2.7.1 Classical thermodynamics
Concepts of thermal equilibrium and reversible processes; internal energy, work and heat; Kelvin’s temperature scale; entropy; open, closed, isolated systems; first and second laws of thermodynamics. Kinetic theory of ideal gases: Avogadro number, Boltzmann factor and gas constant; translational motion of molecules and pressure; ideal gas law; translational, rotational and oscillatory degrees of freedom; equipartition theorem; internal energy of ideal gases; root-mean-square speed of molecules. Isothermal, isobaric, isochoric, and adiabatic processes; specific heat for isobaric and isochoric processes; forward and reverse Carnot cycle on ideal gas and its efficiency; efficiency of non-ideal heat engines.
2.7.2 Heat transfer and phase transitions
Phase transitions (boiling, evaporation, melting, sublimation) and latent heat; saturated vapor pressure, relative humidity; boiling; Dalton’s law; concept of heat conductivity; continuity of heat flux.
2.7.3 Statistical physics
Planck’s law (explained qualitatively, does not need to be remembered), Wien’s displacement law; the Stefan-Boltzmann law