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1. Introduction:

In this paper, we use machine learning to address a key challenge faced by the urban planning community: a
shortage of consistent and usable information on land use patterns. Regulating land use is the raison d’étre
of urban planners. Through zoning regulations and long-range planning documents, they aim to shape urban
growth towards favored patterns of spatial extent, density, and social or economic development. However,
planners typically face significant data gaps. In New York, for instance, then city’s Open Data Portal lacks
any data on historical extent and density of the city. In this work, we utilize satellite imagery and machine
learning to detect changes in urban extent and density. Using the rich availability of multi-spectral imagery
accessible for free on Google Earth Engine, we train a classifier to detect key land use categories.

Using Houston, Texas, as our test case, we construct a Random Forest classifier. Following tuning and
optimization of the classifier, we apply it to historical satellite imagery for the years 1999, 2003, 2007, 2011
and 2015. Our classifier successfully distinguishes urban extent from non-urban land and open water. It
achieves encouraging levels of accuracy in distinguishing high-density and low-density urban areas. Applying
these methods to the Greater Houston area, we identify those counties that underwent rapid rural-to-urban
land conversion - such as the prosperous Highlands suburb. To further increase prediction accuracy, we
prototype a method to use OpenStreetMap data alongside satellite imagery. Our results offer a method
whereby planners can ‘reality check’ their intuitions about which parts of a city expanded or densified in
recent decades.

2. Motivation and Literature Review

2.1 Scarce planning data; plentiful satellite data

Urban planners intervene in land use in several ways, whether to relieve traffic congestion through transport
planning, preserve neighborhood character through residential density limitations, or separate industry from
housing to preserve health (Hoch 2012). However, objective information on land use can be scarce. Geographic
Information Systems (GIS) used by city planning departments are typically built on cadastral (ie. property
tax) records combined with census-based demographic information (Landis 2012). Information on current
and historical zoning information is frequently available, yet zoning maps may be disregarded in practice, and
do not necessarily reflect the city’s actual characteristics. Satellite data has attracted attention from urban
researchers since the late 1970s given its potential to supplement existing urban planning data (Kontoes,
1999).



2.2 Machine learning for land use classification

The field of land use classification has expanded since the launch of the Landsat program in 1972. Landsat,
a NASA-funded program, provides the longest-running consistent satellite imagery of the earth’s surface
(https://landsat.gsfc.nasa.gov/landsat-1/). The scientific literature based upon Landsat imagery ex-
panded first in earth science and ecology(han). Researchers have particularly capitalized on the satellite’s
multi-spectral imagery, which captures (at present) eight bands - from longwave radiation, through the visible
light spectrum, to shortwave infra-red. Particular advances in machine learning based on Landsat imagery
exploited the Normalized Difference Vegetation Index (NDVI), which measures the difference between near
infrared (which chlorophyll in vegetation strongly reflects) and red light (which vegetation absorbs) (Erener
et al., 2012).

Exploiting NDVI has enabled researchers to gain high-frequency estimates of crop productivity to inform
farming decisions, and to build early warning systems for deforestation in regions such as the Amazon (Mi-
chaelsen et al., 1994). As the field of land use classification through machine learning has become increasingly
established, researchers have gravitated towards Random Forest as the algorithm of choice. Advantages high-
lighted in the literature include computational efficiency - which is greater than Support Vector Machines.
Landsat has also been used alongside night-light data to predict income and poverty levels (Jean et al.,
2016).

2.3 Applications to urban extent and density

Building upon land use classification studies in ecology and earth science, a growing research literature applies
it to urbanization. Multi-spectral imagery is well-suited to detect urban built-up areas: although impervious
surfaces lack the same distinctiveness of absorptive pattern on the visible and near-infrared wavelengths that
makes vegetation easy to detect, increased reflectivity at the thermal imaging ends of the spectrum help to
detect surfaces such as concrete and brick (Ward et al., 2000). Studies in cities such as Kolkata and Ho Chi
Minh City have used time series of satellite imagery to track changes in urban extent over time (Goldblatt
et al, 2016). These researchers used supervised classification methods.

A key challenge faced in this literature was to establish the training data required for a supervised classi-
fication exercise. Goldblatt et al addressed the challenge two ways: firstly by taking Ho Chi Minh City’s
property tax database and deriving a land use map from it; and secondly by hand-classifying a gridded
map of the city’s extent, pixel-by-pixel, with the categories “urban residential”, “urban non-residential”,
and “non-urban.” The first effort was abandoned as the city’s land use database was deemed insufficiently
true with regard to actual land utilization. The second method proved effective, albeit time-consuming. This
method allowed researchers to train a classifier on the training image, where pixel values correspond to land
use category, and to predict new pixel values, using the bands of Landsat’s multiple spectrums as input
values.


https://landsat.gsfc.nasa.gov/landsat-1/

3. Methods

3.1 Reference Data on Land Use

In this research, we evaluated several methods to acquire reference data for land-use classification of urban
extent and density in the United States. We initially constructed a land use map of New York City based
upon the Department of City Planning’s zoning shapefiles. In Geopandas, we reclassified all city areas from
their detailed zoning code (eg. R4 for mid-density residential; P for park) into three categories: residential,
urban non-residential, and park/non-urban. However, the classes were unsatisfactory because New York’s
zoning codes are not reliable indicators of actual land utilization, while the three categories were seen to have
limited utility for planning decisions given the largely static city boundaries and high prevalence of mixed
use.
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Figure 1: Land use in Houston in 2015: Reference image developed from Texas GIS Land Use Map

Having established that land use classification is of particular value in the context of fast-growing cities, we
turned our attention to a list of the 10 fastest growing US cities, which are concentrated in sunbelt areas such
as Texas, Nevada and Arizona. Other studies such as Goldblatt’s (Goldblatt et al., 2018) have generated
original training data for urban land use classification through hand-labeling of large raster files. In our
research, we instead searched for existing detailed land-use maps in a fast-growing US region. A detailed
land-use raster covering the greater Houston area for 2015 was acquired from the Texas GIS website. In
Python, the pixel values were reclassified from the existing set of 10 categorical values (where 1-10 represented
categories from open water through to dense urban areas, including varieties of non-urban land use such
as wetlands and forest) to four categorical values: (1) open water; (2) urban: high density; (3) urban: low
density; (4) non-urban land.
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Figure 2: Land use classification scheme (by percentage share of region of interest, 2015)

3.2 Satellite Data

Using Google Earth Engine, we developed a script to preprocess and download Landsat-7 satellite imagery.
Based on customizing existing script libraries, code was developed to: (i) collect one-year batches of satellite
imagery; (ii) mask based on Landsat data’s cloud-cover index band; (iii) select the non-cloudy pixels from
the year’s images; (iv) make a composite image from these pixels’ median values; (v) export the image to
Google Drive.

Images for 1999, 2003, 2007, 2011 and 2015 were created in this way. The imagery was downloaded at
maximum resolution, with each pixel representing 30 square meters. Each image was converted into a
Numpy array with dimensionality 2100 x 2528 x 11. Required image processing steps including clipping the
reference image to the training image; removing NaN values; and resampling the reference image to achieve
the exact same number of pixels and geographic area.

3.3 Random Forest classifier

Two classification methods were evaluated: Random Forest and Support Vector Machines. We proceeded
with Random Forest having found a small advantage in classification accuracy and a substantial advantage
in computation time - which was prohibitive in the case of SVM given our large data files.

A Random Forest was trained on the image data for 2015. Structuring the problem as a supervised classifi-
cation exercise, we trained the Random Forest using the reference image as target value (or ‘label’ for each
pixel) and the Landsat pixel values as the feature space.

Random Forest is an ensemble method that constructs & decision trees and (in the case of classification) takes
the modal value of their output. Given these mechanics, we conducted a grid search to find key parameters



that would optimize the classifier, specifically (i) number of trees; (ii) maximum depth; and (iii) minimum
sample leaf size. Accuracy was found to improve with increasing numbers of trees up to 12 but tail off after
then. Given limited computational budget, the team proceeded with a 12-tree Random Forest classifier.

4. Model evaluation

As a proof of concept, we first trained the model on West Houston for 2015 and tested it for East Houston.
We subsequently refined this approach by means of a k-folds cross-validation. The method is suited to our
data, since we are able to train and test on the same 2015 dataset (the only year for which labeled data
could be constructed). What the method does is, it divides the raster in 6 proportional cubes, trains the
model on 5 of those cubes and tests it on the one left. This process is repeated for the number of cubes we
have. We utilized a 6-fold cross-validation, since this is easily interpretable to audiences - for whom it can
be visualized as testing a model on a one-sixth grid section of the city having learned it from the remaining
5/6ths of the image, and repeating until each pixel has been tested.

Overall accuracy of the classifier, measured by 6-fold cross-validation, was 76%.
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Figure 3: Land Use Predictions for Houston in 2015 vs Actual Values: True Positives Matrix

5. Findings and discussion

We built a machine learning classifier to detect changes in urban extent and density over time, and applied
this to Houston, Texas. Having applied the classifier to satellite images from 1999 to 2015, we see a pattern



of expanding urban extent, particularly in the north-east suburbs. Areas such as the Highlands moved from
non-urban to light urban, or light urban to dense urban.

The classifier achieves 76% accuracy based on a 6-fold cross-validation. However, error rates are higher
between certain category pairs. Water is rarely mis-categorized, as expected given its distinctive reflective
signature. However, dense urban is frequently miscategorized as light urban, while light urban is frequently
miscategorized as dense urban or non-urban. Our classifier performs better if the two urban categories are
grouped together, restricting the task to merely distinguishing built-up area from non-built up. Nevertheless,
the findings are encouraging and demonstrate a proof-of-concept. Extensions aimed at raising classification
performance further would include:

e Incorporating additional satellite imagery bands, such as Synthetic Aperture Radar imagery (an ef-
fective input for water detection) and MODIS thermal imagery (helpful to identify urban areas given
their higher thermal reflectivity);

e Adding an NDVT layer through calculations based on the red and near-infrared Landsat bands; and

e Implementing a corner detection algorithm to pick up texture in urban environments, such as multiple
dwelling roofs in dense urban areas.
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Figure 4: Output from Random Forest Classifier: Predicted Land Use in North-East Houston from 1999-2015

6. Proposed extension: OpenStreetMap feature density

As noted, the classifier currently mis-categorizes certain pairwise combinations of classes for which atmo-
spheric reflectivity is similar. Distinguishing high-density urban areas from low-density urban areas is diffi-
cult, as is distinguishing low-density urban from non-urban land. We also note that in several images, such
as the 1999 classifier output, water is mis-classified as urban land. To further improve the classifier’s per-
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Figure 5: Output from Random Forest Classifier: Areas Classed as High Density Urban (North East
Houston)

formance, we propose to use density of urban features shops, houses, intersections hospitals - as an addition
the feature space.To demonstrate the production of these inputs, we produce raster images of urban features
OpenStreetMap (OSM) tags. Accessible through OSM Application Programming Interface and its Overpass
web interface, we acquire point locations of urban feature categories.

Kernel Density Estimation (KDE) is used produce raster images representing the mean density of the features.
The KDE image, as indicated in Figure 5, can in future in incorporated into the model. In instances where
our classifier mis-categorizes (for example) water as land, the KDE of OSM features is expected to improve
accuracy, since the Random Forest decision trees can make additional cuts based upon the density of tags
(captured in the raster pixel values from 0 - 255) or the lack of any tags on expanses of water.

OSM provides large numbers of tags. By incorporating this data source alongside Landsat’s 7 bands (and
any supplementary satellite imagery brought into the classifier in future), we anticipate improving the clas-
sification accuracy. Having expanded the feature space to incorporate OSM data on urban features, it is
possible that the classifier might approach very high classification accuracy. If this is achieved, the new
OSM data would make it possible to shift to more ambitious classification tasks. Based on constructing a
new reference image, a classifier could be trained upon a larger number of categories, such as population
densities per square feet or multiple land use categories including industrial, agricultural and commercial
areas. Introducing the new data source of OSM - which has not been implemented in past studies so far as
the researchers are aware - it may be possible to produce urban planning data of increasing detail and utility
to the city planning community.

Conclusions

Random Forest classification offers an effective, low-cost way to detect changes in urban extent and density
over time. We built a classifier that achieves 76% accuracy in a four-way classification task: distinguishing
water, dense urban, light urban, and non-urban land. The method produces a time-series of classified
areas which can be used to reality check city planners’ understanding of their city’s urban form: which
areas grew fastest, and where density increased. Extending this method through additional input layers, or
through engineered input layers such as NDVI and corner detection, could further enhance performance. The
researched was possible due to the existence of detailed land use maps created by the Texas GIS services;
without such reference data, the method is still feasible but may require creating hand-labeled reference



Figure 6: Latitude and longitude data of shops in Houston Texas, are extracted from Open Street Map and
converted to KDE.

images based on property tax or zoning data. Such methods may be particularly valuable in fast-growing
US cities - many concentrated in the Sunbelt - where urban planners are confronting rapid change with
spatial patterns that are hard to apprehend; and in fast-growing cities of the developing world where urban
planning data is sparse.
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