p4
Angel Navidad
February 22, 2018
q 3
$Q 2 A x(n) \leftrightarrow \operatorname{Form}(n) \&(\exists p, q, r \leq n)(\operatorname{Var}(r) \&(\forall s \leq l(p)) \overline{\operatorname{Free}(s, r, p)} \& n=\operatorname{cond}(\operatorname{gen}(r, \operatorname{cond}(p, q)), \operatorname{cond}(p, \operatorname{gen}(r, q))))$
$N 7 A x(n) \leftrightarrow \operatorname{Form}(n) \&(\exists p, q, r \leq n)(\operatorname{Var}(p) \& \overline{r=0} \& \operatorname{Free}(r, p, q) \& n=\operatorname{cond}(\operatorname{neg}(\operatorname{cond}(\operatorname{sub}(q, p, 0), \operatorname{neg}(\operatorname{gen}(p, \operatorname{cond}(q, s$
q 4
4a

Will show by giving informal derivations of forward and reverse cases (using previously proven lemmas, TF as rule of inference, definition of \leq.
The forward case:

1. $S y=S(x+z) \supset y=x+z$ by axiom.
2. $S(x+z)=S x+z$ by axiom.
3. $S x+z=S(x+z)$ by symmetry.
4. $S(x+z)=S x+z \supset(S y=S(x+z) \supset S y=S x+z)$ by axiom.
5. $S x+z=S(x+z) \supset(S y=S x+z \supset S y=S(x+z))$ by axiom.
6. $S y=S(x+z) \leftrightarrow S y=S x+z$ by MP and TF logic.
7. $S y=S x+z \supset y=x+z$ by TF logic.
8. $x^{\prime} \leq y^{\prime} \leftrightarrow \exists z^{\prime}\left(y^{\prime}=x^{\prime}+z^{\prime}\right)$ by definition.
9. $y=x+z \leftrightarrow x \leq y$ by definition.
10. $S y=S x+z \leftrightarrow S x \leq S y$ by definition.
11. $S x \leq S y \supset x \leq y$ by TF logic.

The reverse case:

1. $y=x+z \supset(S y=S y \supset S y=S(x+z))$ by axiom.
2. $y=x+z \supset(S y=S y \supset S y=S x+z)$ by TF since $S(x+z)=S x+Z$ by axiom.
3. $x \leq y \supset(S y=S y \supset S x \leq S y)$ by TF given definition of \leq.
4. $x \leq y \supset(S y=S y \supset S x \leq S y) \supset((x \leq y \supset S y=S y) \supset(x \leq y \supset S x \leq S y))$ by axiom.
5. $(x \leq y \supset S y=S y) \supset(x \leq y \supset S x \leq S y)$ by MP.
6. $S y \leq S y \supset(x \leq y \supset S y \leq S y)$ by axiom.
7. $S y \leq S y \leftrightarrow \exists z(S y=S y+z)$ by definition.
8. $S y=S y+0$ by axiom.
9. $S y=S y$ by axiom.
$10 . S y \leq S y \leftrightarrow S y=S y$ by TF.
10. $S y \leq S y$ by TF.
11. $x \leq y \supset S y \leq S y$ by MP.

Therefore $x \leq y \leftrightarrow S x \leq S y$ and since this is TF valid and PA is TF complete, then also $\vdash x \leq y \leftrightarrow S x \leq S y$.

4b
For any two numbers $x, y, x=y$ or $x \neq y$.
If $x=y$ then $x+0=y$ so $\exists z(y=x+z)$. So $x \leq y$.
If $x \neq y$ then $\exists z^{\prime}\left(y=x+z^{\prime}\right)$ or $\overline{\exists z^{\prime}\left(y=x+z^{\prime}\right)}$. So $x \leq y$ or $\overline{x \leq y}$.

For any instances of x and y in PA, call then a and b , then $x \leq y \supset a \leq b$ and $\overline{x \leq y} \supset \overline{a \leq b}$. Since $x \leq y \vee \overline{x \leq y}$ is TF valid and PA is TF complete, then $\vdash x \leq y \vee \overline{x \leq y}$. By instantiation $\vdash a \leq b \vee \overline{a \leq b}$. Then $x \leq y \supset \vdash a \leq b$ and $\overline{x \leq y} \supset \vdash \overline{a \leq b}$.
q 1

1a holds for $1<i \leq l(j)$
1b holds for $i=10$
1c holds for no i
1 d holds for $i=7$ and $i=12$.
q 2

```
\(o c c(0,19, m)=8\)
\(\operatorname{occ}(1,19, m)=4\)
\(1<j \rightarrow \operatorname{occ}(j, 19, m)=0\)
```


