
A quick introduction to version control with Git and GitHub

John D. Blischak1,*, Emily R. Davenport2, Greg Wilson3

1 Committee on Genetics, Genomics, and Systems Biology, University of
Chicago, Chicago, IL, USA
2 Department of Molecular Biology and Genetics, Cornell University,
Ithaca, NY, USA
3 Software Carpentry Foundation, Toronto, Ontario, Canada

* jdblischak@gmail.com

Introduction to version control 1

Many scientists write code as part of their research. Just as experiments are logged in 2

laboratory notebooks, it is important to document the code you use for analysis. 3

However, a few key problems can arise when iteratively developing code that make it 4

difficult to document and track which code version was used to create each result. 5

First, you often need to experiment with new ideas, such as adding new features to a 6

script or increasing the speed of a slow step, but you do not want to risk breaking the 7

currently working code. One often utilized solution is to make a copy of the script 8

before making new edits. However, this can quickly become a problem because it 9

clutters your filesystem with uninformative filenames, e.g. analysis.sh, 10

analysis_02.sh, analysis_03.sh, etc. It is difficult to remember the differences 11

between the versions of the files, and more importantly which version you used to 12

produce specific results, especially if you return to the code months later. Second, you 13

will likely share your code with multiple lab mates or collaborators and they may have 14

suggestions on how to improve it. If you email the code to multiple people, you will 15

have to manually incorporate all the changes each of them sends. 16

Fortunately, software engineers have already developed software to manage these 17

issues: version control. A version control system (VCS) allows you to track the 18

iterative changes you make to your code. Thus you can experiment with new ideas but 19

always have the option to revert to a specific past version of the code you used to 20

generate particular results. Furthermore, you can record messages as you save each 21

successive version so that you (or anyone else) reviewing the development history of 22

the code is able to understand the rationale for the given edits. Also, it facilitates 23

collaboration. Using a VCS, your collaborators can make and save changes to the 24

code, and you can automatically incorporate these changes to the main code base. 25

The collaborative aspect is enhanced with the emergence of websites that host version 26

controlled code. 27

In this quick guide, we introduce you to one VCS, Git (git-scm.com), and one 28

online hosting site, GitHub (github.com), both of which are currently popular among 29

scientists and programmers in general. More importantly, we hope to convince you 30

that although mastering a given VCS takes time, you can already achieve great 31

benefits by getting started using a few simple commands. Furthermore, not only does 32

using a VCS solve many common problems when writing code, it can also improve the 33

scientific process. By tracking your code development with a VCS and hosting it 34

PLOS 1/14

https://git-scm.com/
https://github.com

online, you are performing science that is more transparent, reproducible, and open to 35

collaboration [1, 2]. There is no reason this framework needs to be limited only to 36

code; a VCS is well-suited for tracking any plain-text files: manuscripts, electronic lab 37

notebooks, protocols, etc. 38

Version your code 39

The first step is to learn how to version your own code. In this tutorial, we will run 40

Git from the command line of the Unix shell. Thus we expect readers are already 41

comfortable with navigating a filesystem and running basic commands in such an 42

environment. You can find directions for installing Git for the operating system 43

running on your computer by following one of the links provided in Table 1. There are 44

many graphical user interfaces (GUIs) available for running Git (Table 1), which we 45

encourage you to explore, but learning to use Git on the command line is necessary for 46

performing more advanced operations and using Git on a remote machine. 47

To follow along, first create a folder in your home directory named thesis. Next 48

download the three files provided in Supporting Information and place them in the 49

thesis directory. Imagine that as part of your thesis you are studying the 50

transcription factor CTCF, and you want to identify high-confidence binding sites in 51

kidney epithelial cells. To do this, you will utilize publicly available ChIP-seq data 52

produced by the ENCODE consortium [3]. ChIP-seq is a method for finding the sites 53

in the genome where a transcription factor is bound, and these sites are referred to as 54

peaks [4]. process.sh downloads the ENCODE CTCF ChIP-seq data from multiple 55

types of kidney samples and calls peaks (S1 Data), clean.py filters peaks with a fold 56

change cutoff and merges peaks from the different kidney samples (S2 Data), and 57

analyze.R creates diagnostic plots on the length of the peaks and their distribution 58

across the genome (S3 Data). 59

If you have just installed Git, the first thing you need to do is provide some 60

information about yourself, since it records who makes each change to the file(s). Set 61

your name and email by running the following lines, but replacing “First Last” and 62

“user@domain” with your full name and email address, respectively. 63

$ git config --global user.name "First Last" 64

$ git config --global user.email "user@domain" 65

To start versioning your code with Git, navigate to your newly created directory, 66

~/thesis. Run the command git init to initialize the current folder as a Git 67

repository (Fig. 1, 2A). A repository (or repo, for short) refers to the current version 68

of the tracked files as well as all the previously saved versions (Box 1). Only files that 69

are located within this directory (and any subdirectories) have the potential to be 70

version controlled, i.e. Git ignores all files outside of the initialized directory. For this 71

reason, projects under version control tend to be stored within a single directory to 72

correspond with a single Git repository. For strategies on how to best organize your 73

own projects, see Noble, 2009 [5]. 74

$ cd ~/thesis 75

$ ls 76

analyze.R clean.py process.sh 77

$ git init 78

Initialized empty Git repository in ~/thesis/.git/ 79

Now you are ready to start versioning your code (Fig. 1). Conceptually, Git saves 80

snapshots of the changes you make to your files whenever you instruct it to. For 81

instance, after you edit a script in your text editor, you save the updated script to 82

your thesis folder. If you tell Git to save a shapshot of the updated document, then 83

PLOS 2/14

you will have a permanent record of the file in that exact version even if you make 84

subsequent edits to the file. In the Git framework, any changes you have made to a 85

script, but have not yet recorded as a snapshot with Git, reside in the working 86

directory only (Fig. 1). To follow what Git is doing as you record the initial version of 87

your files, use the informative command git status. 88

$ git status 89

On branch master 90

91

Initial commit 92

93

Untracked files: 94

(use "git add <file>..." to include in what will be committed) 95

96

analyze.R 97

clean.py 98

process.sh 99

100

nothing added to commit but untracked files present (use "git add" to track) 101

There are a few key things to notice from this output. First, the three scripts are 102

recognized as untracked files because you have not told Git to start tracking anything 103

yet. Second, the word “commit” is Git terminology for snapshot. As a noun it means 104

“a version of the code”, e.g. “the figure was generated using the commit from 105

yesterday” (Box 1). This word can also be used as a verb, in which case it means “to 106

save”, e.g. “to commit a change.” Lastly, the output explains how you can track your 107

files using git add. Start tracking the file process.sh. 108

$ git add process.sh 109

And check its new status. 110

$ git status 111

On branch master 112

113

Initial commit 114

115

Changes to be committed: 116

(use "git rm --cached <file>..." to unstage) 117

118

new file: process.sh 119

120

Untracked files: 121

(use "git add <file>..." to include in what will be committed) 122

123

analyze.R 124

clean.py 125

Since this is the first time that you have told Git about the file process.sh, two 126

key things have happened. First, this file is now being tracked, which means Git 127

recognizes it as a file you wish to be version controlled (Box 1). Second, the changes 128

made to the file (in this case the entire file because it is the first commit) have been 129

added to the staging area (Fig. 1). Adding a file to the staging area will result in the 130

changes to that file being included in the next commit, or snapshot of the code (Box 131

1). As an analogy, adding files to the staging area is like putting things in a box to 132

mail off, and committing is like putting the box in the mail. 133

Since this will be the first commit, or first version of the code, use git add to 134

begin tracking the other two files and add their changes to the staging area as well. 135

PLOS 3/14

Then create the first commit using the command git commit. 136

$ git add clean.py analyze.R 137

$ git commit -m "Add initial version of thesis code." 138

[master (root-commit) 660213b] Add initial version of thesis code. 139

3 files changed, 154 insertions(+) 140

create mode 100644 analyze.R 141

create mode 100644 clean.py 142

create mode 100644 process.sh 143

Notice the flag -m was used to pass a message for the commit. This message 144

describes the changes that have been made to the code and is required. If you do not 145

pass a message at the command line, the default text editor for your system will open 146

so you can enter the message. You have just performed the typical development cycle 147

with Git: make some changes, add updated files to the staging area, and commit the 148

changes as a snapshot once you are satisfied with them (Fig. 2). 149

Since Git records all of the commits, you can always look through the complete 150

history of a project. To view the record of your commits, use the command git log. 151

For each commit, it lists the unique identifier for that revision, author, date, and 152

commit message. 153

$ git log 154

commit 660213b91af167d992885e45ab19f585f02d4661 155

Author: First Last <user@domain> 156

Date: Fri Aug 21 14:52:05 2015 -0500 157

158

Add initial version of thesis code. 159

The commit identifier can be used to compare two different versions of a file, 160

restore a file to a previous version from a past commit, and even retrieve tracked files 161

if you accidentally delete them. 162

Now you are free to make changes to the files knowing that you can always revert 163

them to the state of this commit by referencing its identifier. As an example, edit 164

clean.py so that the fold change cutoff for filtering peaks is more stringent. Here is 165

the current bottom of the file. 166

$ tail clean.py 167

Filter based on fold-change over control sample 168

fc_cutoff = 10 169

epithelial = epithelial.filter(filter_fold_change, fc = fc_cutoff).saveas() 170

proximal_tube = proximal_tube.filter(filter_fold_change, fc = fc_cutoff).saveas() 171

kidney = kidney.filter(filter_fold_change, fc = fc_cutoff).saveas() 172

Identify only those sites that are peaks in all three tissue types 173

combined = pybedtools.BedTool().multi_intersect(174

i = [epithelial.fn, proximal_tube.fn, kidney.fn]) 175

union = combined.filter(lambda x: int(x[3]) == 3).saveas() 176

union.cut(range(3)).saveas(data + "/sites-union.bed") 177

Using a text editor, increase the fold change cutoff from 10 to 20. 178

$ tail clean.py 179

Filter based on fold-change over control sample 180

fc_cutoff = 20 181

epithelial = epithelial.filter(filter_fold_change, fc = fc_cutoff).saveas() 182

proximal_tube = proximal_tube.filter(filter_fold_change, fc = fc_cutoff).saveas() 183

kidney = kidney.filter(filter_fold_change, fc = fc_cutoff).saveas() 184

Identify only those sites that are peaks in all three tissue types 185

combined = pybedtools.BedTool().multi_intersect(186

PLOS 4/14

i = [epithelial.fn, proximal_tube.fn, kidney.fn]) 187

union = combined.filter(lambda x: int(x[3]) == 3).saveas() 188

union.cut(range(3)).saveas(data + "/sites-union.bed") 189

Because Git is tracking clean.py, it recognizes that the file has been changed since 190

the last commit. 191

$ git status 192

On branch master 193

Changes not staged for commit: 194

(use "git add <file>..." to update what will be committed) 195

(use "git checkout -- <file>..." to discard changes in working directory) 196

197

modified: clean.py 198

199

no changes added to commit (use "git add" and/or "git commit -a") 200

The report from git status indicates that the changes to clean.py are not 201

staged, i.e. they are in the working directory (Fig. 1). To view the unstaged changes, 202

run the command git diff. 203

$ git diff 204

diff --git a/clean.py b/clean.py 205

index 7b8c058..76d84ce 100644 206

--- a/clean.py 207

+++ b/clean.py 208

@@ -28,7 +28,7 @@ def filter_fold_change(feature, fc = 1): 209

return False 210

211

Filter based on fold-change over control sample 212

-fc_cutoff = 10 213

+fc_cutoff = 20 214

epithelial = epithelial.filter(filter_fold_change, fc = fc_cutoff).saveas() 215

proximal_tube = proximal_tube.filter(filter_fold_change, fc = fc_cutoff).saveas()216

kidney = kidney.filter(filter_fold_change, fc = fc_cutoff).saveas() 217

Any lines of text that have been added to the script are indicated with a + and any 218

lines that have been removed with a -. Here, we altered the line of code which sets the 219

value of fc_cutoff. git diff displays this change as the previous line being removed 220

and a new line being added with our update incorporated. You can ignore the first 221

five lines of output because they are directions for other software programs that can 222

merge changes to files. If you wanted to keep this edit, you could add clean.py to the 223

staging area using git add and then commit the change using git commit, as you did 224

above. Instead, this time undo the edit by following the directions from the output of 225

git status to “discard changes in the working directory” using the command 226

git checkout. 227

$ git checkout -- clean.py 228

$ git diff 229

Now git diff returns no output because git checkout undid the unstaged edit 230

you had made to clean.py. And this ability to undo past edits to a file is not limited 231

to unstaged changes in the working directory. If you had committed multiple changes 232

to the file clean.py and then decided you wanted the original version from the initial 233

commit, you could replace the argument -- with the commit identifier of the first 234

commit you made above (your commit identifier will be different; use git log to find 235

it). The -- used above was simply a placeholder for the first argument because by 236

default git checkout restores the most recent version of the file from the staging area 237

PLOS 5/14

(if you haven’t staged any changes to this file, as is the case here, the version of the file 238

in the staging area is identical to the version in the last commit). Instead of using the 239

entire commit identifier, use only the first seven characters, which is simply a 240

convention since this is usually long enough for it to be unique. 241

$ git checkout 660213b clean.py 242

At this point, you have learned the commands needed to version your code with 243

Git. Thus you already have the benefits of being able to make edits to files without 244

copying them first, to create a record of your changes with accompanying messages, 245

and to revert to previous versions of the files if needed. Now you will always be able to 246

recreate past results that were generated with previous versions of the code (see the 247

command git tag for a method to facilitate finding specific past versions) and see the 248

exact changes you have made over the course of a project. 249

Table 1. Resources.

Resource Options
Distibuted VCS Git (git-scm.com)

Mercurial (mercurial.selenic.com)
Bazaar (bazaar.canonical.com)

Online hosting site GitHub (github.com)
Bitbucket (bitbucket.org)
GitLab (gitlab.com)
Source Forge (sourceforge.net)

Git installation git-scm.com/downloads
Git Tutorials Software Carpentry(swcarpentry.github.io/git-novice)

Pro Git (git-scm.com/book)
A Visual Git Reference (marklodato.github.io/visual-git-guide)
tryGit (try.github.io)

Graphical User Interface for Git git-scm.com/downloads/guis

Figure 1. The git add/commit process.
To store a snapshot of changes in your repository, first git add any files to the staging
area you wish to commit (for example, you’ve updated the process.sh file). Second,
type git commit with a message. Only files added to the staging area will be
committed. All past commits are located in the hidden .git directory in your
repository.

Figure 2. Working with a local repository.
A) To designate a directory on your computer as a Git repo, type the command
git init. This initializes the repository and will allow you to track the files located
within that directory. B) Once you have added a file, follow the git add/commit cycle
to place the new file first into the staging area by typing git add to designate it to be
committed, and then git commit to take the shapshot of that file. The commit is
assigned a commit identifier (d75es) that can be used in the future to pull up this
version or to compare different committed versions of this file. C) As you continue to
add and change files, you should regularly add and commit those changes. Here, an
additional commit was done and the commit log now shows two commit identifiers:
d75es (from step B) and f658t (the new commit). Each commit will generate a unique
identifier, which can be examined in reverse chronological order using git log.

PLOS 6/14

https://git-scm.com
https://mercurial.selenic.com
http://bazaar.canonical.com
https://github.com
https://bitbucket.org
https://about.gitlab.com
http://sourceforge.net
https://git-scm.com/downloads
https://swcarpentry.github.io/git-novice
https://git-scm.com/book
https://marklodato.github.io/visual-git-guide
https://try.github.io
https://git-scm.com/downloads/guis

Share your code 250

Once you have your files saved in a Git repository, you can share it with your 251

collaborators and the wider scientific community by putting your code online (Fig. 3). 252

This also has the added benefit of creating a backup of your scripts and provides a 253

mechanism for transferring your files across multiple computers. Sharing a repository 254

is made easier if you use one of the many online services that host Git repositories 255

(Table 1), e.g. GitHub. Note, however, that any files that have not been tracked with 256

at least one commit are not included in the Git repository, even if they are located 257

within the same directory on your local computer (see Box 2 for advice on the types of 258

files that should not be versioned with Git and Box 3 for advice on managing large 259

files). 260

Below we focus on the technical aspects of sharing your code. However, there are 261

also other issues to consider when deciding if and how you are going to make your 262

code available to others. For quick advice on these subjects, see Box 4 on how to 263

license your code, Box 5 on concerns about being scooped, and Box 6 on the 264

increasing trend of journals to institute sharing policies that require authors to deposit 265

code in a public archive upon publication. 266

To begin using GitHub, you will first need to sign up for an account. For the code 267

examples in this tutorial, you will need to replace username with the username of your 268

account. Next choose the option to “Create a new repository” (Fig. 3B, see 269

help.github.com/articles/create-a-repo). Call it “thesis” because that is the directory 270

name containing the files on your computer, but note that you can give it a different 271

name on GitHub if you wish. Also, now that the code will be existing in multiple 272

places, you need to learn some more terminology (Box 1). A local repository refers to 273

code that is stored on the machine you are using, e.g. your laptop; whereas, a remote 274

repository refers to the code that is hosted online. Thus, you have just created a 275

remote repository. 276

Now you need to send the code on your computer to GitHub. The key to this is 277

the URL that GitHub assigns your newly created remote repository. It will have the 278

form https://github.com/username/thesis.git (see 279

help.github.com/articles/cloning-a-repository). Notice that this URL is using the 280

HTTPS protocol, which is the quickest to begin using. However it requires you to 281

enter your username and password when communicating with GitHub, so you’ll want 282

to considering switching to the SSH protocol once you are regularly using Git and 283

GitHub (see help.github.com/articles/generating-ssh-keys for directions). In order to 284

link the local thesis repository on your computer to the remote repository you just 285

created, in your local repository you need to tell Git the URL of the remote repository 286

using the command git remote add (Fig. 3C). 287

$ git remote add origin https://github.com/username/thesis.git 288

The name “origin” is a bookmark for the remote repository so that you do not 289

have to type out the full URL every time you transfer your changes (this is the default 290

name for a remote repository, but you could use another name if you like). 291

Send your code to GitHub using the command git push (Fig. 3D). 292

$ git push origin master 293

You first specify the remote repository, “origin”. Second, you tell Git to push to 294

the “master” copy of the repository - we will not go into other options in this tutorial, 295

but Box 7 discusses them briefly. 296

Pushing to GitHub also has the added benefit of backing up your code in case 297

anything were to happen to your computer. Also, it can be used to manually transfer 298

your code across multiple machines, similar to a service like Dropbox (dropbox.com), 299

but with the added capabilities and control of Git. For example, what if you wanted 300

PLOS 7/14

https://help.github.com/articles/create-a-repo/
https://help.github.com/articles/cloning-a-repository/
https://help.github.com/articles/generating-ssh-keys/
www.dropbox.com

to work on your code on your computer at home? You can download the Git 301

repository using the command git clone. 302

$ git clone https://github.com/username/thesis.git 303

By default, this will download the Git repository into a local directory named 304

“thesis”. Furthermore, the remote “origin” will automatically be added so that you 305

can easily push your changes back to GitHub. You now have copies of your repository 306

on your work computer, your GitHub account online, and your home computer. You 307

can make changes, commit them on your home computer, and send those commits to 308

the remote repository with git push, just as you did on your work computer. 309

Then the next day back at your work computer, you could update the code with 310

the changes you made the previous evening using the command git pull. 311

$ git pull origin master 312

This pulls in all the commits that you had previously pushed to the GitHub remote 313

repository from your home computer. In this workflow, you are essentially 314

collaborating with yourself as you work from multiple computers. If you are working 315

on a project with just one or two other collaborators, you could extend this workflow 316

so that they could edit the code in the same way. You can do this by adding them as 317

Collaborators on your repository (Settings ->Collaborators ->Add collaborator, see 318

help.github.com/articles/adding-collaborators-to-a-personal-repository). However, 319

with projects with lots of contributors, GitHub provides a workflow for finer-grained 320

control of the code development. 321

With the addition of a GitHub account and a few commands for sending and 322

receiving code, you can now share your code with others, transfer your code across 323

multiple machines, and setup simple collaborative workflows. 324

Figure 3. Working with both a local and remote repository as a single user.
A) On your computer you commit to a Git repository (commit d75es). B) On GitHub,
you create a new repository called thesis. This repository is currently empty and not
linked to the repo on your local machine. C) The command git remote add connects
your local repository to your remote repository. The remote repository is still empty,
however, because you have not pushed any content to it. D) You send all the local
commits to the remote repository using the command git push. Only files that have
been committed will appear in the remote repository. E) You repeat several more
rounds of updating scripts and committing on your local computer (commit f658t and
then commit xv871). You have not yet pushed these commits to the remote repository,
so only the previously pushed commit is in the remote repo (commit d75es). F) To
bring the remote repository up-to-date with your local repository, you git push the
two new commits to the remote repository. The local and remote repositories now
contain the same files and commit histories.

Contribute to other projects 325

Lots of scientific software is hosted online in Git repositories. Now that you know the 326

basics of Git, you can directly contribute to developing the scientific software you use 327

for your research (Fig. 4). From a small contribution like fixing a typo in the 328

documentation to a larger change such as fixing a bug, it is empowering to be able to 329

improve the software used by you and many other scientists. 330

When contributing to a larger project with many contributors, you will not be able 331

to push your changes with git push directly to the project’s remote repository. 332

Instead you will first need to create your own remote copy of the repository, which on 333

PLOS 8/14

https://help.github.com/articles/adding-collaborators-to-a-personal-repository/

GitHub is called a fork (Box 1). You can fork any repository on GitHub by clicking the 334

button “Fork” on the top right of the page (see help.github.com/articles/fork-a-repo). 335

Once you have a fork of a project’s repository, you can clone it to your computer 336

and make changes just like a repository you created yourself. As an exercise, you will 337

add a file to the repository that we used to write this paper. First, go to 338

github.com/jdblischak/git-for-science and choose the “Fork” option to create a 339

git-for-science repository under your GitHub account (Fig. 4B). In order to make 340

changes, download it to your computer with the command git clone from the 341

directory you wish the repo to appear in (Fig. 4C). 342

$ git clone https://github.com/username/git-for-science.git 343

Now that you have a local version, navigate to the subdirectory readers and 344

create a text file named as your GitHub username (Fig. 4D). 345

$ cd git-for-science/readers 346

$ touch username.txt 347

Add and commit this new file (Fig. 4D), and then push the changes back to your 348

remote repository on GitHub (Fig. 4E). 349

$ git add username.txt 350

$ git commit -m "Add username to directory of readers." 351

$ git push origin master 352

Currently, the new file you created, readers/username.txt, only exists in your 353

fork of git-for-science. To merge this file into the main repository, send a pull request 354

using the GitHub interface (Pull request ->New pull request ->Create pull request; 355

Fig. 4F; see help.github.com/articles/using-pull-requests). After the pull request is 356

created, we can review your change and then merge it into the main repository. 357

Although this process of forking a project’s repository and issuing a pull request seems 358

like a lot of work to contribute changes, this workflow gives the owner of a project 359

control over what changes get incorporated into the code. You can have others 360

contribute to your projects using the same workflow. 361

The ability to use Git to contribute changes is very powerful because it allows you 362

to improve the software that is used by many other scientists and also potentially 363

shape the future direction of its development. 364

Figure 4. Contributing to Open Source Projects.
We would like you to add an empty file that is named after your GitHub username to
the repo used to write this manuscript. A) Using your internet browser, navigate to
github.com/jdblischak/git-for-science. B) Click on the “Fork” button to create a copy
of this repo on GitHub under your username. C) On your computer, type
git clone https://github.com/username/git-for-science.git, which will create
a copy of git-for-science on your local machine. D) Navigate to the readers directory
by typing cd git-for-science/readers/. Create an empty file that is titled with
your GitHub username by typing touch username.txt. Commit that new file by
adding it to the staging area (git add username.txt) and committing with a
message (git commit -m "Add username to directory of readers."). Note that
your commit identifier will be different than what is shown here. E) You have
committed your new file locally and the next step is to push that new commit up to
the git-for-science repo under your username on GitHub. To do so, type
git push origin master. F) To request to add your commits to the original
git-for-science repo, issue a pull request from the git-for-science repo under your
username on GitHub. Once your Pull Request is reviewed and accepted, you will be
able to see the file you committed with your username in the original git-for-science
repository.

PLOS 9/14

https://help.github.com/articles/fork-a-repo/
https://github.com/jdblischak/git-for-science
https://help.github.com/articles/using-pull-requests/
https://github.com/jdblischak/git-for-science

Conclusion 365

Git, albeit complicated at first, is a powerful tool that can improve code development 366

and documentation. Ultimately the complexity of a VCS not only gives users a 367

well-documented “undo” button for their analyses, but it also allows for collaboration 368

and sharing of code on a massive scale. Furthermore, it does not need to be learned in 369

its entirety to be useful. Instead, you can derive tangible benefits from adopting 370

version control in stages. With a few commands (git init, git add, git commit), 371

you can start tracking your code development and avoid a filesystem full of copied files 372

(Fig. 2). Adding a few additional commands (git push, git clone, git pull) and a 373

GitHub account, you can share your code online, transfer your changes across 374

machines, and collaborate in small groups (Fig. 3). Lastly, by forking public 375

repositories and sending pull requests, you can directly improve scientific software 376

(Fig. 4). 377

Box 1: Definitions 378

� Version Control System (VCS): (noun) a program that tracks changes to 379

specified files over time and maintains a library of all past versions of those files 380

� Git: (noun) a version control system 381

� repository (repo): (noun) folder containing all tracked files as well as the 382

version control history 383

� commit: (noun) a snapshot of changes made to the staged file(s); (verb) to save 384

a snapshot of changes made to the staged file(s) 385

� stage: (noun) the staging area holds the files to be included in the next commit; 386

(verb) to mark a file to be included in the next commit 387

� track: (noun) a tracked file is one that is recognized by the Git repository 388

� branch: (noun) a parallel version of the files in a repository (Box 7) 389

� local: (noun) the version of your repository that is stored on your personal 390

computer 391

� remote: (noun) the version of your repository that is stored on a remote server, 392

for instance on GitHub 393

� clone: (verb) to create a local copy of a remote repository on your personal 394

computer 395

� fork: (noun) a copy of another user’s repository on GitHub; (verb) to copy a 396

repository, for instance from one user’s GitHub account to your own 397

� merge: (verb) to update files by incorporating the changes introduced in new 398

commits 399

� pull: (verb) to retrieve commits from a remote repository and merge them into 400

a local repository 401

� push: (verb) to send commits from a local repository to a remote repository 402

� pull request: (noun) a message sent by one GitHub user to merge the commits 403

in their remote repository into another user’s remote repository 404

PLOS 10/14

Box 2: What not to version control 405

You can version control any file that you put in a Git repository, whether it is 406

text-based, an image, or giant data files. However, just because you can version 407

control something, does not mean you should. Git works best for plain text based 408

documents such as your scripts or your manuscript if written in LaTeX or Markdown. 409

This is because for text files, Git saves the entire file only the first time you commit it 410

and then saves just your changes with each commit. This takes up very little space 411

and Git has the capability to compare between versions (using git diff). You can 412

commit a non-text file, but a full copy of the file will be saved in each commit that 413

modifies it. Over time, you may find the size of your repository growing very quickly. 414

A good rule of thumb is to version control anything text based: your scripts or 415

manuscripts if they are written in plain text. Things not to version control are large 416

data files that never change, binary files (including Word and Excel documents), and 417

the output of your code. 418

In addition to the type of file, you need to consider the content of the file. If you 419

plan on sharing your commits publicly using GitHub, ensure you are not committing 420

any files that contain sensitive information, such as human subject data or passwords. 421

To prevent accidentally committing files you do not wish to track, and to remove 422

them from the output of git status, you can create a file called .gitignore. In this 423

file, you can list subdirectories and/or file patterns that Git should ignore. For 424

example, if your code produced log files with the file extension .log, you could 425

instruct Git to ignore these files by adding *.log to .gitignore. In order for these 426

settings to be applied to all instances of the repository, e.g. if you clone it onto 427

another computer, you need to add and commit this file. 428

Box 3: Managing large files 429

Many biological applications require handling large data files. While Git is best-suited 430

for collaboratively writing small text files, nonetheless collaboratively working on 431

projects in the biological sciences necesitates managing this data. 432

The example analysis pipeline in this tutorial starts by downloading data files in 433

BAM format which contain the alignments of short reads from a ChIP-seq experiment 434

to the human genome. Since these large, binary files are not going to change, there is 435

no reason to version them with Git. Thus hosting them on a remote http (as 436

ENCODE has done in this case) or ftp site allows each collaborator to download it to 437

her machine as needed, e.g. using wget, curl, or rsync. If the data files for your 438

project are smaller, you could also share them via services like Dropbox (dropbox.com) 439

or Google Drive (google.com/drive). 440

However, some intermediate data files may change over time, and the practical 441

necessity to ensure all collaborators are using the same data set may override the 442

advice to not put code output under version control, as described in Box 2. Again 443

returning to the ChIP-seq example, the first step calling the peaks is the most difficult 444

computationally because it requires access to a Unix-like environment and sufficient 445

computational resources. Thus for collaborators that want to experiment with 446

clean.py and analyze.R without having to run process.sh, you could version the 447

data files containing the ChIP-seq peaks (which are in BED format). But since these 448

files are larger than that typically used with Git, you can instead use one of the 449

solutions for versioning large files within a Git repository without actually saving the 450

file with Git, e.g. git-annex (git-annex.branchable.com) or git-fat 451

(github.com/jedbrown/git-fat). Recently GitHub has created their own solution for 452

managing large files called Git Large File Storage (LFS) (git-lfs.github.com). Instead 453

PLOS 11/14

www.dropbox.com
https://www.google.com/drive/
https://git-annex.branchable.com/
https://github.com/jedbrown/git-fat/
https://git-lfs.github.com/

of committing the entire large file to Git, which quickly becomes unmanageable, it 454

commits a text pointer. This text pointer refers to a specific file saved on a remote 455

GitHub server. Thus when you clone a repository, it only downloads the latest version 456

of the large file. And if you checkout an older version of the repository, it 457

automatically downloads the old version of the large file from the remote server. After 458

installing Git LFS, you can manage all the BED files with one command: 459

git lfs track "*.bed". Then you can commit the BED files just like your scripts, 460

and they will automatically be handled with Git LFS. Now if you were to change the 461

parameters of the peak calling algorithm and re-run process.sh, you could commit 462

the updated BED files and your collaborators could pull the new versions of the files 463

directly to their local Git repositories. 464

Box 4: Choosing a license 465

Putting software and other material in a public place is not the same as making it 466

publicly usable. In order to do that, the authors must also add a license, since 467

copyright laws in some jurisdictions require people to treat anything that isn’t 468

explicitly open as being proprietary. 469

While dozens of open licenses have been created, the two most widely used are the 470

GNU Public License (GPL) and the MIT/BSD family of licenses. Of these, the 471

MIT/BSD-style licenses put the fewest requirements on re-use, and thereby make it 472

easier for people to integrate your software into their project. 473

For an excellent short discussion of these issues, and links to more information, see 474

Jake Vanderplas’s blog post from March 2014 at 475

astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code. For 476

a more in-depth discussion of the legal implications of different licenses, see Morin et 477

al., 2012 [6]. 478

Box 5: Being Scooped 479

One concern scientists frequently have about putting work in progress online is that 480

they will be scooped, e.g., that someone will analyze their data and publish a result 481

that they themselves would have, but hadn’t yet. In practice, though, this happens 482

rarely if at all: in fact, the authors are not aware of a single case in which this has 483

actually happened, and would welcome pointers to specific instances. In practice, it 484

seems more likely that making work public early in something like a version control 485

repository, which automatically adds timestamps to content, will help researchers 486

establish their priority. 487

Box 6: Journal Policies 488

Sharing data, code, and other materials is quickly moving from “desired” to 489

“required”. For example, PLOS’s sharing policy 490

(journals.plos.org/plosone/s/materials-and-software-sharing) already says, “We expect 491

that all researchers submitting to PLOS will make all relevant materials that may be 492

reasonably requested by others available without restrictions upon publication of the 493

work.” Its policy on software is more specific: 494

We expect that all researchers submitting to PLOS submissions in which 495

software is the central part of the manuscript will make all relevant 496

software available without restrictions upon publication of the work. 497

PLOS 12/14

http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
http://journals.plos.org/plosone/s/materials-and-software-sharing

Authors must ensure that software remains usable over time regardless of 498

versions or upgrades. . . 499

It then goes on to specify that software must be based on open source standards, 500

and that it must be put in an archive which is large or long-lived. Granting agencies, 501

philanthropic foundations, and other major sponsors of scientific research are all 502

moving in the same direction, and to our knowledge, none has relaxed or reduced 503

sharing requirements in the last decade. 504

Box 7: Branching 505

Do you ever make changes to your code, but are not sure you will want to keep those 506

changes for your final analysis? Or do you need to implement new features while still 507

providing a stable version of the code for others to use? Using Git, you can maintain 508

parallel versions of your code that you can easily bounce between while you are 509

working on your changes. You can think of it like making a copy of the folder you keep 510

your scripts in, so that you have your original scripts intact but also have the new 511

folder where you make changes. Using Git, this is called branching and it is better 512

than separate folders because 1) it uses a fraction of the space on your computer, 2) 513

keeps a record of when you made the parallel copy (branch) and what you have done 514

on the branch, and 3) there is a way to incorporate those changes back into your main 515

code if you decide to keep your changes (and a way to deal with conflicts). By default, 516

your repository will start with one branch, usually called “master”. To create a new 517

branch in your repository, type git branch new_branch_name. You can see what 518

branches a current repository has by typing git branch, with the branch you are 519

currently in being marked by a star. To move between branches, type 520

git checkout branch_to_move_to. You can edit files and commit them on each 521

branch separately. If you want combine the changes in your new branch with the 522

master branch, you can merge the branches by typing git merge new_branch_name 523

while in the master branch. 524

Methods 525

We collaboratively wrote the article in LaTeX (latex-project.org) using the online 526

authoring platform Authorea (authorea.com). Furthermore, we tracked the 527

development of the document using Git and GitHub. The Git repo is available at 528

github.com/jdblischak/git-for-science, and the rendered LaTeX article is available at 529

authorea.com/users/5990/articles/17489. 530

References

1. Ram K. Git can facilitate greater reproducibility and increased transparency in
science. Source Code Biol Med. 2013 Feb;8:7.

2. Wilson G, Aruliah D, Brown C, Chue HN, Davis M, Guy R, et al. Best practices
for scientific computing. PLoS Biol. 2014 Jan;12:e1001745.

3. ENCODE Project Consortium, Bernstein B, Birney E, Dunham I, Green E,
Gunter C, et al. An integrated encyclopedia of DNA elements in the human
genome. Nature. 2012 Sep;489:57–74.

PLOS 13/14

http://www.latex-project.org/
https://www.authorea.com
https://github.com/jdblischak/git-for-science
https://www.authorea.com/users/5990/articles/17489

4. Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, et al. Practical
guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol.
2013 null;9:e1003326.

5. Noble W. A quick guide to organizing computational biology projects. PLoS
Comput Biol. 2009 Jul;5:e1000424.

6. Morin A, Urban J, Sliz P. A quick guide to software licensing for the
scientist-programmer. PLoS Comput Biol. 2012 null;8:e1002598.

Supporting Information Legends

S1 Data

process.sh. This Bash script downloads the ENCODE CTCF ChIP-seq data from
multiple types of kidney samples and calls peaks. See
github.com/jdblischak/git-for-science/tree/master/code for instructions on running it.

S2 Data

clean.py. This Python script filters peaks with a fold change cutoff and merges peaks
from the different kidney samples. See
github.com/jdblischak/git-for-science/tree/master/code for instructions on running it.

S3 Data

analyze.R. This R script creates diagnostic plots on the length of the peaks and their
distribution across the genome. See
github.com/jdblischak/git-for-science/tree/master/code for instructions on running it.

PLOS 14/14

https://github.com/jdblischak/git-for-science/tree/master/code
https://github.com/jdblischak/git-for-science/tree/master/code
https://github.com/jdblischak/git-for-science/tree/master/code

