\(x=\frac{\int_0^0r\cos\theta rd\theta}{\int_0^0rd\theta}\)
\(x=\frac{r^2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}Cos\theta d\theta}{r\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta}=\frac{2r}{\pi}\)
\(P=\frac{w}{l}=0.5\frac{lb}{ft}\)
\(Bx-Ax=0\)
\(Ay-W=0\)
\(-xw+4Bx=0\)
\(-\left(\frac{2r}{\pi}\right)\left(\pi lb\right)+4Bx=0\)
\(\left(4ft\right)Bx=\left(\frac{2r}{\pi}\right)\left(\pi lb\right)\)
\(Bx=1Mo\)
\(l=\pi\left(2ft\right)\)
\(w=\frac{0.5lb}{ft}\left(\pi2ft\right)=\pi lb\)
\(Bx=Ax=\pi lb\)