Solución
\(\left[\frac{\Pi}{2},\ -\frac{\Pi}{2}\right]\)
\(x=rCos\theta\)\(y=r\ Sin\ \theta\)
\(dL=rd\theta\)
\(w=\left(0.5\ \frac{lb}{ft}\right)\ \Pi\ ft\)
\(\Sigma fy\)
\(Ay=w\)
\(x=\frac{\int_1^{ }r\ \cos\theta\ rd\theta}{\int_1^{ }rd\theta}=\frac{r^2\int_{-\frac{\Pi}{2}}^{\frac{\Pi}{2}}\cos\theta\ d\theta}{r\ \int_{-\frac{\Pi}{2}}^{\frac{\Pi}{2}}d\theta}=\frac{2r}{\Pi}\)
\(B_x-A_x\ =0\)
\(A_y-w=0\)
\(A_y=\Pi lb\)
\(-x\ w+4B_x\ =0\)
\(-\left(\frac{2r}{\Pi}\right)\left(\Pi lb\right)+4B_x=0\)
\(\left(4ft\right)\ B_x=\left(\frac{2r}{\Pi}\right)\left(\Pi lb\right)\)
\(B_x=1lb\)
\(\frac{w}{L}=0.5\ \frac{lb}{ft}\)
\(L=\Pi\left(2\ ft\right)\)
\(=\Pi lb\)
\(B_x=A_x=1lb\)
Resultado = 1 lb