solución:
\(x=\frac{\int_{ }^{ }xdl}{\int_{ }^{ }dl}=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}R\cos R\theta\)
\(x=R\cos\theta\)
\(dl=Rd\theta\)
\(\frac{Rsen\theta\left|\frac{\frac{\pi}{2}}{-\frac{\pi}{2}}\right|}{\theta\left|\frac{\frac{\pi}{2}}{-\frac{\pi}{2}}\right|}=\frac{R\left[1+1\right]}{\pi}=\frac{2\left(2\right)}{\pi}=\frac{4}{2}=1.25\)
1)\(\Sigma fx\) \(B_x=1lb\)
2)\(\Sigma fy\) \(A_x=1lb\)
3)\(\Sigma ma\) \(A_y=\pi lb\)
1.-\(A_x+B_x\)
2.-\(A_y-w=0\) \(A_y=w\)
3.- \(-xw+B_x\left(4ft\right)=0\)
\(-2\frac{r}{\pi}\left(0.5\frac{lb}{ft}\right)\pi+B_x\left(4ft\right)=0\)
\(-2r^2\left(0.5\frac{lb}{ft}\right)+4ftB_x=0\)
\(4ftB_x=2\ \ r^2\ \ \left(0.5\frac{lb}{ft}\right)\)
\(B_x=\frac{2r^2}{4ft}\left(0.5\frac{lb}{ft}\right)=\left[\frac{2\left(4ft\right)}{\left(4ft\right)}\right]\left(0.5lb\right)=1lb\)