which makes  \(c = \frac{e+\alpha}{e\Gamma(\alpha + 1)}\).
Algo\(\left(0<\alpha\leq1\right)\)
  1. Generate U. Set  \(b=\ \frac{\left(e+a\right)}{e}\) and \(p\ =\ bu\). If \(p>1\) go to 3.
  2. (Case \(x\le1\)). Set \(x\ =\ p^{\frac{1}{\alpha}}\). Generate \(v\). If \(v>e^{-x}\) go to 1(rejection) or deliver \(x\).
  3. (Case \(x>1\)). Set \(x\ =\ -\ln\left(\frac{\left(b-p\right)}{a}\right)\). Generate \(v\). If \(v>x^{\alpha-1}\) go to 1(rejection), otherwise deliver \(x\).

Algorithm RGS\citep*{best1983note}

Best modified Ahrens algorithm and proposed that the function should not change at unity but a better approximation of majorization function can be given by switching the function at d, where d should be a function of fractional part of shape parameter \(\alpha\) i.e.