\(\begin{equation}\label{eq9}
V_0=V_{bus}\left(\frac{1}{1+\left(\frac{X_L-X_C}{R_e}\right)^2}\right)
\end{equation}\)
\(\begin{equation}\label{eq10}
X_L=\omega_sL_r
\end{equation}\)
\(\begin{equation}\label{eq11}
X_C=\frac{1}{\omega_sC_r}
\end{equation}\)
\(\begin{equation}\label{eq12}
Q=\frac{\omega_SL_r}{R_e}=\frac{1}{\omega_sR_eC_r}
\end{equation}\)
\(\begin{equation}\label{eq13}
\frac{V_0}{V_{bus}}=\frac{1}{\left( 1+Q^2 \left[\begin{array}{cc}
\omega & \omega_0 \\
\omega_0 & \omega
\end{array}\right]^2\right)}
\end{equation}\)
\(\begin{equation}\label{eq14}
R_e=\frac{8m^2}{\pi^2R_L}
\end{equation}\)
\(\begin{equation}\label{eq15}
Q=\frac{1}{2\pi f_oR_eC_r}
\end{equation}\)
\(\begin{equation}\label{eq16}
f_0^2-[f_s^2R_sC_r(V_{bus}/V_0)-1]f_0^3-(2f_s^2)f_0^2+f_0^4=0
\end{equation}\)