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Exercise 13

Previous exercises have examined the carbonate system in ideal waters. However natural waters contain
other ions and compounds that interact with the carbonate system, thus changing it’s characteristics and
responses to environmental changes. The ability to model natural waters requires a thorough understanding
of these interactions. Carbonate salts are commonly geologically occurring and are a good example of solutes
that interact with the carbonate systems already examined, affecting water pH. Application of carbonate
salts to natural waters, in the form of CaCO3, is also of great importance to the efforts to counteract the
negative effects of acid rain. Performing such pollution mitigation efforts requires robust modelling of the
effects and thus a good understanding of how solutes affect water systems. The aim of this exercise is to
model the affect of Sodium bicarbonate, NaHCO3, on water pH.

When dissolved in water NaHCO3 disassociates according to (1).

NaHCO3 � Na+ +HCO−
3 (1)

This changes the charge balance which now becomes:

0 = [H+] + [Na+]− [OH−]− [HCO−
3 ]− 2 · [CO2−

3 ] (2)

Given the following equilibrium equations describing the carbonate system:

H2O + CO2(g) � H2CO3, KH =
[H2CO3]

PCO2

(3)

H2CO3 � H+ +HCO−
3 , KH2CO3

=
[H+][HCO−

3 ]

[H2CO3]
(4)

HCO−
3 � H+ + CO2−

3 , KHCO3
=

[H+][CO2−
3 ]

[HCO−
3 ]

(5)

H2O � H+ +OH−, KW = [H+][OH−] (6)

Substituting in (3)-(6) to the charge balance and simplifying yields

0 = [H+] + [Na+]− KW

[H+]
− KH2CO3

·KH · PCO2

[H+]
− 2 · KH2CO3

·KHCO3
·KH · PCO2

[H+]2
(7)
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Which when written in the form of a polynomial takes the form of

0 = [H+]3 + [Na+][H+]2 − [H+](KW +KH2CO3
·KH · PCO2

)− 2 ·KHCO3
·KHCO3

·KH · PCO2
(8)

The pH can then be calculated by solving the polynomial equation above for [H+] using the roots function
in matlab.

Figure 1: Figure showing how the pH of an ideal water system in equilibrium with the atmosphere (PCO2 =
400 · 10−6 atm) varies with [Na+].

Figure 1 was generated using matlab and the function phna.m and the script e13.m (see below). It shows
the pH increasing with the addition of Na+ ions.

The results of this modelling exercise appear to be reasonable and correspond to what would be expected
given the charge balance equation (7). The results also show why addition of carbonate salts can be an
effective measure to increase the pH in acidified natural water systems.

File: phna.m

function phres=phna(na)

% Constants at 10 degC

kw = 10^(-14.540);

kh2co3 = 10^(-6.482);

khco3 = 10^(-10.471);

kh = 10^(-1.260);

pco2 = 4*10^-4; % atm

a(1) = 1 ; a(2) = na ; a(3) = -(kw + kh2co3 * kh * pco2) ; a(4) = -2 * kh2co3 * khco3 * kh * pco2;

X = roots([a]);

x = max(X(find(imag(X) == 0))); % conc. h+

phres = -log10(x);

end
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File: e13.m

fplot(@phna, [0 10^-3])

xlabel(’[Na^+]/M’)

ylabel(’pH’)

grid on
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Exercise 14

Different natural water systems will have different buffering properties based on their composition and
environment (PCO2

). One way of observing the buffering properties of a water system is to perform an
acid-base titration and produce a titration curve. The titration curve can also be used to determine how
much acid or base is required to change the pH of a water system to a specific value. This is valuable eg.
when determining the amount of CaCO3 to add to a lake to counteract anthropogenic acidification. This
exercise aims model an acid-base titration in an ideal water system and explain the change in buffering
capacity observed at higher PCO2

.

As explored in Exercise 13 the charge balance when adding Na+ions in the form of NaHCO3 becomes as
follows:

0 = [H+] + [Na+]− [OH−]− [HCO−
3 ]− 2 · [CO2−

3 ] (9)

Here it can be seen that the same charge balance holds true if Na+ions are added in the form of NaOH.
It can further be seen that if, after the addition of Na+ions, Cl− ions are added in the form of HCl the
charge balance will become:

0 = [H+] + [Na+]− [Cl−]− [OH−]− [HCO−
3 ]− 2 · [CO2−

3 ] (10)

Substituting in (3) - (6) and rewriting in its polynomial form it becomes:

0 = [H+]3+[Na+][H+]2−[Cl−][H+]2−[H+](KW +KH2CO3
·KH ·PCO2

)−2·KHCO3
·KHCO3

·KH ·PCO2
(11)

From (10) it can be seen that from a calculation standpoint addition of Cl−ions can be viewed as a subtraction
of Na+ ions.

Figure 2: Figure showing a modelled titration curve of Cl− (depicted as negative concentrations of Na+)
and Na+ added to an ideal water system at partial pressures of CO2 of 4 · 10−4 and 4 · 10−2 atm.

Figure 2 was generated using matlab and the function phna.m described in Exercise 13 (see above) as
well as the function phna2.m, identical to phna.m apart from having a different constant set for PCO2

(see
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below), and the script e14.m (see below). The calculations treat concentrations of Cl− ions as negative
concentrations of Na+ ions and calculates the pH by solving the polynomial charge balance (8) for [H+]
using matlabs roots function.

As can be seen from Figure 2 the water system in en environment with a PCO2
of 4 · 10−2 atm has a much

larger ability to buffer the addition of a base. This is most prominent when the pH is above 4. The increased
base-buffering capacity is consistent with that increased PCO2

leads to increased [H2CO3] which will then
deprotonate to

[
HCO−

3

]
and

[
CO2−

3

]
- leading to an increase in [H+] and thus a lower pH.

File: phna2.m

function phres=phna2(na)

% Constants at 10 degC

kw = 10^(-14.540);

kh2co3 = 10^(-6.482);

khco3 = 10^(-10.471);

kh = 10^(-1.260);

pco2 = 4*10^-2; % atm

a(1) = 1 ; a(2) = na ; a(3) = -(kw + kh2co3 * kh * pco2) ; a(4) = -2 * kh2co3 * khco3 * kh * pco2;

X = roots([a]);

x = max(X(find(imag(X) == 0))); % conc. h+

phres = -log10(x);

end

File: e14.m

fplot(@phna, [-3*10^-4 10^-3])

xlabel(’[Na^+]/M’)

ylabel(’pH’)

grid on

hold on

fplot(@phna2, [-3*10^-4 10^-3], ’--’)

legend(’400 ppm CO_2’,’40000 ppm CO_2’)
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Exercise 15

A useful application of the water pH models that have been developed in earlier exercises is calculating the
amount of an acid or base to add to a water system to change the pH from a know value to a desired value.
This is highly relevant for example when adding CaCO3 to lakes to counteract anthropogenic acidification.
This exercise aims to calculate the amount of HCl, H2SO4 and NaOH that are required to adjust the pH
of a known quantity of an ideal water system by a specified amount.

Assuming the same water system as has been examined in Exercise 14, an expression for the [Na+] as a
function of [H+] can be constructed from the charge balance (2):

[Na+] = [H+]− [OH−]− [HCO−
3 ]− 2 · [CO2−

3 ] (12)

Substituting in (3)-(6) to the charge balance and simplifying yields

[Na+] = 10−pH − KW

10−pH
− KH2CO3

·KH · PCO2

10−pH
− 2 · KH2CO3

·KHCO3
·KH · PCO2

(10−pH)2
(13)

This model works with [Na+] as the ion coming from the base NaOH. As was examined in Exercise
14, [Na+] is calculationally equivalent to − [Cl−] when dealing with the acid HCl. H2SO4 is a diprotic acid,
however as can be seen from the charge balance it can calculationally be considered equivilent to −3 [Na+]:

0 = [H+]− [OH−]− [HSO−
4 ]− 2 · [SO2−

4 ]− [HCO−
3 ]− 2 · [CO2−

3 ] (14)

The difference in [Na+] between two solutions at different pH, ∆ [Na+], can be found by taking the difference
of (13) calculated at each pH.

Given the total volume of the solution (assumed here to be constant), Vw, the number of moles necessary
to bring about such a change in pH, n, can be calculated as n = ∆ [Na+] · Vw. Given the molarity M of
an acid/base and the factor f being the number of [Na+] equivalents, the volume of acid/base required to
achieve the desired change in pH, V , can be calculated as V = n

M ·
1
f .

One central assumption in these calculations is that the volume will remain constant as the acid/base is
added. For small additions this would appear to be a reasonable assumption. However the assumption
can also be checked by viewing the process of addition as two steps. The first step being an addition of
the acid/base with no increase in volume and the second being an increase in volume of pure water which
changes [H+] and thus the pH. If the initial volume is denoted V1, the final volume V2, the [H+] after
addition of volume-less acid/base is [H+]1, the [H+] after the pure water volume addition [H+]2 and the
corresponding pHes pH1 and pH2 then the error in pH can be calculated as follows:

pH error = − log(
[H+]1 · V1

V2
)− pH1 (15)

These calculations were performed using matlab and the function nafunc.m and the script e15.m. The
conditions, calculated results and calculated error due to the assumption of constant volume can be seen in
Table 1.

The error in pH due to the assumption of constant volume is insignificant for all of the conditions and the
assumption is therefore considered valid. The calculated volume of acid/base to add appear to be reasonable
given the small initial volumes.
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Table 1: Table modeled conditions, calculated volume needed to affect the desired change in pH and the
calculated error in pH due to assumption of constant volume.

Condition 1 Condition 2 Condition 3
Acid/base HCl H2SO4 NaOH
Initial volume /L 0.1 0.1 0.3
Initial pH 8.0 6.0 4.5
Final pH 6.0 4.0 7.5
Volume acid/base added /L 7.2 · 10−3 3.5 · 10−4 3.9 · 10−3

pH error 0.0303 0.0015 0.0056

File: nafunc.m

function naconc=nafunc(ph)

kw = 10^(-14.540);

kh2co3 = 10^(-6.482);

khco3 = 10^(-10.471);

kh = 10^(-1.260);

pco2 = 4*10^-4; % atm

hconc = 10^(-ph);

naconc = ((kw+(kh2co3*kh*pco2))/hconc) + ((2*kh2co3*khco3*kh*pco2)/hconc^2) - hconc;

end

File: e15.m

%% volume hcl added:

deltahcl = nafunc(8) - nafunc(6); % difference in concentration of hcl between pH 8 and 6

nhcl = deltahcl / 10; % amount of hcl in moles (assuming total volume constant)

Mhcl = 0.01; % molarity of hcl solution

volhcl = nhcl/Mhcl; % volume of hcl needed to change pH from 8 to 6 in L

totVolHcl = volhcl + 0.1; % total volume (not assuming constant volume)

hconcHcl = 10^(-6); % H^+ concentration assuming constant volume

hconc2Hcl = (hconcHcl * 0.1) / totVolHcl; % H^+ concentration not assuming constant volume

ph2Hcl = -log10(hconc2Hcl); % pH not assuming constant volume

pherrorHcl = ph2Hcl - 6; % difference in pH due to assuming constant volume

%% volume h2so4 added:

deltah2so4=nafunc(6) - nafunc(4); % difference in concentration of h2so4 between pH 6 and 4

nh2so4 = deltah2so4/10; % amount of h2so4 in moles (assuming total volume constant)

Mh2so4 = 0.01; % molarity of h2so4 solution

volh2so4 = ((nh2so4 / Mh2so4)/3) % volume of h2so4 needed to change pH from 6 to 4 in L

totVolh2so4 = 0.1 + volh2so4;

hconch2so4 = 10^(-4);

hconc2h2so4 = (hconch2so4 * 0.1) / totVolh2so4;

ph2h2so4 = -log10(hconc2h2so4);

pherrorh2so4 = ph2h2so4 - 4;

%% volume of naoh added to raise ph from 4.5 to 7.5

deltanaoh = nafunc(7.5) - nafunc(4.5);

nnaoh = (deltanaoh / 10) * 3;

Mnaoh = 0.02;

volnaoh = nnaoh / Mnaoh

totVolnaoh = volnaoh + 0.3;
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hconcnaoh = 10^(-7.5);

hconc2naoh = (hconcnaoh * 0.3) / totVolnaoh;

ph2naoh = -log10(hconc2naoh);

pherrornaoh = ph2naoh - 7.5;
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Exercise 16

Alkalinity is a term used to describe the buffering capacity of water and is defined as the sum of equivalence
sum of all bases that can be titrated with a strong acid. Alkalinity is an important measure used in
environmental monitoring and water treatment as it contains much information about how the water will
react to environmental changes and treatment measures. This exercise aims to calculate the Gran-alkalinlity
of two natural waters from Zimbabwe using Gran-titration data.

Gran-titration is an exact method for determining the alkalinity of water. It is based on measuring how the
pH of a water sample changes as it is titrated with an acid of known concentration. The resulting data can
then be analysed to determine how many moles of acid is required to exhaust the buffering basic anions in
the water sample, measured as the added amount of acid at which the pH starts to increase linearly with
additional added acid.

The first step in calculating the Gran-alkalinity is to calculate the Gran function. It is defined as

{
y-axis = (V + V0) · 10−pH

x-axis = Ca·V
V0

(16)

Where V is the volume of added acid, V0 is the volume of the water sample and Ca is the concentration
of the titration acid. Analysing the units yields that the the y-axis shows the number of moles of [H+] in
the solution and the x-axis is the number of moles of added acid per volume original sample. Graphing the
Gran-function will yield an initial horizontal part in which all the added H+ are buffered and a linear part in
which all H+ contributes to decreasing pH. Between these two parts is transition region. Performing linear
regression on the linear part of the Gran-function and extrapolating the x-intercept yields the theoretical
value at which all buffering anions are exhausted - which is the Gran-alkalinity.

Figure 3: Figure showing the Gran-function and linearised and extrapolated Gran-function as well as the
pH for two natural waters in Zimbabwe.

This exercise calculated the Gran-alkalinity of two natural waters, Nyam 7 and Sawmills, in Zimbabwe based
of titration data by David Wallin and Lars Aspelin (1999), see Table . The calculations were performed
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Table 2: Table showing titration data for two the Nyam 7 and Sawmills natural waters in Zimbabwe. Data
by David Wallin and Lars Aspelin, 1999

Nyam 7 Sawmills
Point # Added acid / ml Sample pH Added acid / ml Sample pH
1 0 7.01 0 9.12
2 1.50 4.99 1.72 4.62
3 1.55 3.98 1.77 4.01
4 1.60 3.55 1.82 3.58
5 1.65 3.35 1.87 3.36
6 1.70 3.19 1.92 3.2
7 1.75 3.09 1.97 3.09
8 1.80 3.01 2.02 3.01
9 1.85 2.94 2.07 2.93
10 1.90 2.88 2.12 2.87
11 1.95 2.82 2.17 2.82
12 2.00 2.78 2.22 2.77
13 2.05 2.75 2.27 2.73

in matlab using the script e16.m (see below). The Gran-alkalinity was performed based on linear regression
analysis of points #4-13 for both samples.

The Gran-alkalinity of Nyam 7 was calculated to 6.4 · 10−3 eq
l and for Sawmills to 7.4 · 10−3 eq

l . The full
Gran-functions for the two waters as well as the extrapolated linear regression lines can be seen in Figure 3.

Hard water is defined as water having a
[
Ca2+

]
+
[
Mg2+

]
of 3500 - 7000 μeq / l and very hard as having

a combined concentration grater than 7000 μeq/l. The samples examined in this exercise have a Gran-
alkalinity of 6400 and 7400 μeq/l respectively. If we assume that

[
HCO−

3

]
� [H+] , [OH−] ,

[
CO2−

3

]
,

which is reasonable assuming the pHes of 7.01 and 9.12 (see Exercise 4, 5 & 6) and that the samples contain
little or no DOC, which is reasonable given that the samples are groundwater, then the charge balance can
be approximated as follows:

{
[HCO−

3 ] = 6400, 7400µeql−1

[HCO−
3 ] =

∑
eq concentrations of cations

(17)

The hardness of the water will depend on the species and concentrations of cations present in the water.
However given that Ca2+and Mg2+are frequently among the most abundant cations in groundwater it
appears reasonable that their combined equivalent concentration will be grater than 3500 μeq / l and for the
Sawmills sample, possibly grater than 7000 μeq / l meaning that it likely that the water samples are hard
and possibly very hard.

File: e16.m

%% added acid in ml and corresponding pH for nyam7 and sawmill

nyam7=[0 7.01

1.50 4.99

1.55 3.98

1.60 3.55

1.65 3.35

1.70 3.19
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1.75 3.09

1.80 3.01

1.85 2.94

1.90 2.88

1.95 2.82

2.00 2.78

2.05 2.75];

sawmills=[0 9.12

1.72 4.62

1.77 4.01

1.82 3.58

1.87 3.36

1.92 3.20

1.97 3.09

2.02 3.01

2.07 2.93

2.12 2.87

2.17 2.82

2.22 2.77

2.27 2.73];

%% Calculate gran alkalinity

v=20;

Mhcl=0.085;

granNyam7(:,1) = (nyam7(:,1).*Mhcl)./v;

granNyam7(:,2) = ((nyam7(:,1)+v)/1000).*10.^(-nyam7(:,2));

granSawmills(:,1) = (sawmills(:,1).*Mhcl)./v

granSawmills(:,2) = ((sawmills(:,1)+v)/1000).*10.^(-sawmills(:,2));

polyfitNyam7x = polyfit(granNyam7(4:end,2), granNyam7(4:end,1),1);

nyam7granalkalinity = polyfitNyam7x(2)

polyfitNyam7y = polyfit(granNyam7(4:end,1),granNyam7(4:end,2),1);

nyam7px=linspace(nyam7granalkalinity,(nyam7granalkalinity + 2*10^-3));

nyam7py=nyam7px.*polyfitNyam7y(1) + polyfitNyam7y(2);

polyfitSawmillsx = polyfit(granSawmills(4:end,2), granSawmills(4:end,1),1);

sawmillsgranalkalinity = polyfitSawmillsx(2);

polyfitSawmillsy = polyfit(granSawmills(4:end,1), granSawmills(4:end,2),1);

sawmillspx=linspace(sawmillsgranalkalinity, (sawmillsgranalkalinity + 2*10^-3));

sawmillspy=sawmillspx.*polyfitSawmillsy(1) + polyfitSawmillsy(2);

%% Plots

figure(2)

yyaxis left

xlabel(’added acid / $\frac{mol}{l}$’,’interpreter’,’latex’)

nyamplot_gran = plot(granNyam7(:,1), granNyam7(:,2), ’-.’);

ylabel(’moles of H^+ in solution’)

hold on

plot(nyam7px,nyam7py,’-’)
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axis([5.5*10^-3 7.5*10^-3 -0.1*10^-5 1*10^-5])

yyaxis right

nyamplot_ph = plot(granNyam7(:,1), nyam7(:,2));

ylabel(’pH’)

grid on

legend(’gran function’, ’linearised gran function’, ’pH’)

title(’Nyam 7’)

figure(3)

yyaxis left

xlabel(’added acid / $\frac{mol}{l}$’,’interpreter’,’latex’)

sawmillsplot_gran = plot(granSawmills(:,1), granSawmills(:,2), ’-.’);

ylabel(’moles of H^+ in solution’)

hold on

plot(sawmillspx,sawmillspy,’-’)

axis([6.5*10^-3 8*10^-3 -0.1*10^-5 1*10^-5])

yyaxis right

sawmills_ph = plot(granSawmills(:,1), sawmills(:,2));

ylabel(’pH’)

grid on

legend(’gran function’, ’linearised gran function’, ’pH’)

title(’Sawmills’)

12



Exercise 17

An organic acid dissociation fraction was created for this exercise. It assumes that all organic acids are
monoprotic and shows the percentage of the concentration of humic acids dissociated at a specific pH-value.

The organic acid dissociation fraction is expressed as
[R−]

[R−]+[RH] and is created by utilizing equations 7.2 and

7.3 found in the textbook:

[R−]

[R−] + [RH ]
=

[R−]

7 · 10−6 · [DOC]
=

7 · 10−6 [DOC]

7 · 10−6 [DOC]
· KR

KR + [H+]
=

KR

KR + 10−pH

The rate of dissociation of organic acids, KR, is dependent on the pH-value of the solution. KR is also depen-
dent on what type of organic acids that exists in the system. Different organic acids are found in different
environments, so KR may need to be adjusted depending on the location. For purposes of calculation, the
value of KR may sometimes need to be set constant. In fig. 4 we can see the acid dissociation fraction
plotted with both a constant and pH-dependent KR for the interval 4 < pH < 8.

Figure 4: An organic acid dissociation fraction for different pH-values.

For this interval, it depends on what the purpose of analysis is if a constant KR could be utilised. For
example, in a rougher estimation of the concentration of organic acids it may be applied.

For the calculations of the concentration of DOC in Lake Öresjön, a function was set up through the
expression of the concentration of organic anions 7.3 in the textbook

[
R−] = 7 · 10−6 · [DOC] · KR

KR + [H+]
⇔ [DOC] =

[R−] · (KR + [H+])

7 · 10−6 ·KR
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The concentrations of organic anions was hydrogen put into the function. The pH dependent KR was used.
The concentrations were calculated to be

[DOC]85 = 3.6745
mg

L

[DOC]05 = 5.3668
mg

L

This increase of dissolved organic carbon can be explained from the decreased acidity, concentrations of
hydrogen going from 20 to 6 mg

L from 85 to 05. The organic humus particles functions as cement for soil
particles. This cementation is stronger for lower pH-values, and so when the pH increases the humus particles
will let loose from the soil particles and spread in the water, adding to brownification.

File: e17.m

%% 2.

fplot(@(ph) adf(ph, 0), [4, 8]);

hold on

fplot(@(ph) adf(ph, 1), [4, 8]);

legend(’constant kr’, ’ph-dependent kr’)

%% 3.

doc85 = doc(-log10(20*10^-6), 19*10^-6, 1) % answers in mg/L

doc05 = doc(-log10(6*10^-6), 33*10^-6, 1)

File: doc.m

function docres=doc(pH,R, bool)

if bool == 0

kr=5*10^-5

elseif bool == 1

kr = 10^-(3.972 - 0.087 * pH + 0.031 * pH^2);

end

docres=R/(7 * 10^-6 * (kr/(kr + 10^-pH)));

end

File: adf.m

function adfres=adf(pH, bool)

if bool == 0

kr = 5*10^-5;

elseif bool == 1

kr = 10^-(3.972 - 0.087 * pH + 0.031 * pH^2);

end

adfres=kr/(kr + 10^-pH);

end
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Exercise 18

This exercise aims to look at the concentrations of aluminium species in surface water, and how they differ
at different pH-values. In order to plot the concentrations on a graph, three functions were created that

give the concentrations of the aluminium species
[
Al3+

]
,
[
Al (OH)

2+
]

and
[
Al (OH)

+
2

]
. The origin of these

three aluminium species come from the dissolution of the solid Al (OH)3 by H+ ions. The reactions for the
creation of the three aluminium species are found in the compendium. The equilibrium constants used for
calculations for these reaction are as follows

KG =

[
Al3+

]
[H+]

3 = 108.5

KAl(OH) =
[Al(OH)2+][H+]

[Al3+] = 1 · 10−5

KAl(OH)2
=

[
Al (OH)

+
2

]
[H+][

Al (OH)
2+
] = 5 · 10−10

These expressions were then rearranged to create functions that calculate the concentrations.

[
Al3+

]
= KG · 10−3pH[

Al (OH)
2+
]

= KG ·KAl(OH) · 10−2pH[
Al (OH)

+
2

]
= KG ·KAl(OH) ·KAl(OH)2

· 10−pH

The concentrations of the different species, as well as the total concentration of species were then plotted
for the interval 4 < pH < 7, seen in fig. 5.
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Figure 5: Concentrations of different aluminium species and the total concentration of aluminium species at
different pH-values

Fig. 5 shows an exponential growth of the total concentration of aluminum species for pH- values < 5. The
decrease of aluminium species is a consequence of the decreased dissolution of Al (OH)3 with increasing pH.
To see more clearly how the concentrations relate to each other a molar fraction diagram (such as in exercise
12) was created, it can be seen in fig. 6.
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Figure 6: Molar fraction diagram of aluminium species in surface water at different pH-values

Al3+ dominates the surface waters at pH-levels below 5, while Al (OH)
2+

and Al (OH)
+
2 dominate at neutral

and alkaline conditions, respectively.

Atlantic salmon and perch can stay unaffected below total concentrations of aluminum of 1 µmol L−1

and 10 µmol L−1, respectively. Analysing the graph in fig. 5 we find these concentrations at pH-values 4.9
and 4.55.

File: e18.m

%% e18.m

%% 1

figure

fplot(@al3conc, [4 7], ’:’);

hold on

fplot(@alohconc, [4 7]), ’-.’;

fplot(@aloh2conc, [4 7]);

fplot(@totalconc, [4 7], ’--’);
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xlabel(’pH’);

ylabel(’Al species concentration / mol \cdot L^{-1}’);

legend(’[Al^{3+}]’, ’[AlOH^{2+}]’, ’[Al(OH)_2^+]’, ’Total [Al]’);

%% 2

figure

fplot(@molfrac, [4 12]);

xlabel(’pH’);

ylabel(’mole fraction of Al species’)

legend(’Al^{3+}’, ’AlOH^{2+}’, ’Al(OH)_2^+’)

%% 3

File: alohconc.m

%% alohconc.m

function conc = alohconc(pH)

kg=10^8.5;

h=10^-pH;

kaloh = 10^-5;

conc = kg*kaloh*h^2;

end

File: aloh2conc.m

%% aloh2conc.m

function conc = aloh2conc(pH)

kg=10^8.5;

h=10^-pH;

kaloh = 10^-5;

kaloh2 = 5*10^-10;

conc = kg*kaloh*kaloh2*h;

end

File: molfrac.m

function x = molfrac(pH)

x(1) = al3conc(pH) / totalconc(pH); % mole fraction of Al(3+)

x(2) = alohconc(pH) / totalconc(pH); % mole fraction of AlOH(2+)

x(3) = aloh2conc(pH) / totalconc(pH); % mole fraction of Al(OH)2(+)

end

File: al3conc.m

%% al3conc.m

function conc = al3conc(pH)

kg=10^8.5;

h=10^-pH;

conc = kg*h^3;

end

File: totalconc.m

%% totalconc.m

function conc = totalconc(pH)

conc = al3conc(pH) + alohconc(pH) + aloh2conc(pH);

end
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Exercise 19

Depending on what variables that are known, the acid neutralising capacity (ANC) can be used to analyse
the buffer capacity as well as deriving a pH-value for aquatic systems. In this exercise we calculate the ANC
of the precipitation from the four locations given in exercise 2 and a corresponding pH value from that ANC
calculation.

The ANC was calculated by using the definition that utilises concentrations of cations to strong bases and
anions to strong acids.

[ANC] = ΣscbnC
n+ − ΣasamC

m−

The data of the concentrations was gathered from the table in exercise 2 and inserted in the equation above,
the results as follows.

[ANC]Klosterhede = −84µeq L−1

[ANC]Kootwijk = −21µeq L−1

[ANC]Höglwald=−20µeq L−1

[ANC]Ballyhooly = 16µeq L−1

The corresponding pH-value was then calculated by creating a function in matlab based on the definition
of ANC that includes the anions to weak acids and the cations to weak bases, assuming no DOC or Al
in the water and a partial pressure PCO2

= 4 · 10−4atm. Using the roots command the function gives a
concentration of H+ which can subsequently be used to calculate the pH-value.

0 = [ANC] − KH2CO3
KHPCO2

[H+]
+
[
H+
]

⇐⇒

0 =
[
H+
]2

+ [ANC] ·
[
H+
]
−KH2CO3

KHPCO2

The resulting pH-value for each location was as follows

pHKlosterhede = 4.07

pHKootwijk = 4.67

pHHöglwald = 4.69

pHBallyhooly = 6.36

The small difference between the results given and the pH-value given in the table for exercise 2 could be
explained by a difference in value of KH2CO3

, KH or PCO2
.

File: e19.m
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%% 1

% (Na(+) K(+) 2*Ca(2+) 2*Mg(2+) NH4(+)) - (NO3(-) 2*SO4(2-) Cl(-))

ANCklos=(192 + 5 + 15 + 48 + 35) - (50 + 90 + 239);

ANCkoot=(59 + 2 + 6 + 16 + 86) - (38 + 73 + 79);

ANChogl=(11 + 10 + 24 + 9 + 55) - (41 + 75 + 13);

ANCball=(266 + 7 + 18 + 67 + 28) - (11 + 42 + 317);

%% 2

%solution using fzero

hconc = fzero(@fcalc, 10^-6); % adjust second parameter until reasonable result is reached

ph = -log10(hconc);

%solution using roots

newPh = fcalc2(-2)

File: fcalc.m

function y=fcalc(h)

kh2co3 = 10^-(6.482);

kh = 10^-(1.260);

pco2=4*10^-4;

anc=59*10^-6; % insert ANC value for any location in eq/L

y=anc-(kh2co3*kh*pco2)/h + h;

end

File: fcalc2.m

function ph=fcalc2(ancmicro)

kh2co3 = 10^-(6.482);

kh = 10^-(1.260);

pco2=4*10^-4;

anc=ancmicro*10^-6;

a(1)=1; a(2)=anc; a(3)=-(kh2co3*kh*pco2);

X = roots([a]);

x = max(X(find(imag(X) == 0))); % conc. h+;

ph = -log10(x);

end
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Exercise 20

There is definite practical value of determining the ANC of aquatic systems. Not only does it give a measure
of the buffer capacity of a system, or calculate a specific pH-value as in exercise 19, it can also be used
as an efficient tool to analyse how the change in pH of a system after the system has been polluted with
various ions. In this exercise ANC is used to determine the pH-value of a lake before and after a lake has
been accidentaly exposed to a discharge of ammonia, as well as the pH after said ammonia has been nitrified
to nitrate.

Similarly to exercise 19, a function to calculate the pH based on the ANC was made for this exercise.
Concentrations of DOC and aluminium were not neglected. Assuming the lake is of a relatively ordinary
kind and therefore with a pH-value below 9, concentrations of OH− and CO2−

3 were neglected. The function
was then created as such

0 = [ANC]−
[
HCO−

3

]
−
[
R−]+

[
H+
]

+ 3
[
Al3+

]
⇐⇒

0 = [ANC]− KH2CO3 ·KH · PCO2

[H+]
−
[
R−]+

[
H+
]

+ 3KG ·
[
H+
]3

⇐⇒

0 = [ANC]− KH2CO3 ·KH · PCO2

[H+]
− 7 · 10−6 · [DOC] · KR

KR + [H+]
+
[
H+
]

+ 3KG

[
H+
]3

Where values of KG, PCO2
and [DOC] was set per exercise instructions, KH and KH2CO3

was set for 10° C,
and a constant KR = 5 ·10−5 was used due to the assumption of a pH below 9 (see exercise 17). The equation
was then rearranged to remove all denominator [H+] so the roots-function in Matlab could be applied.

0 = 3·KG·
[
H+
]5

+3·KR·KG·
[
H+
]4

+
[
H+
]3

+([ANC] +KR)·
[
H+
]2

+
(
[ANC] ·KR −KH2CO3

·KH · PCO2
− 7 · 10−6 · [DOC] ·KR

)
·
[
H+
]

(18)

Entering the values for the constants as well as the value of the ANC before the accident in eq. 18 gave the
pH-value

pHpre = 6.8

The addition of ammonia will change the ANC and therefore the pH-value of the lake. The ammonia was
assumed be fully protonated into ammonium due to the pH-value. As per definition 7.11 in the textbook,
the ANC will increase as the concentration of positive charges, contributed by ammonium, increases. The
concentration of positive charges contributed by ammonium in the lake was therefore calculated.

MNH3
= 17, 031 · 10−3 kg

mol

mNH3
= (15 · 103 · 0.24)kg

mNH3

MNH3

= nNH3 = nNH+
4

= 2.1138 · 105 mol

Vlake+discharge =
(
20 · 104 · 3 + 15

)
· 103 l[

NH+
4

]
=

nNH4

Vlake+discharge
= 352.29

µeq

l
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[ANC]post = [ANC]pre +
[
NH+

4

]
= 472.29

µeq

l

[ANC]post was then entered into eq. 18 and the pH-value after the incident was calculated to be

pHpost = 7.49

If all the ammonium is nitrified to nitrate the ANC will change accordingly. As nitrate is considered, at
this pH, an anion to a strong acid the ANC will decrease and the pH-value of the lake will decrease. This
nitrification turns the entire concentration of ammonium into an equal concentration of nitrate. A new ANC
value was therefore calculated.

[ANC]nitrification = [ANC]pre −
[
NO−

3

]
= [ANC]pre −

[
NH+

4

]
= −232.29

µeq

l

The new ANC-value was thereafter put into eq. 18 and a new pH-value was given.

pHnitrification = 4.23

The nitrification can be equated to a spill of nitric acid into the lake. As the acid is strong it will be
completely deprotonated. When the ammonium is nitrified into nitrate, the strength of the anion will push
the equilibrium of free floating hydrogen to a higher concentration.

File: e20.m

%% 1

ANCpre = 120;

preph=ph20(ANCpre)

%% 2

Mnh3 = 17.031*10^-3 % kg/mol

mnh3 = 15*10^3 * 0.24; % kg

nnh3 = mnh3 / Mnh3;

nnh4 = nnh3;

totvol = (20*10^4*3 + 15) * 10^3; % L

cnh4 = (nnh4 / totvol) * 10^6; % ?eq / L

ANCpost = ANCpre + cnh4

postph = ph20(ANCpost)

%% 3

ANCno3 = ANCpre - cnh4;

no3ph = ph20(ANCno3)

File: ph20.m

function ph = ph20(ancmicro)

kh2co3 = 10^-(6.482); % constant at 10degC

kh = 10^-(1.260); % constant at 10degC

pco2 = 2 * 4*10^-4;

doc = 4; % mg * L^-1

kg = 10^8.5;

kr = 5*10^-5; % OBS this is a simplification, discuss using graph from e17.

anc=ancmicro*10^-6; %ANC now in eq/L
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a(1)= 3 * kg;

a(2)= 3 * kr * kg;

a(3)= 1;

a(4)= anc + kr;

a(5)= kr * anc - kh2co3 * kh * pco2 - 7*10^-6 * doc * kr;

a(6) = -kr * kh2co3 * kh * pco2;

X = roots([a]);

x = max(X(find(imag(X) == 0))); % conc. h+;

ph = -log10(x);

end
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Exercise 21

The anthropological process of adding and letting CaCO3 dissolve into aquatic systems, distributing Ca2+

and CO2−
3 to raise the buffer capacity of the system, is known as liming. The name of the process is taken

from limestone, which consists mainly of CaCO3. The process can be applied to lakes that are too acidic
and thus contributes to a more ecological environment.

In this exercise, two lakes with the same pH were to be limed, raising their pH value from 4.5 to 6.9. One
of the lakes is clear with [DOC] = 4 mg

L , the other is humic with [DOC] = 20 mg
L . Assuming KG = 108.5

and PCO2
two times the atmospheric partial pressure, the ANC before adding CaCO3 for both lakes was

calculated through use of definition 7.10 in the compendium.

[ANC]
pre
clear = −44.0125

µeq

L

[ANC]
pre
humic = 24.5958

µeq

L

Next, the difference in ANC necessary for raising the pH-value to 6.9 for each lake was calculated.

∆ [ANC] = [ANC]
post − [ANC]

pre

⇒

∆ [ANC]clear = 186.9201
µeq

L

∆ [ANC]humic = 230.0305
µeq

L

The concentration of CaCO3 necessary for the change in ANC could then be calculated through

[CaCO3] = MCaCO3 ·
∆ [ANC]

2
· 10−3

Where MCaCO3
= 100.09 g

mol . As ANC is given in µeq
L and the charge of carbonate and calcium is 2+,

the change in ANC is divided in two to give corresponding concentration in mol
L . The results were then

calculated to be

[CaCO3]clear = 9.35
g

m3

[CaCO3]humic = 11.51
g

m3

As can be seen from the calculations of the ANC-values of the two lakes before the spill, the clear lake has a
lower ANC. This means that the buffer capacity of the clear lake is smaller than that of the humic lake. This
in turn makes the clear lake more sensitive to changes in pH, as can be seen by the lesser amount of CaCO3

needed to raise the pH to 6.9 when compared to the humic lake.

File: e21.m

Mcaco3 = 100.09; % g/mol

%% lake clear

ancclear = anc(4.5, 4) * 10^6 % \mueq/L

dancclear = (anc(6.9, 4) - anc(4.5, 4)) * 10^6 % ?eq/L

24



ccaco3clear = Mcaco3 * (dancclear/2) * 10^-3 % g/m3

%% lake humic

anchumic = anc(4.5, 20) * 10^6 % \mueq/L

danchumic = (anc(6.9, 20) - anc(4.5, 20)) * 10^6 % ?eq/L

ccaco3humic=Mcaco3 * (danchumic/2) * 10^-3 % g/m3

File: anc.m

function ancres=anc(pH,doc)

kh2co3 = 10^-(6.482); % constant at 10degC

kh = 10^-(1.260); % constant at 10degC

pco2 = 2 * 4*10^-4;

kg = 10^8.5;

kr = 5*10^-5; % OBS this is a simplification, discuss using graph from e17.

h=10^-pH;

ancres = (kh2co3 * kh * pco2) / h + (7*10^-6*doc*kr) / (kr + h) - h - 3 * kg * h^3;

end

Exercise 22

In different lakes different buffering systems can be found. Depending on the concentrations of ions in the
waters, different buffering systems dominate. In this exercise the ANC for the lakes Härsvatten, Vemmarsjön
and Sövdesjön, and the shallow and deep groundwater in southern Sweden was calculated and compared.
The accuracy of the ANC model used throughout these exercises was also analysed by measuring the pH
through the ANC model and then compared to measured data.

The ANC for each lake/groundwater was calculated through use of the “anions to weak acids and cations to
weak bases”-definition (definition 7.10 in the compendium). The data for each location was found in table
3.2 in the compendium. The resulting ANC for each lake/groundwater was as follows.

[ANC]Härsvatten = −35.62
µeq

L

[ANC]V emmarsjön = 87.21
µeq

L

[ANC]Sövdesjön = 2217.99
µeq

L

[ANC]Shallow = 310.97
µeq

L

[ANC]Deep = 3171.37
µeq

L

Next, a function similar to eq. 18 was created in Matlab. This new function, however, plots the pH as a
function of partial pressure CO2 of the lake/groundwater with their specific ANC. The pH was then plotted
for Vemmarsjön and Sövdesjön, as can be seen in fig. 7
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Figure 7: pH-values at different partial pressures of CO2 for lake Sövdesjön and Harsvatten at their specific
ANC

When comparing the resulting ANC-values while looking at concentrations of dissolved species given in
table 3.2 a strong correlation between concentrations of HCO−

3 and ANC can be observed. The higher the
concentration of HCO−

3 , the higher ANC.

The measured pH, given by table 3.2, for Sövdesjön and Vemmarsjön are 8.16 and 6.1, respectively. Locating
these values in fig. 7 gives partial pressures of more than double that of a normal atmosphere, this suggests
that the two lakes are supersaturated with CO2.

The most important buffering systems of lakes Härsvatten, Vemmarsjön and Sövdesjön is the carbonate
system, with bicarbonate being the most significant proton acceptor. This can, as stated above, be observed
in the ANC-value of the three lakes.

File: e22.m

%% 1

% Concentration of ions in \mu eq / L in the order of, DOC in mg / L

% % Cl(-), SO4(2-), NO3(-), HCO3(-), Na(+), Ca(2+), Mg(2+), K(+), NH4(+), Al(3+), DOC, pH

data = [

243 102 30 0 240 29 58 11 3 4 3.5 4.5; % harsvatten

18 29 2 88 53 78 38 8 2 0 8.5 6.1; % vemmarsjon

454 503 5 2218 479 2656 346 72 18 0 10.6 8.16; % sovdesjon

704 500 16 3172 1196 2525 568 97 6 0 0 6.2; % deep

338 332 125 311 287 561 200 56 2 0 0 7.5; % shallow

];

harsAnc = data(1,4) + r(data(1,11), data(1,12)) - 10^-data(1, 12) * 10^6 - data(1, 10);

vemmAnc = data(2,4) + r(data(2,11), data(2,12)) - 10^-data(2, 12) * 10^6 - data(2, 10);

sovdAnc = data(3,4) + r(data(3,11), data(3,12)) - 10^-data(3, 12) * 10^6 - data(3, 10);
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deepAnc = data(4,4) + r(data(4,11), data(4,12)) - 10^-data(4, 12) * 10^6 - data(4, 10);

shalAnc = data(5,4) + r(data(5,11), data(5,12)) - 10^-data(5, 12) * 10^6 - data(5, 10);

%% 2

%pco2hars = fzero(@getpco2, 4*10^-4)

% hold on

% plot(linspace(4*10^-4, 15*10^-4), 8.16)

hold on

fplot(@ph22sovd, [4*10^-4 15*10^-4])

fplot(@ph22hars, [4*10^-4 15*10^-4])

fplot(@ph22vemm, [4*10^-4 15*10^-4])

fplot(@ph22shal, [4*10^-4 15*10^-4])

fplot(@ph22deep, [4*10^-4 15*10^-4])

grid on

legend(’Sovdesjon’,’Harsvatten’,’Vemmarsjon’,’Shallow’,’Deep’)

xlabel(’P_{CO_2}/atm’)

ylabel(’pH’)

hold off

File: ph22vemm.m

function ph=ph22vemm(pco2)

ancmicro= 87.205729462406540; % insert specific ANC for location in \mueq/L here

kh2co3 = 10^-(6.482); % constant at 10degC

kh = 10^-(1.260); % constant at 10degC

doc = 4; % mg * L^-1

kg = 10^8.5;

kr = 5*10^-5; % OBS this is a simplification, discuss using graph from e17.

anc=ancmicro*10^-6; %ANC in eq/L

a(1)= 3 * kg;

a(2)= 3 * kr * kg;

a(3)= 1;

a(4)= anc + kr;

a(5)= kr * anc - kh2co3 * kh * pco2 - 7*10^-6 * doc * kr;

a(6) = -kr * kh2co3 * kh * pco2;
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