Pset 5

Darian Bailey

March 7, 2018

Abstract

Computational Statistics Stat 451

1.a:9.4.a

BootStrapping The Residuals: Calculate regression and bootstrap the residuals

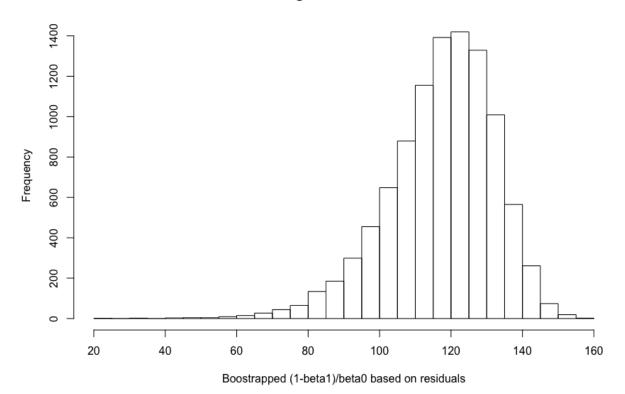
 $Use\ bootstrapped\ data\ to\ estimate\ 1/\hat{R} = (1-Beta_1)/Beta_0$ Estimate: 117.9 $Confidence\ Interval: [83.03, 141.32]$ $Standard\ Error: 14.94$ Histogram:

BootStrapping The Cases: Bootstrap the original data

 $Use\ bootstrapped\ data\ to\ estimate\ 1/\hat{R} = (1-Beta_1)/Beta_0$ Estimate: 119.14 $Confidence\ Interval: [102.5352, 137.5675]$ $Standard\ Error: 8.9$ Histogram:

We can see above that bootstrapping the cases provides an estimate with a smaller standard error, less of a skew, and a smaller confidence interval. This makes sense because the model might not provide an appropriate fit for R and S and the residuals might not have a constant variance. For the following questions I'll be using the case estimate only

Histogram of 1/thetastar0



1.b:9.4.b

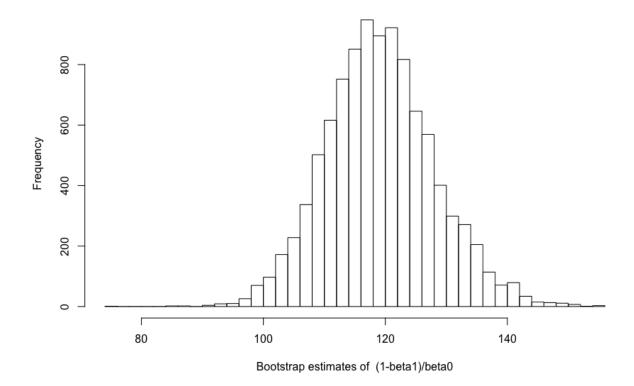
 $Bias\ Corrected\ Estimate:$

$$\bar{\theta}^* - (\bar{\theta}^* - \hat{\theta}) = 119.14$$

 $Standard\ Error:$

$$d(R_*)/\sqrt{B} = 0.0009$$

Histogram of 1/thetastar



1.c:9.4.c

Nested Bootstrap

$$1) Generate\ Bootstrap\ pseudo\ data$$

$$2) For\ j=1,2..B_0$$

$$a) Generate\ X_{ji}^*.....X_{jB}^*\ iid(X_1...B_0)$$

$$b) Compute\ R_0(X_{jk}^{**},F_j)$$

$$c) Get\ (\gamma_1,\gamma_2)\ = (\hat{F}_1^{-1}(\alpha/2),\hat{F}_0^{-1}(1-\alpha/2))$$

$$d) Calculate\ quantile\ using\ \hat{F}_0^{-1}(\gamma_1),\hat{F}_0^{-1}(\gamma_2)$$

95% Confidence Interval: [102.22, 129.69]

2.a:9.5.a

95% confidence intervals

 BC_{α} $Bootstrap\ mean\ and\ follow\ instructions\ on\ page\ 294-296$ $Stomach\ Cancer\ CI(log)=[2.522551\%,97.52347\%]=[4.316303,5.626966]$ $Stomach\ Cancer\ CI=[74.89,278.66]$ $Breast\ Cancer\ CI(log)=[0.8140988\%,94.65553\%]=[5.306486,7.267744]$ $Breast\ Cancer\ CI=[201.64,1433.31]$

 $Bootstrap\ t$ $Bootstrap\ mean\ and\ follow\ instructions\ on\ page\ 296-297$ $Using\ Var(\hat{\theta})\ as\ variance\ estimator$ $Stomach\ Cancer\ CI(log)=[2.5\%,97.5\%]=[70.77219,\ 324.55934]$ $Breast\ Cancer\ CI(log)=[2.5\%,97.5\%]=[73.18363,1656.03275]$

2.b:9.5.b

Hypothesis test

place both data in one set and sample from it.

Calculate test stat $T_{new} = mean(x1) - mean(x2)$

2.c:9.5.c

Bad CI

 $Simple\ Bootstrap\ CI\ on\ log\ data$ [57.2338, 558.4158] $Simple\ Bootstrap\ CI\ on\ original\ data$ [435.2417, 1235.7594]

We can see above that these confidence intervals are smaller and give smaller tails

 $Calculate\,CI\,a$