\(P_0\)+\(\left(\frac{10}{4}\right)P_0\)+\(\left(\frac{10}{4}\right)^2P_0\)+\(\left(\frac{10}{4}\right)^3P_0\)+\(\left(\frac{10}{8}\right)\left(\frac{10}{4}\right)^3P_0\)+
\(\left(\frac{10}{8}\right)^2\left(\frac{10}{4}\right)^3P_0\)+\(\left(\frac{10}{8}\right)^3\left(\frac{10}{4}\right)^3P_0\)+
\(\left(\frac{10}{4}\right)^3\left(\frac{10}{8}\right)^3\left(\frac{10}{12}\right)^{n-6}P_0\) = 1
Factorizando
P0{\(1+\frac{10}{4}+\left(\frac{10}{4}\right)^2+\left(\frac{10}{4}\right)^3+\left(\frac{10}{4}\right)^3\left(\frac{10}{8}\right)+\left(\frac{10}{4}^{ }\right)^3\left(\frac{10}{8}\right)^2+\)
\(\left(\frac{10}{4}\right)^3\left(\frac{10}{8}\right)^3+\left(\frac{10}{4}\right)^3\left(\frac{10}{8}\right)^3\left(\frac{10}{12}\right)^{n-6}\)} = 1
P0{69.32+\(\left(\frac{10}{4}\right)^3\left(\frac{10}{8}\right)^3\left[\frac{1}{1-\frac{10}{12}}\right]\)} =1