Jordan Knapp-Wilson

and 4 more

Tree training systems for temperate fruit have been developed throughout history by pomologists to improve light interception, fruit yield, and fruit quality. These training systems direct crown and branch growth to specific configurations. Quantifying crown architecture could aid the selection of trees that require less pruning or that naturally excel in specific growing/training system conditions. Regarding peaches [Prunus persica (L.) Batsch], access tools such as branching indices (BIs) have been developed to characterize tree crown architecture. However, the required branching data to develop these indices are difficult to collect. Traditionally, branching data have been collected manually, but this process is tedious, time-consuming, and prone to human error. These barriers can be circumnavigated by utilizing terrestrial LiDAR (TLS) to obtain a digital twin of the real tree. TLS generates three-dimensional (3D) point clouds of the tree crown, wherein every point contains 3D coordinates (x, y, z). To facilitate the use of these tools for peach, we selected four young peach trees scanned in 2021 and 2022. These four young trees were then modeled and quantified using the open-source software TreeQSM. As a result, “in silico” branching and biometric data for the young peach trees were calculated to demonstrate the capabilities of TLS phenotyping of peach tree-crown architecture. The comparison and analysis of field measurements (in situ) and in silico branching data (BD), biometric data, and residual ground truth data were utilized to determine the reconstructive model’s reliability as a source substitute for field measurements. Mean average deviation (MAD) when comparing young tree height was approx. 8.2%, with crown volume (crV) was approx. 7.6% across both 2021 and 2022. All point clouds of the young trees in 2022 showed residuals < 10mm to cylinders fitted to all branches, and mean surface coverage >50% across all branching orders.

Suxing Liu

and 3 more

Understanding three-dimensional (3D) root traits is essential to improve water uptake, increase nitrogen capture, and raise carbon sequestration from the atmosphere. However, quantifying 3D root traits by reconstructing 3D root models for deeper field-grown roots remains a challenge due to the unknown tradeoff between 3D root-model quality and 3D root-trait accuracy. Therefore, we performed two computational experiments. We first compared the 3D model quality generated by five state-of-the-art open-source 3D model reconstruction pipelines on 12 contrasting genotypes of field-grown maize roots. These pipelines included COLMAP, COLMAP+PMVS (Patch-based Multi-view Stereo), VisualSFM, Meshroom, and OpenMVG+MVE (Multi-View Environment). The COLMAP pipeline achieved the best performance regarding 3D model quality versus computational time and image number needed. Thus, in the second test, we compared the accuracy of 3D root-trait measurement generated by the Digital Imaging of Root Traits 3D pipeline (DIRT/3D) using COLMAP-based 3D reconstruction with our current DIRT/3D pipeline that uses a VisualSFM-based 3D reconstruction (Liu et al., 2021) on the same dataset of 12 genotypes, with 5~10 replicates per genotype. The results revealed that, 1) the average number of images needed to build a denser 3D model was reduced from 3000~3600 (DIRT/3D [VisualSFM-based 3D reconstruction]) to 300~600 (DIRT/3D [COLMAP-based 3D reconstruction]); 2) denser 3D models helped improve the accuracy of the 3D root-trait measurement; 3) reducing the number of images can help resolve data storage capacity problems. The updated DIRT/3D (COLMAP-based 3D reconstruction) pipeline enables quicker image collection without compromising the accuracy of 3D root-trait measurements.

Limeng Xie

and 3 more

Plant roots exhibit distinct architectural organization and overall shape. Current concepts to quantify architectural variation assume a homogeneous phenotype for a given genotype. However, this assumption neglects the observable variation in root architecture for two reasons: (i) sampling strategies are designed to capture architectural variation only for the most common phenotype, and (ii) traits are often measured locally within a root system and ignore the architectural organization. Here, we introduce a new concept: the phenotypic spectrum of crop roots to quantify architectural variation as the number of architecture types for one genotype in a specific environment. We use the shape descriptor DS-curve to characterize the whole root system architecture. Using DS curves as a core, we developed a computing pipeline that combines Kmeans++ clustering, outlier filtering and the Fréchet distance as a similarity metric to classify types of root architectures. Subsequently, we applied this pipeline to analyze a field dataset including three common bean (Phaseolus vulgaris) genotypes DOR364 (n=797), L88_57 (n=1772), and SEQ7 (n=768) under non-limiting and water-stressed conditions in 2015 and 2016. We found DOR364 showed five different root architecture types across environments, while L88_57 and SEQ7 showed four. The total variation within classified root architecture types of DOR364, L88_57, and SEQ reduced by 58.59%, 50.19% and 53.01%, compared to the variation of the complete data sets. DOR364 had stable fractions of root architecture types across environments. In contrast, L88_57 and SEQ7 showed more variation in their fractions. There was no significant biomass difference among root architecture types for all studied genotypes within each environment. As such, we hypothesize that the phenotypic spectrum might buffer the impact of environmental stresses as an acclimatization strategy by changing the composition of root architecture types at the population level.

William LaVoy

and 3 more

Jitrana Kengkanna

and 2 more

Landon G. Swartz

and 6 more

(250 words) Micronutrients, such as iron, zinc, and sulfur, play a vital role in both plant and human development. Understanding how plants sense and allocate nutrients within their tissues may offer different venues to develop plants with high nutritional value. Despite decades of intensive research, more than 40% of genes in Arabidopsis remain uncharacterized or have no assigned function. While several resources such as mutant populations or diversity panels offer the possibility to identify genes critical for plant nutrition, the ability to consistently track and assess plant growth in an automated, unbiased way is still a major limitation. High-throughput phenotyping (HTP) is the new standard in plant biology but few HTP systems are open source and user friendly. Therefore, we developed OPEN Leaf, an open source HTP for hydroponic experiments. OPEN Leaf is capable of tracking changes in both size and color of the whole plant and specific regions of the rosette. We have also integrated communication platforms (Slack) and cloud services (CyVerse) to facilitate user communication, collaboration, data storage, and analysis in real time. As a proof-of-concept, we report the ability of OPEN Leaf to track changes in size and color when plants are growing hydroponically with different levels of nutrients. We expect that the availability of open source HTP platforms, together with standardized experimental conditions agreed by the scientific community, will advance the identification of genes and networks mediating nutrient uptake and allocation in plants.

Peter Pietrzyk

and 4 more

Improving nutrient and water uptake in crops is one of the major challenges to sustain a fast-growing population that faces increasingly nutrient limited soils. Root hairs, which are specialized epidermal cells, are important drivers of nutrient and water uptake from the soil. Microscopy provides a mean to record root hairs as digital images. However, due to their geometry and complex spatial arrangements quantifying root hairs in microscopy images manually remains a bottleneck. Manual selection of representative root hairs can result in inaccurate estimations of root hair traits and misrepresentation of root hair functions. We present a method to quantify phenotypes automatically by measuring all individual root hairs in digital microscopy images. Our method uses random forests classification to separate root hair from the parent root and the image background. We define metrics to evaluate segments of root hairs that intersect or form blobs of two or more root hairs. Using simulated annealing for combinatorial optimization, we reconstruct individual root hairs by resolving intersections in a globally optimal way. As a result, we measure root hair length, its distribution, and root hair density in each image. We validate our method on examples of three maize cultivars under phosphorus, nitrogen, and potassium stress. Results show that our measurements of root hair traits strongly correlate with manually measured validation data in mean root hair length (Pearson-correlation: 0.74 to 0.88, p<.001), as well as in root hair density (Pearson-correlation: 0.65 to 0.84, p<.001). We show that our method distinguishes subtle differences between genotypes and treatments based on the extracted traits and believe that our study paves a way towards identifying the genetic control of root hair traits and increased agricultural production.

Peter Pietrzyk

and 4 more

Improving nutrient and water uptake in crops is one of the major challenges to sustain a fast-growing population that faces increasingly nutrient-limited soils. Root hairs, which are specialized epidermal cells, are important drivers of nutrient and water uptake from the soil. Microscopy provides a mean to record root hairs as digital images. However, due to their geometry and complex spatial arrangements quantifying root hairs in microscopy images manually remains a bottleneck. Manual selection of representative root hairs can result in inaccurate estimations of root hair traits and misrepresentation of root hair functions. We present a method to quantify phenotypes automatically by measuring all individual root hairs in digital microscopy images. Our method uses random forests classification to separate root hair from the parent root and the image background. We define metrics to evaluate segments of root hairs that intersect or form blobs of two or more root hairs. Using simulated annealing for combinatorial optimization, we reconstruct individual root hairs by resolving intersections in a globally optimal way. As a result, we measure the root hair length, its distribution, and root hair density in each image. We demonstrate our method on examples of three maize cultivars under phosphorus, nitrogen, and potassium stress. Results show that our measurements of root hair traits strongly correlate with manually measured data in mean root hair length (R 2 : 0.72 to 0.85, p<.001), as well as in root hair density (R 2 : 0.38 to 0.66, p<.001). We show that our method computes reliable estimates of root hair length, density and their distributions along the root on complex root hair arrangements in maize. We believe that our study paves a way towards identifying the genetic control of root hair traits and increased agricultural production.

Wesley Bonelli

and 5 more

Continuous collection and analysis of high-resolution phenotype data is critical to develop crops resilient to the consequences of climate change. Though web-accessible tools for parallel, reproducible scientiSic workSlows render big data increasingly tractable, software for plant science remains inadequate for large-scale precision agriculture. Cyberinfrastructure must present minimal barriers to entry, accommodate rapidly changing dependencies, support a wide variety of use cases, and weave together sensors at the edge, laptops, clusters, and cloud storage into a coherent virtual workspace. PlantIT is a web portal intended as such an environment. Platforms like PlantIT and its precursor DIRT [1] permit efSicient phenotyping and equip geographically distributed researchers with a code-optional interface. WorkSlows are published in Docker images, deployed as Singularity containers to public or private computing resources, and monitored in real time. Data are stored automatically in the CyVerse Data Store and can be annotated according to the MIAPPE [2] standard. GitHub integration provides versioning and repositories can be activated with a single conSiguration Sile, like Travis or GitHub Actions. Containers allow for a range of use cases, including image-based trait measurements, 3D reconstructions, morphological growth simulations, and crop modeling. Pseudo-batch/stream processing is also necessary; as data scales, manual batch jobs rapidly become infeasible, and (re-)analysis must occur upon arrival in near-real-time. We suggest web-accessible phenotyping automation software may address bottlenecks and help reveal undiscovered relationships between genes, traits, and the environment.