. SAH of the heat energy dissipated and area under the hysteresis loop

Under a quantitative point of view, the areas under the hysteresis loop measured for the samples

tested at R=0.1 and R=-1 are presented in Fig. 14, compared to ∆ Ed2ω parameter. A slope change at

a specific value of stress (approximately at 200 MPa, at R=0.1 and at 300 MPa for the data at R=-1)

characterises the data trends of both Fig. 14. This point according to the De Finis[43] corresponds to

the endurance limit of the material. In addition, Wp and ∆ Ed2ω present the same behaviour in each

case (R=0.1 and R=-1) and for any test, and then it is possible to conclude that ∆ Ed2ω can be used

to estimate the heat dissipated energy and then the area under the hysteresis loop. ∆ Ed2ω values are

clearly lower than those of Wp as it represents just a portion of the heat converted energy.
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Figure 14. Wp and ∆ Ed2ω at (a) R=0.1 and (b) R=-1. 



Conclusions

In  present  research,  six  samples  of  C45 steel  were  fatigue  tested  by  using  a  stepwise  loading

sequence at  R=0.1 (three samples) and R=-1 (three samples). The rapid fatigue tests were assisted

by an infrared detector and an extensometer. 

The aim was first to study the harmonic energy rate distribution of both heat dissipated energy rate

and mechanical energy rate. The experimental results show that in presence of the mean stress in

the  load,  the  mechanical  energy  spectrum  is  composed  by  different  harmonic  components

(specifically  in  this  case  the  first  and  second  harmonics)  while  for  a  fully  reversed  load  the

fundamental  component  is  the SAH. The heat  dissipated  energy presents a frequency spectrum

composed by different harmonic components whatever the imposed stress ratio. 

In addition, the relation between SAH of the heat dissipated energy rate and mechanical energy rate

for  different  loading  conditions  has  been  investigated.  The  major  outcome  is  such  that  the

relationship between SAH of heat dissipated and mechanical energy rates depends only on material

and does not depend on loading or damage level. The relationship is also valid, independently on

signal stabilisation. 

It  was  also  investigated  the  capability  of  ΔT2ω for  estimating  the  mechanical  energy  via  the

evaluation of the heat dissipated for different loading conditions. Even if, in presence of mean stress

in the load, the SAH of the heat dissipated energy rate is not the only one related to the intrinsic

dissipations, however it can be used to estimate  Ėd and then ∆Ẇ 2ω.

The advantages of using the suggested procedure are: 

 the material stabilisation (in terms of thermal signal) not required; 

 the applicability of the procedure for any type of fatigue test and loading condition in terms

of  stress  ratio  since  for  the  application  of  the  method  no  assumptions  are  required  on

percentage of heat converted energy or any considerations on the shape (leaf, elliptical,..) or

symmetry of hysteresis loop (the same material behaviour under tensile and compressive

stress) are required; 

 the possibility to perform a damage analysis as the SAH of temperature is strictly related to

the  dissipative  heat  sources  and the  applicability  in  those  cases  where  mechanical  data

measurements are not feasible;

The potential of the adopted approach is such that it considers just the temperature variations related

to dissipative phenomena so that the derived ∆ Ėd2ω is a good estimator of intrinsic dissipations.

Further development of the techniques will involve tests on component.
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