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Abstract
The objective of the current document is to align the model to include the goals of the user stories in backlog for AMI-15 Project
(Discussion with Ross and Team on 6 April 2018). The Mathematical model presented here has a framework of Linear and Mixed In-
teger Programming methods, and it relies on optimization strategies of Operational Research.

Assume that we have a list of Purchase Orders (each associated with a volume, weight, estimated date of delivery) and a list of

Containers (each associated with a cost, capacity, weight constraint, Journey details- Starting Journey date, Duration in Transit

and ending Journey Date ). The following scenario defines the global optimization problem. Given n Purchase Orders (POs) and m

available Containers, the objective is to create a Load Plan to allocate a set of containers to accommodate all the POs by optimizing

the Containers such that all the POs reach the destination on or before their expected date of delivery. Optimization strategy requires

minimizing the cost of the containers (which itself can be a variable based on available vessels and their timings), minimizing the

number of containers needed for effective packing, and minimizing the unused volume of the containers, and selection of cheapest

vessel for ocean freight for maximizing the profit.

Note: References for older versions of this document are available on the following links.

First draft (8 March 2018)

Second Draft (17 March 2018)

Third Draft (29 March 2018)

Introduction

The methodology used here is to split the larger problem into smaller sub problems and find solutions
of the problems via combinatorial,LP,IP optimization algorithms. The three major elements of the global
optimization problem - Decision variables, objective functions and constraints are listed in this section.

Maximum and minimum Fill Rates of Containers

Let Vi represents the allowed volume of ith container, which is in general less than the actual container
volume AVi. Containers in general are not allowed to fill up to its the maximum allowed volume. Hence
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Vi = α.AVi, and the multiplying constant α in range [0 ,1] represents the maximum fill–rate (the percentage
of allowed volume) of a particular container. When α = 1, Vi = AVi and 100% of the container volume
is allowed. In general, α = 0.8 indicating only 80% of the container volume as allowed volume, but α can
vary depending upon the type and requirements of purchase orders. Similarly we can define a minimum
fill rate for the container β = 0.2; as the container is not shipped unless it is filled above minimum fill rate
Vi = β.AVi.

Select a set of m different containers (each with a allowed volume Vi, cost per volume Qi, and a weight
constraint Wi where i = 1, . . .m) to hold given set of n purchase orders (each associated with a volume vi,
weight wi and where i = 1, . . . n).

(1) allocate the set of containers to hold the total volume Cp of n purchase orders (Cp =
n∑

i=1

vi) and

(2) find the optimal allocation matrix for the purchase orders (si,j a binary variable which is equal to 1 if
purchase order number i is placed in container j; otherwise it is equal to 0)

• Decision variables (those that describe our choices that are under our control)

1. Container variables : volume Vi, profit Pi , cost Qi, Weight constraint Wi where i = 1, . . .m

2. Purchase order variables: volume vi, weight wi where i = 1, . . . n

• Objective function: describes a criterion that one wants to minimize (e.g., cost) or maximize (e.g.,
profit) in order to compare alternative solutions. Following objective functions (a) maximizes profit,
(b) minimizes cost and (c) minimize unused volume after packing.

1. maximize Profit⇒ maximize
m∑
i=1

Pixi

2. minimize Cost⇒ minimize
m∑
i=1

Qixi

3. minimize Unused Volume in containers after packing⇒ minimize
m∑
i=1

Vixi −
n∑

i=1

vixi

• Constraints: describe the limitations that restrict our choices for decision variables. Constraints can
be the following form for the objective functions listed above.

1.
n∑

i=1

Vixi ≥ Cp

0 ≤ xi ≤ dj (since Containers are not unique and can be repeated as many as available)

Total volume of the containers is greater than or equal to the total volume of purchase orders
(The number of required containers in each category are available within a bounded limit of dj ,
where dj is the available containers in each category of the containers)

2.
n∑

i=1

vixi ≤ Vj for each j = 1, 2, . . .m
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where vi is the volume of purchase orders and Vj indicate volume of containers.

and

xi = {0, 1} (parcels are unique and cannot be repeated)

3.
n∑

i=1

wixi ≤Wj for each j = 1, 2, . . .m

where wi is the weight of purchase orders and Wj is the weight constraint on containers.

and

xi = {0, 1} (parcels are unique and cannot be repeated)

Container Selection

Goal is to select an optimal number of containers to pack a given set of purchase orders. Both containers
and purchase can be different in their sizes. The primary objective is to minimize cost of the container and
the unused space of the container (thus maximizing the profit and hence minimizing the cost). It is assumed
that the volume and weight constraint of each container types and the volume and weight of each purchase
orders are given.

The parameters and the variables used in the model are given below:

Qj Cost associated with a particular type of container
Vj Allowed volume associated with a particular type of container
n Total number of purchase orders to be stacked in the containers
Cp The total volume of purchase orders to fill in the containers
n Total number of purchase orders to be stacked in the containers
Cp The total volume of purchase orders to fill in the containers
dj An upper bound on the number of containers of a particular type j
m Type of containers available

Algebraic formulation

Minimise the cost of the containers⇒Minimize
n∑

i=1

Qixi

Subject to the constraints

•
n∑

i=1

Vixi = Cp

• 0 ≤ xi ≤ dj (since Containers are not unique and can be repeated as many as available)

Total volume of the containers is greater than or equal to the total volume of purchase orders (The
number of required containers in each category are available within a bounded limit of dj , where dj
is the available containers in each category of the containers)
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Section 2. Optimized Allocation of purchase orders into selected Containers

Once the set of m containers are selected (each with a volume Vi and profit Pi, weight constraint Wi where
i = 1, . . .m) goal is to allocate all the purchase orders (of total volume Cp of n purchase orders) optimally
into the selected containers. The primary objective is to minimize the unused space (thus maximizing the
profit and hence minimizing the cost). It is assumed that the volume and weight constraint of each container
types and the volume and weight of each purchase orders are given.

Then the parameters are and the variables used in the model are defined as below:

• n Total number of purchase orders to be stacked in the containers.

• Cp is total volume of purchase orders to fill in the containers

• dj number of containers of a particular type j

• m Total number of type of containers available.

• vj for j = 1, . . . n volume associated with each purchase order

• wj for j = 1, . . . n weight associated with each purchase order

• Wj for j = 1, . . .m weight constraint of a particular type of container

then,

2.0 Algebraic formulation of the problem by using volume constraints of container

Purchase Order Volume vi ≤ Container Volume Vj

maximize
n∑

i=1

vixi

Subject to the constraint
n∑

i=1

vixi ≤ Vj

and

xi = {0, 1} (parcels are unique and cannot be repeated )

2.1 (Case1): Algebraic formulation of the problem by using volume constraints of container–
Purchase Order Volume vi ≥ Container Volume Vj (volumes of sub–units of the Purchase
Order are known)

AMI(257) Fractional PO assignment into containers

If the volumes of the sub–units(carton volumes) of purchase order volume vi is known, optimize the packing
using the knapsack algorithm mentioned in 2.0 for sub–units/ cartons. Let ui be the volume of the sub–units
that makes the entire purchase order vi. In this case individual uj’s will be less than the Container Volume
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Vj , hence the problem is reduced to the scenario discussed in section 2.0. Algorithm for 2.0 can be used for
the following algebraic formulation,

maximize
n∑

i=1

uixi

Subject to the constraint
n∑

i=1

uixi ≤ Vj

and

xi = {0, 1} (parcels are unique and cannot be repeated )

2.1 (Case2) : Algebraic formulation of the problem by using volume constraints of container–
Purchase Order Volume vi ≥ Container Volume Vj , but volumes of sub–units of the purchase
order are unknown

In this case we can do a fractional allocation of the purchase order to a number of available containers
One can skip or refine the container allocation output in section 1.1, using teh following linear program
formulation,

Minimize the Profit of containers⇒Minimize
n∑

i=1

Pixi

Subject to the constraint

•
n∑

i=1

Vixi ≥ vi

• 0 ≤ xi ≤ dj (since Containers are not unique and can be repeated as many as available)

2.2 Algebraic formulation of the problem by using weight and volume constraints of con-
tainer

AMI(178) Optimisation using weight and volume constraints

maximize
n∑

i=1

vixi

Subject to the constraints
n∑

i=1

wixi ≤Wj for each j = 1, 2, . . .m

n∑
i=1

vixi ≤ Vj for each j = 1, 2, . . .m
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where Qi is the volume of purchase orders and Wj , Vj indicate weight, volume constraint of containers.

and

xi = {0, 1} (parcels are unique and cannot be repeated)

2.3 Algebraic formulation of the problem by using weight constraints of container

maximize
n∑

i=1

vixi

Subject to the constraints
n∑

i=1

wixi ≤Wj for each j = 1, 2, . . .m

where vi is the volume of purchase orders and Wj indicate weight constraint of containers.

and

xi = {0, 1} (parcels are unique and cannot be repeated)

Selection of Algorithm for set of equations in 2.3

Integer Programming model– Zero-One Knapsack combinatorial optimization.

Algebraic formulation in 2.3 has a single constraint and it can be solved by a simple integer program.
Zero-One Knapsack combinatorial optimization is ideal as it is a simple integer program that is easy to
implement. Given a set of items, each with a volume and a weight, Knapsack determine the items to be
filled in the container so that the total weight is less than or equal to a weight constraint of the container and
the total volume is as large as possible.

Notes :

Data specific requirements- the reality about parcel weights and volume while filling in containers might
give a clarity whether volume or weight has a priority among the constraints, hence will be essential to
determine the type of model to be used

2.4 Algebraic formulation of the problem for Bin Allocation and Simultaneous filling of Con-
tainers

Algebraic formulation in 2.3 has volume of purchase orders (vi) in both the maximization equation and the
constraint. One alternative is to use a bin packing algorithm that can simultaneously assign all items to
all selected containers. Since the containers have variable sizes (33,67,76,86 CBMs each), split the total
volume of selected containers into a multiple of the smallest volume (33, 2*33, 2*33,2*33) with additional
spare volume ∆ = (0, 1, 10, 20) units each). Then allocate the parcels simultaneously into all bins of equal
size V ( V being the smallest container volume 33).

Given a set of bins S1, S2... with the same size V and a list of n items with sizes a1, . . . , an to pack in the
bins,
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(i) find an integer number of bins β and

(ii) a β – partition S1 ∪ · · · ∪ SB of the set a1, . . . , an such that,∑
i∈Sk

ai ≤ V for all k = 1, . . . , β

minimize B =
n∑

i=1

yi

subject to :

• B ≥ 1,

•
n∑

j=1

ajxij ≤ V yi

∀i ∈ {1, . . . , n}

•
n∑

i=1

xij = 1,

∀j ∈ {1, . . . , n}

• yi ∈ {0, 1},

∀i ∈ {1, . . . , n} (yi = 1 if i’th Bin is used.)

• xij ∈ {0, 1},

∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n} ( xij = 1 if item j is put into Bin i.)

Selection of Algorithm for set of equations in 2.4

A solution is optimal if the model has a minimal β. The algebraic formulation in section 2.4 is in standard
format for Integer Linear Programming. Use any standard Bin- Allocation algorithm for the implementation
of the model.

2.5 Algebraic formulation for maximizing volume by using ETD as a constraint for Purchase
Orders

Algebraic formulation of section 2.2 can be modified as follows to maximize the priorities of the purchase
orders (include a proxy of estimated delivery date ETD) by using volume of container as a constraint.

maximize
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n∑
i=1

dixi, where di can be a proxy–variable for selecting ETD ( eg. Find a function to map ETD Delivery

date to di, that is purchase orders that need to be sent urgently get a high value compared to the orders that
can be sent much later)

Subject to the constraints
n∑

i=1

vixi = Vj for each j = 1, 2, . . .m

where vi is the volume of purchase orders and Vj indicate volume of containers.

and

xi = {0, 1} (Parcels are unique and cannot be repeated)

Selection of Algorithm for set of equations in 2.5

Algebraic formulation of the problem in 2.5 has only one constraint and can be implemented using Zero-One
Knapsack Optimisation. The Model maximizes the priority of purchase orders in each selected containers
(one by one) using volume of the of the container as a constraint.

3. Data Specific requirements and assumptions in the Optimisation

The Real Flow scenario is as follows. The cargoes are being filled into containers which are taken by ship-
ping vessels for an ocean freight between a pair of ports - Port of Loading (POL) and a Port of Destination
(PoD). Models described in section 1 and 2 aims for a Load Plan to allocate a set of containers to accommo-
date a required set of purchase orders by optimizing (i) number of required Containers to carry the purchase
orders by minimizing cost and volume such that all the purchase orders reaches the destination on or before
their expected date of delivery.

Assumptions

1. Models for container selection in section 1 consider the cost / profit associated with each of the
containers as a constant. But cost of the container in fact is a function of Vessel Carrier Cost depending
upon the availability of the vessels and Containers which is a variable.

Having prior data, gives a possibility of estimating and forecasting the container cost over years based
on mathematical models. The seasonal variation of container cost in different locations can give a
better understanding of the forecasting model and it can be optimized specific to locations / ports/
type of cargoes/ type of ocean freight further.
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2. Models for allocation of purchase orders from section 2.1 to 2.4 assumes that the purchase orders are
already classified based on ETD ( it is a simple sorting problem with least computational complexity)
and then use one of the combinatorial algorithm (knapsack or bin sack) for optimization based on
various constraints. Model for allocation of purchase orders in section 2.5 is using a proxy of ETD to
maximize priority of purchase order to fill in the containers.

Further Suggestions for Dataspecific Optimisation

Specific details of data can be used for further optimization of allocation of Parcels such as,

1. Classification of the purchase order based on ETD to sort the purchase order based on priority

2. Cluster of ETD Vs i for i = 1, 2, . . . n to organize and cluster the purchase orders according to ETD

3. difference between PO–line upload rate and ETD Vs i for i = 1, 2, . . . n to organize the customers/
consignees based on the patterns of their Purchase orders update request and delivery date

4. container cost variation (i) global (with respect of cost of fuel, economy) and (ii) seasonal (with
respect to different seasons due to market scarcity and demand of purchase orders)

5. Distribution Profile of volume of the purchase order vi Vs i for i = 1, 2, . . . n to further optimize the
bin packing algorithm to allocate the purchase orders

.
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