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Abstract. In the paper, motivated by the generating function of the Catalan numbers in

combinatorial number theory and with the aid of Cauchy’s integral formula in complex anal-

ysis, the authors generalize the Catalan numbers and its generating function, establish an
explicit formula and an integral representation for the generalization of the Catalan numbers

and corresponding generating function, and derive several integral formulas and combinatorial

identities.
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1. Backgrounds and motivations

This paper is a continuation of the articles [19, 41].
The Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
=

4nΓ(n+ 1/2)√
π Γ(n+ 2)

(1.1)

form a sequence of integers (see [10, 11, 55]), can be interpreted combinatorially (see [6, 16, 52]),
date back to the year 1730 (see [17, 18, 23]), and can be generated (see [26, 52, 56]) by

G(x) =
2

1 +
√
1− 4x

=

∞∑
n=0

Cnx
n, (1.2)

where

Γ(z) =

∫ ∞

0

tz−1e−tdt, ℜ(z) > 0
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or

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }

is the classical Euler gamma function (see [1, Chapter 6], [27, Chapter 5], [57, Chapter 3],
and [35]).

The Catalan numbers Cn have been combinatorially generalized as the Fuss numbers (see [8]
and [16, pp. 377–378]), the Fuss–Catalan numbers (see [3, 5, 7, 54] and [16, Exercise A14, p. 108]),
and others (see [2, 13, 15] and [16, pp. 375–376]).

Motivated by the second expression in (1.1), several mathematicians analytically generalized
the Catalan numbers Cn, the Fuss numbers, and the Fuss–Catalan numbers and investigated
plenty of their properties in the papers [22, 25, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 45,
46, 47, 48, 49, 50, 51, 53, 59] and closely related references.

Motivated by the generating function G(x) in (1.2), several mathematicians generalized the
Catalan numbers Cn to Cn(a, b) in [19, 41] by considering the generating function

Ga,b(x) =
1

a+
√
b− x

=

∞∑
k=0

Cn(a, b)xn (1.3)

for real numbers a ≥ 0 and b > 0. It is clear that Cn
(
1
2 ,

1
4

)
= Cn. The main results in [19, 41]

are as follows.

(1) The Catalan–Qi numbers of the second kind Cn(a, b) for n ≥ 0, a ≥ 0, and b > 0 can be
explicitly computed by

Cn(a, b) =
1

(2n)!!bn+1/2

n∑
k=0

(
2n− k − 1

2(n− k)

)
k![2(n− k)− 1]!!(
1 + a/

√
b
)k+1

, (1.4)

where (−1)!! = 1.
(2) The principal branch of the generating function Ga,b(z) for a ≥ 0 and b > 0 can be

represented by

Ga,b(z) =
1

a+
√
b− z

=
1

π

∫ ∞

0

√
t

a2 + t

1

b+ t− z
dt, z ∈ C \ [b,∞). (1.5)

Consequently, the Catalan–Qi numbers of the second kind Cn(a, b) for a ≥ 0 and b > 0
can be represented by

Cn(a, b) =
1

π

∫ ∞

0

√
t

a2 + t

1

(b+ t)n+1
dt, n ≥ 0. (1.6)

In this paper, motivated by the generating functions in (1.2) and (1.3), we consider the
functional sequence Cn(a, b; p) which is defined by

Ga,b;p(x) =
1

a+ (b− x)p
=

∞∑
n=0

Cn(a, b; p)x
n (1.7)

for a ≥ 0, b > 0, and 0 < p < 1. It is clear that

Ga,b;1/2(x) = Ga,b(x), G1/2,1/4(x) = G(x), G1/2,1/4;1/2(x) = G(x),

Cn

(
a, b;

1

2

)
= Cn(a, b), Cn

(
1

2
,
1

4

)
= Cn, Cn

(
1

2
,
1

4
;
1

2

)
= Cn,

but one can neither express Ga,b;p(x) in terms of Ga,b(x) or G(x) nor express Cn(a, b; p) in terms
of Cn(a, b) or Cn. In this paper, we will establish an explicit formula for Cn(a, b; p), present
integral representations for Ga,b;p(x) and Cn(a, b; p), and derive several integral formulas and
combinatorial identities.
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2. An explicit formula for Cn(a, b; p)

In this section, we establish an explicit formula for Cn(a, b; p), from which we can derive the
explicit formula (1.4).

Theorem 2.1. Let a ≥ 0, b > 0, and 0 < p < 1 be real numbers. Then the functional sequence
Cn(a, b; p) for n ≥ 0 can be explicitly computed by

Cn(a, b; p) =
1

a+ bp
(−1)n

bnn!

n∑
k=0

1

(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n, (2.1)

where the notation

⟨α⟩n =

n−1∏
k=0

(α− k) =

{
α(α− 1) · · · (α− n+ 1), n ≥ 1

1, n = 0

for α ∈ C is called the falling factorial.

Proof. In [6, p. 139, Theorem C], noted Faà di Bruno’s formula is described by

dn

dxn
f ◦ h(x) =

n∑
k=0

f (k)(h(x)) Bn,k

(
h′(x), h′′(x), . . . , h(n−k+1)(x)

)
, (2.2)

where f ◦ h denotes the composite of the n-time differentiable functions f and h, and the Bell
polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0 are defined (see [6, p. 134,
Theorem A]) by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
ℓi∈{0}∪N∑n−k+1
i=1 iℓi=n∑n−k+1
i=1 ℓi=k

n!∏n−k+1
i=1 ℓi!

n−k+1∏
i=1

(
xi

i!

)ℓi

.

Let h = hp(x) = (b − x)p for 0 < p < 1. Then h
(k)
p (x) = (−1)k⟨p⟩k(b − x)p−k for k ≥ 0 and,

in light of the formula (2.2) with f(x) = 1
a+x ,

dnGa,b;p(x)

dxn
=

n∑
k=0

dk

dhk

(
1

a+ h

)
Bn,k

(
h′
p(x), h

′′
p(x), . . . , h

(n−k+1)
p (x)

)
=

n∑
k=0

(−1)k
k!

[a+ hp(x)]k+1
Bn,k

(
h′
p(x), h

′′
p(x), . . . , h

(n−k+1)
p (x)

)
=

n∑
k=0

(−1)k
k!

[a+ (b− x)p]k+1
Bn,k

(
−⟨p⟩1(b− x)p−1, ⟨p⟩2(b− x)p−2,

. . . , (−1)n−k+1⟨p⟩n−k+1(b− x)p−(n−k+1)
)

=

n∑
k=0

(−1)k
k!

[a+ (b− x)p]k+1
(−1)n(b− x)kp−n Bn,k(⟨p⟩1, ⟨p⟩2, . . . , ⟨p⟩n−k+1)

=

n∑
k=0

(−1)k
k!

[a+ (b− x)p]k+1
(−1)n(b− x)kp−n (−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n

=
(−1)n

(b− x)n

n∑
k=0

(b− x)kp

[a+ (b− x)p]k+1

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n
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→ (−1)n

bn(a+ bp)

n∑
k=0

1

(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n

as x → 0, where we used the formula

Bn,k

(
αβx1, αβ

2x2, . . . , αβ
n−k+1xn−k+1

)
= αkβn Bn,k(x1, x2, . . . , xn−k+1) (2.3)

in [6, p. 135] and the formula

Bn,k(⟨α⟩1, ⟨α⟩2, . . . , ⟨α⟩n−k+1) =
(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨αℓ⟩n (2.4)

in [43, Theorem 2.1] and [44, Section 1.3] for α, β ∈ C.
The equation (1.7) means that

n!Cn(a, b; p) = lim
x→0

dnGa,b;p(x)

dxn
.

Consequently, we obtain the explicit formula

Cn(a, b; p) =
1

n!
lim
x→0

dnGa,b;p(x)

dxn
=

(−1)n

n!bn(a+ bp)

n∑
k=0

1

(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.

The proof of Theorem 2.1 is complete. □

Remark 2.1. When taking p = 1
2 in (2.1), we derive

Cn

(
a, b;

1

2

)
= Cn(a, b) =

(−1)n

n!bn
(
a+

√
b
) n∑

k=0

1(
1 + a/

√
b
)k k∑

ℓ=0

(−1)ℓ
(
k

ℓ

)〈
ℓ

2

〉
n

.

Further employing the identity

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)〈
ℓ

2

〉
n

= (−1)n
k![2(n− k)− 1]!!

2n

(
2n− k − 1

2(n− k)

)
(2.5)

in [43, Theorem 3.2] and [44, Section 1.5], which can be derived from comparing (2.4) for α = 1
2

with the identity

Bn,k((−1)!!, 1!!, 3!!, . . . , [2(n− k)− 1]!!) = [2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
in [47, Theorem 1.2] and [44, Section 1.5] or with the identity

Bn,k

(〈
1

2

〉
1

,

〈
1

2

〉
2

, . . . ,

〈
1

2

〉
n−k+1

)
= (−1)n+k[2(n− k)− 1]!!

(
1

2

)n(
2n− k − 1

2(n− k)

)
(2.6)

in [43, p. 169] and [44, Section 1.5], we recover (1.4) straightforwardly.

3. An integral representation of the generating function Ga,b;p(z)

In this section, we establish an integral representation for the principal branch of the complex
generating function Ga,b;p(z) by virtue of Cauchy’s integral formula in complex analysis.

Theorem 3.1. Let a ≥ 0, b > 0, and 0 < p < 1 be real numbers. Then the principal branch of
the complex function

Ga,b;p(z) =
1

a+ (b− z)p
, z ∈ C \ [b,∞)
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can be represented by

Ga,b;p(z) =
sin(pπ)

π

∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
1

b+ t− z
dt, arg(z − b) ∈ (0, 2π). (3.1)

Proof. In complex analysis, on the cut plane C \ (−∞, 0], the logarithmic function ln z = ln |z|+
i arg z, where i =

√
−1 is the imaginary unit, and the principal value arg z of the argument of z

satisfies | arg z| < π.
For a ≥ 0 and 0 < p < 1, let

Fa;p(z) =
1

a+ exp [p ln(−z)]
, z ∈ C \ [0,∞), arg z ∈ (0, 2π).

By virtue of Cauchy’s integral formula in complex analysis, for any fixed point z0 = x0 + iy0 ∈
C \ [0,∞), we have

Fa;p(z0) =
1

2πi

∫
L(r,R)

Fa;p(ξ)

ξ − z0
dξ,

where L(r,R) is a positively oriented contour in C \ [0,∞), as showed in Figure 1, such that

Figure 1. The positively oriented contour L(r,R) in C \ [0,∞)

(1) 0 < r < |z0| < R;
(2) L(r,R) consists of the half circle z = reiθ for θ ∈

[
π
2 ,

3π
2

]
;

(3) L(r,R) consists of the line segments z = x±ir for x ∈ (0, R(r)], where R(r) =
√
R2 − r2 ;
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(4) L(r,R) consists of the circular arc z = Reiθ for

θ ∈
(
arctan

r

R(r)
, 2π − arctan

r

R(r)

)
=

(
arcsin

r

R
, 2π − arcsin

r

R

)
;

(5) the line segments z = x± ir for x ∈ (0, R(r)] cut the circle |z| = R at the points R(r)± ir
and R(r) → R as r → 0+.

The integral on the circular arc z = Reiθ with positive orientation of the contour L(r,R)
equals

1

2πi

∫ 2π−arcsin(r/R)

arcsin(r/R)

Rieiθ

Reiθ − z0

1

a+ exp[p ln(−Reiθ)]
dθ

=
1

2π

∫ 2π−arcsin(r/R)

arcsin(r/R)

Reiθ

Reiθ − z0

1

a+Rp exp[ip arg(−Reiθ)]
dθ

which tends to 0 uniformly with respect to θ as R → ∞, where we used the limits

lim
R→∞

Reiθ

Reiθ − z0
= lim

R→∞

eiθ

eiθ − z0/R
= 1

and

lim
R→∞

∣∣Rp exp[ip arg(−Reiθ)]
∣∣ = lim

R→∞
Rp = ∞.

The integral on the half circle z = reiθ for θ ∈
[
π
2 ,

3π
2

]
with positive orientation of the contour

curve L(r,R) is

1

2πi

∫ π/2

3π/2

rieiθ

reiθ − z0

1

a+ exp[p ln(−reiθ)]
dθ

= − 1

2π

∫ 3π/2

π/2

reiθ

reiθ − z0

1

a+ rp exp[ip arg(−reiθ)]
dθ

= − 1

2π

∫ 3π/2

π/2

eiθ

eiθ − z0/r

1

a+ rp exp[ip arg(−reiθ)]
dθ

which tends to 0 uniformly with respect to θ as r → 0+, where we used the limits

lim
r→0+

eiθ

eiθ − z0/r
= 0 and lim

r→0+

∣∣rp exp[ip arg(−reiθ)]
∣∣ = lim

r→0+
rp = 0.

On the half line z = x+ ir for x ∈ (0, R(r)] and r > 0, direct computation gives

Fa;p(x+ ir) =
1

a+ exp[p ln(−x− ri)]

=
1

a+ exp
(
p ln

√
x2 + r2 + ip[arctan(r/x)− π]

)
→ 1

a+ xp cos(pπ)− ixp sin(pπ)
, r → 0+

=
a+ xp cos(pπ) + ixp sin(pπ)

[a+ xp cos(pπ)]2 + [xp sin(pπ)]2

=
a+ xp cos(pπ) + ixp sin(pπ)

a2 + 2axp cos(pπ) + x2p
.
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Since ez = ez̄ and ln z = ln z̄, it follows that

Fa;p(z) =
1

a+ exp [p ln(−z)]
=

1

a+ exp
[
p ln(−z)

] =
1

a+ exp
[
p ln(−z)

]
=

1

a+ exp[p ln(−z)]
=

1

a+ exp[p ln(−z̄)]
= Fa;p(z̄).

Accordingly, the integral on the line segments z = x ± ir for x > 0 with positive orientation of
the contour L(r,R) is equal to

1

2πi

[∫ R(r)

0

Fa;p(x+ ir)

x+ ir − z0
dx+

∫ 0

R(r)

Fa;p(x− ir)

x− ir − z0
dx

]
=

1

2πi

∫ R(r)

0

(x− ir − z0)Fa;p(x+ ir)− (x+ ir − z0)Fa;p(x− ir)

(x+ ir − z0)(x− ir − z0)
dx

=
1

2πi

∫ R(r)

0

(x− z0)[Fa;p(x+ ir)− Fa;p(x− ir)]− ir[Fa;p(x+ ir) + Fa;p(x− ir)]

(x+ ir − z0)(x− ir − z0)
dx

=
1

2πi

∫ R(r)

0

(x− z0)
[
Fa;p(x+ ir)− F

(
x+ ir

)]
− ir

[
Fa;p(x+ ir) + F

(
x+ ir

)]
(x+ ir − z0)(x− ir − z0)

dx

=
1

2πi

∫ R(r)

0

(x− z0)
[
Fa;p(x+ ir)− Fa;p(x+ ir)

]
− ir

[
Fa;p(x+ ir) + Fa;p(x+ ir)

]
(x+ ir − z0)(x− ir − z0)

dx

=
1

2πi

∫ R(r)

0

(x− z0)[2iℑ(Fa;p(x+ ir))]− ir[2ℜ(Fa;p(x+ ir))]

(x+ ir − z0)(x− ir − z0)
dx

→ 1

2πi

∫ ∞

0

2i

x− z0

xp sin(pπ)

a2 + 2axp cos(pπ) + x2p
dx, r → 0+, R → ∞

=
1

π

∫ ∞

0

1

x− z0

xp sin(pπ)

a2 + 2axp cos(pπ) + x2p
dx.

Consequently, it follows that

1

a+ exp [p ln(−z0)]
=

1

π

∫ ∞

0

1

x− z0

xp sin(pπ)

a2 + 2axp cos(pπ) + x2p
dx (3.2)

for z0 ∈ C \ [0,∞) and arg z0 ∈ (0, 2π). Due to the point z0 in (3.2) being arbitrary, the integral
formula (3.2) can be rewritten as

Fa;p(z) =
1

a+ exp [p ln(−z)]
=

sin(pπ)

π

∫ ∞

0

1

t− z

tp

a2 + 2a cos(pπ)tp + t2p
dt, (3.3)

where z ∈ C \ [0,∞) and arg z ∈ (0, 2π).
For a ≥ 0, b > 0, 0 < p < 1, and arg(z−b) ∈ (0, 2π), it is easy to see thatGa,b;p(z) = Fa;p(z−b).

Therefore, from (3.3), it follows that

Ga,b;p(z) =
sin(pπ)

π

∫ ∞

0

1

b+ t− z

tp

a2 + 2a cos(pπ)tp + t2p
dt.

The integral representation (3.1) is thus proved. The proof of Theorem 3.1 is complete. □

Remark 3.1. When taking z = x ∈ (−∞, b), the integral representation (3.1) becomes

1

a+ (b− x)p
=

sin(pπ)

π

∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
1

b+ t− x
dt. (3.4)

When taking x → b−, the integral in (3.4) converges. Consequently, the integral representa-
tion (3.4) is valid on (−∞, b].
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Remark 3.2. Taking p = 1
2 in the integral representation (3.1) recovers the integral representa-

tion (1.5).

Remark 3.3. When taking p = 1
3 and p = 1

4 respectively, the integral representation (3.1) becomes

1

a+ 3
√
b− z

=

√
3

2π

∫ ∞

0

3
√
t

a2 + a 3
√
t +

3
√
t2

1

b+ t− z
dt

and

1

a+ 4
√
b− z

=

√
2

2π

∫ ∞

0

4
√
t

a2 +
√
2 a 4

√
t +

√
t

1

b+ t− z
dt

for arg(z − b) ∈ (0, 2π) respectively.

4. An integral representation for Cn(a, b; p)

From the integral representation (3.1) or (3.4), we can derive an integral representation for
the functional sequence Cn(a, b; p) as follows.

Theorem 4.1. Let a ≥ 0, b > 0, and 0 < p < 1 be real numbers. Then the functional sequence
Cn(a, b; p) for n ≥ 0 can be represented by

Cn(a, b; p) =
sin(pπ)

π

∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
1

(b+ t)n+1
dt. (4.1)

Proof. Differentiating n ≥ 0 times with respect to z on both sides of (3.1) and taking the limit
z → 0 yield

lim
z→0

[Ga,b;p(z)]
(n) =

sin(pπ)

π
lim
z→0

∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
dn

dzn

(
1

b+ t− z

)
dt

=
sin(pπ)

π

∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
lim
z→0

n!

(b+ t− z)n+1
dt

=
n! sin(pπ)

π

∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
1

(b+ t)n+1
dt.

As a result, by virtue of (1.7), we have

Cn(a, b; p) =
1

n!
lim
x→0

dnGa,b;p(x)

dxn
=

sin(pπ)

π

∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
1

(b+ t)n+1
dt.

The integral representation (4.1) is thus proved. The proof of Theorem 4.1 is complete. □

Remark 4.1. If taking p = 1
2 in (4.1), one can recover (1.6) immediately.

Remark 4.2. When taking p = 1
3 and p = 1

4 respectively, the integral representation (4.1) becomes

Cn

(
a, b;

1

3

)
=

√
3

2π

∫ ∞

0

3
√
t

a2 + a 3
√
t +

3
√
t2

1

(b+ t)n+1
dt

and

Cn

(
a, b;

1

4

)
=

√
2

2π

∫ ∞

0

4
√
t

a2 +
√
2 a 4

√
t +

√
t

1

(b+ t)n+1
dt

respectively.
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5. Two integral formulas

Combining the explicit formula (2.1) in Theorem 2.1 with the integral representation (4.1) in
Theorem 4.1 and combining (1.4) with (1.6), we can conclude two integral formulas.

Theorem 5.1. Let a ≥ 0 and b > 0 be real numbers and let n ≥ 0 be integers. If 0 < p < 1,
then∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
1

(b+ t)n+1
dt

=
π

(a+ bp) sin(pπ)

(−1)n

n!bn

n∑
k=0

1

(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n. (5.1)

In particular, if p = 1
2 , then∫ ∞

0

√
t

a+ t

1

(b+ t)n+1
dt =

π

(2n)!!bn+1/2

n∑
k=0

(
2n− k − 1

2(n− k)

)
k![2(n− k)− 1]!!(
1 +

√
a/b

)k+1
. (5.2)

Alternative proof of the integral formula (5.1) for a, b > 0 and 0 < p < 1. The formula of Faà di
Bruno and Schlömilch [14, p. 33] states that

dn(f ◦ g)
dxn

=

n∑
k=1

(
f (k) ◦ g

)
Yn,k(g) (5.3)

where the operator Yn,k has the explicit form

Yn,k(g) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
gk−j

(
gj
)(n)

(5.4)

An inductive proof for this formula can also be found in [24].
Consider the case g(x) = xp with 0 < p < 1. According to (5.4), we have

Yn,k(x
p) =

1

k!

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)
x(k−ℓ)p

(
xpℓ

)(n)
=

1

k!

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)
x(k−ℓ)p⟨pℓ⟩nxpℓ−n

=
xkp−n

k!

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)
⟨pℓ⟩n.

When setting f(x) = 1
1+x , according to (5.3), we have

dn

dxn

(
1

1 + xp

)
=

n∑
k=1

(−1)kk!

(1 + xp)k+1

xkp−n

k!

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)
⟨pℓ⟩n

=
1

xn+p

n∑
k=1

(
xp

1 + xp

)k+1 k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.

(5.5)

Let 0 < p < 1 and λ > 0. Consider the meromorphic function

F (z) =
1

(1− λe−z)(1 + epz)
.
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Consider also the positively oriented rectangle R = ABCD with vertices A(−R−πi), B(R−πi),
C(R + πi), and D(−R + πi) for R > | lnλ|, as indicated in Figure 2. In the interior of the

Figure 2. The positively oriented rectangle R = ABCD

region enclosed by the rectangle R, the function F has a unique pole p = lnλ of the residue
Res(F, p) = 1

1+λp . Therefore, by Cauchy’s residue theorem in complex analysis, it follows that∫
R
F (z)dz =

2πi

1 + λp
. (5.6)

On the other hand, from∣∣∣∣∫
BC

F (z)dz

∣∣∣∣ = ∣∣∣∣i ∫ π

−π

F (R+ it)dt

∣∣∣∣ ≤ π

(1− λe−R)(epR − 1)

and ∣∣∣∣∫
DA

F (z)dz

∣∣∣∣ = ∣∣∣∣i ∫ π

−π

F (−R+ it)dt

∣∣∣∣ ≤ π

(λeR − 1)(1− e−pR)
,

we derive

lim
R→∞

∫
BC

F (z)dz = lim
R→∞

∫
DA

F (z)dz = 0.

Further, we have∫
AB

F (z)dz +

∫
CD

F (z)dz =

∫ R

−R

F (x− πi)dx−
∫ R

−R

F (x+ πi)dx

=

∫ R

−R

1

1 + λe−x

(
1

1 + epx−ipπ
− 1

1 + epx+ipπ

)
dx

= 2i sin(pπ)

∫ R

−R

1

1 + λe−x

epx

1 + 2 cos(pπ)epx + e2px
dx.

Consequently, letting R tend to ∞ in (5.6) and rearranging lead to∫ ∞

−∞

1

1 + λe−x

epx

1 + 2 cos(pπ)epx + e2px
dx =

π

sin(pπ)

1

1 + λp
.

The change of variables ex = t yields∫ ∞

0

tp

1 + 2 cos(pπ)tp + t2p
dt

t+ λ
=

π

sin(pπ)

1

1 + λp
.
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Taking the nth derivative with respect to λ arrives at∫ ∞

0

tp

1 + 2 cos(pπ)tp + t2p
dt

(t+ λ)n+1
=

π

sin(pπ)

(−1)n

n!

dn

dλn

(
1

1 + λp

)
.

Combining this with (5.5) reveals∫ ∞

0

tp

1 + 2 cos(pπ)tp + t2p
dt

(t+ λ)n+1
=

π

sin(pπ)

(−1)n

n!λn+p

n∑
k=1

(
λp

1 + λp

)k+1 k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.

Now the change of variables t = a−1/pu with a > 0 yields∫ ∞

0

up

a2 + 2a cos(pπ)up + u2p

a1+n/pdu

(u+ a1/pλ)n+1

=
π

sin(pπ)

(−1)n

n!λn+p

n∑
k=1

(
λp

1 + λp

)k+1 k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.

Finally, applying this to λ = a−1/pb for b > 0 results in∫ ∞

0

up

a2 + 2a cos(pπ)up + u2p

du

(u+ b)n+1
=

π

sin(pπ)

(−1)n

n! bn

n∑
k=1

bpk

(a+ bp)k+1

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n

or, equivalently,∫ ∞

0

up

a2 + 2a cos(pπ)up + u2p

du

(u+ b)n+1

=
π

(a+ bp) sin(pπ)

(−1)n

n! bn

n∑
k=1

1

(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.

The required proof is complete. □

Remark 5.1. By analytic continuation, we claim that the integral formula (5.1) is valid for

a ∈ {z ∈ C : | arg(z)| < (1− p)π}
and b ∈ C \ (−∞, 0]. For example, if 0 < p < 1

2 , b = 1, and a = i, then∫ ∞

0

up

−1 + 2i cos(pπ)up + u2p

du

(u+ 1)n+1
=

π

sin(pπ)

(−1)n

n!

n∑
k=0

1

(1 + i)k+1

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n

which is equivalent to∫ ∞

0

up[u2p − 1− 2i cos(pπ)up]

1 + 2 cos(2pπ)u2p + u4p

du

(u+ 1)n+1

=
π

sin(pπ)

(−1)n

n!

n∑
k=0

e−iπ(k+1)/4

2(k+1)/2

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.

Further comparing imaginary parts of this equality gives∫ ∞

0

u2p

1 + 2 cos(2pπ)u2p + u4p

du

(u+ 1)n+1

=
π

sin(2pπ)

(−1)n

n!

n∑
k=0

sin(π(k + 1)/4)

2(k+1)/2

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.



12 W.-H. LI, F. QI, O. KOUBA, AND I. KADDOURA

On the other hand, setting a = b = 1 and replacing p by 2p in (5.1) result in∫ ∞

0

u2p

1 + 2 cos(2pπ)up + u2p

du

(u+ 1)n+1
=

π

sin(2pπ)

(−1)n

n!

n∑
k=0

1

2k+1

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨2pℓ⟩n.

Accordingly, for 0 < p < 1
2 , we obtain

n∑
k=0

1

2k+1

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨2pℓ⟩n =

n∑
k=0

sin(π(k + 1)/4)

2(k+1)/2

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.

Since both sides of this equality are polynomials in the variable p, we acquire

n∑
k=0

1

2k+1

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨2ℓz⟩n =

n∑
k=0

sin(π(k + 1)/4)

2(k+1)/2

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨ℓz⟩n

for all z ∈ C.

Remark 5.2. From the proof of Theorem 2.1, we conclude that

dnGa,b;p(x)

dxn
=

(−1)n

(b− x)n

n∑
k=0

(b− x)kp

[a+ (b− x)p]k+1

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.

Combining this with the integral representation (3.1) in Theorem 3.1 derives the integral formula∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
1

(b+ t− x)n+1
dt

=
π

[a+ (b− x)p] sin(pπ)

(−1)n

n!(b− x)n

n∑
k=0

1

[1 + a/(b− x)p]k

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n.

This is essentially same as the integral formula (5.1).

Remark 5.3. Letting a = 0 and computing integrals in (5.1) and (5.2) leads to∫ ∞

0

1

tp
1

(b+ t)n+1
dt =

Γ(1− p)Γ(n+ p)

n!bn+p
=

π

bp sin(pπ)

(−1)n

n!bn

n∑
k=0

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n

and∫ ∞

0

1√
t (b+ t)n+1

dt =

√
π Γ

(
n+ 1

2

)
n!bn+1/2

=
π

(2n)!!bn+1/2

n∑
k=0

k![2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
.

As a result, we obtain two interesting formulas

Γ(1− p)Γ(n+ p) =
π

sin(pπ)
(−1)n

n∑
k=0

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n (5.7)

and

Γ

(
n+

1

2

)
=

√
π

2n

n∑
k=0

k![2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
(5.8)

for 0 < p < 1 and n ≥ 0.
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By the recurrent relation Γ(z + 1) = zΓ(z) and the reflection relation Γ(z)Γ(1 − z) = π
sin(zπ)

for z ̸= 0,±1, . . . (see [27, Chapter 5]), we can rewrite the identity (5.7) as

(p)n = (−1)n
n∑

k=0

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨pℓ⟩n

= (−1)n
n∑

ℓ=0

(−1)ℓ⟨pℓ⟩n
n∑

k=ℓ

(
k

ℓ

)

= (−1)n
n∑

ℓ=0

(−1)ℓ⟨pℓ⟩n
n∑

k=ℓ

[(
k + 1

ℓ+ 1

)
−

(
k

ℓ+ 1

)]

= (−1)n
n∑

ℓ=0

(−1)ℓ
(
n+ 1

ℓ+ 1

)
⟨pℓ⟩n

(5.9)

for 0 < p < 1 and n ≥ 0, where the notation

(α)n =

n−1∏
k=0

(α+ k) =

{
α(α+ 1) · · · (α+ n− 1), n ≥ 1

1, n = 0

for α ∈ C is called the rising factorial, the Pochhammer symbol, or shifted factorial. Because all
sides in (5.9) are polynomials in p for 0 < p < 1, all equalities in (5.9) must be valid for all p ∈ C
and n ≥ 0. Thus, we obtain the identity

(z)n = (−1)n
n∑

ℓ=0

(−1)ℓ
(
n+ 1

ℓ+ 1

)
⟨ℓz⟩n, z ∈ C.

By the recurrent relation Γ(z+1) = zΓ(z) and the formula Γ
(
1
2

)
=

√
π (see [27, Chapter 5]),

we can rewrite the identity (5.8) as

(2n− 1)!! =

n∑
k=0

k![2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
, n ≥ 0.

By the way, we can rearrange [12, Theorem 2.1] as

1

(2n− 1)!!
=

(−1)n+1

23n−2(n− 1)!

2n−1∑
k=0

(−1)k

2n− 2k − 1

(
2n− 1

k

)
, n ≥ 1.

6. An elementary computation of the integral in (5.2)

In this section, we will compute the integral in (5.2) elementarily.

Lemma 6.1. For real numbers a, b with a ̸= b and any positive integer n, we have

1

(a+ x)(b+ x)n
=

1

(b− a)n(a+ x)
−

n∑
ℓ=1

1

(b− a)n−ℓ+1(b+ x)ℓ
. (6.1)

Proof. The equality (6.1) can be proved straightforwardly by induction on n. However, we will
demonstrate an alternative proof as follow.

The right hand side of the equality (6.1) can be restructured and computed as

1

(b− a)n+1

[
b− a

a+ x
−

n∑
ℓ=1

(
b− a

b+ x

)ℓ
]
=

1

(b− a)n+1

[
b− a

a+ x
− b− a

a+ x

(
1−

(
b− a

b+ x

)n)]
=

1

(b− a)n+1

[
b− a

a+ x

(
b− a

b+ x

)n)]
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=
1

(a+ x)(b+ x)n
.

The proof of Lemma 6.1 is complete. □

Lemma 6.2. For real number b > 0 and integer ℓ ≥ 1, we have∫ ∞

0

√
t

(b+ t)ℓ+1
dt =

π

bℓ−1/2

(2ℓ− 3)!!

(2ℓ)!!
. (6.2)

For a, b ≥ 0, we have ∫ ∞

0

√
t

(
1

a+ t
− 1

b+ t

)
dt = π

(√
b −

√
a
)
. (6.3)

Proof. It is straightforward that∫ ∞

0

√
t

(b+ t)ℓ+1
dt =

1

bℓ+1

∫ ∞

0

√
t

(1 + t/b)ℓ+1
dt =

1

bℓ−1/2

∫ ∞

0

√
u

(1 + u)ℓ+1
du

=
1

bℓ−1/2
B

(
3

2
, ℓ− 1

2

)
=

1

bℓ−1/2

Γ
(
3
2

)
Γ
(
ℓ− 1

2

)
Γ(ℓ+ 1)

=
1

bℓ−1/2

1
2Γ

(
1
2

)(
ℓ− 3

2

)(
ℓ− 5

2

)
· · · 3

2
1
2Γ

(
1
2

)
ℓ!

=
π

bℓ−1/2

(2ℓ− 3)!!

(2ℓ)!!
,

where B(z, w) denotes the classical beta function

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt =

∫ ∞

0

tz−1

(1 + t)z+w
dt

for ℜ(z) > 0 and ℜ(w) > 0 and satisfies

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
= B(w, z).

See [1, p. 258, 6.2.1 and 6.2.2].
When a, b > 0 and a ̸= b, the first proof of the formula (6.3) is straightforward as follows:∫ ∞

0

√
t

(
1

a+ t
− 1

b+ t

)
dt = 2

∫ ∞

0

s2
(

1

a+ s2
− 1

b+ s2

)
ds

= 2(b− a)

∫ ∞

0

s2

(a+ s2)(b+ s2)
ds

= 2(b− a)

∫ ∞

0

d

ds

[√
a arctan s√

a
−

√
b arctan s√

b

a− b

]
ds

= 2(b− a)

√
a arctan s√

a
−
√
b arctan s√

b

a− b

∣∣∣∣∣
s=∞

s=0

= π
(√

b −
√
a
)
.

When a, b > 0 and a ̸= b, we can alternatively prove the formula (6.3) as follows:∫ ∞

0

√
t

(
1

a+ t
− 1

b+ t

)
dt =

∫ ∞

0

[
b

(b+ t)
√
t
− a

(a+ t)
√
t

]
dt

= 2
√
b arctan

√
t

b

∣∣∣∣t=∞

t=0

− 2
√
a arctan

√
t

a

∣∣∣∣t=∞

t=0

= π
(√

b −
√
a
)
.
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The proof of Lemma 6.2 is complete. □

Theorem 6.1. If n ≥ 0 is an integer and a ≥ 0, b > 0, and a ̸= b are real umbers, then∫ ∞

0

√
t

a+ t

1

(b+ t)n+1
dt = − π

(b− a)n+1

[
√
a +

√
b

n∑
ℓ=0

(
1− a

b

)ℓ
(2ℓ− 3)!!

(2ℓ)!!

]
, (6.4)

where (−3)!! = −1 and (−1)!! = 0!! = 1.

First proof of Theorem 6.1. From Lemma 6.1, it follows that

1

(a+ t)(b+ t)n+1
=

1

(b− a)n+1

(
1

a+ t
− 1

b+ t

)
−

n+1∑
ℓ=2

1

(b− a)n−ℓ+2(b+ t)ℓ
.

Further integrating on both sides with respect to t and applying the formulas (6.2) and (6.3) in
Lemma 6.2 arrive at∫ ∞

0

√
t

a+ t

1

(b+ t)n+1
dt =

1

(b− a)n+1

∫ ∞

0

√
t

(
1

a+ t
− 1

b+ t

)
dt

−
∫ ∞

0

n+1∑
ℓ=2

√
t

(b− a)n−ℓ+2(b+ t)ℓ
dt

=
π
(√

b −
√
a
)

(b− a)n+1
−

n∑
ℓ=1

1

(b− a)n−ℓ+1

∫ ∞

0

√
t

(b+ t)ℓ+1
dt

=
π
(√

b −
√
a
)

(b− a)n+1
−

n∑
ℓ=1

1

(b− a)n−ℓ+1

π

bℓ−1/2

(2ℓ− 3)!!

(2ℓ)!!

=
π
(√

b −
√
a
)

(b− a)n+1
− π

√
b

(b− a)n+1

n∑
ℓ=1

(
1− a

b

)ℓ
(2ℓ− 3)!!

(2ℓ)!!

= − π

(b− a)n+1

[
√
a +

√
b

n∑
ℓ=0

(
1− a

b

)ℓ
(2ℓ− 3)!!

(2ℓ)!!

]
.

The proof of Theorem 6.1 is complete. □

Second proof of Theorem 6.1. The formula (6.3) can be rewritten as∫ ∞

0

√
t

(a+ t)(b+ t)
dt = π

( √
b

b− a
−

√
a

b− a

)
.

Differentiating n times with respect to b on both sides of the above equality and making use of
Leibnitz’s rule for differentiation yield∫ ∞

0

(−1)nn!
√
t

(a+ t)(b+ t)n+1
dt = π

[
dn

dbn

( √
b

b− a

)
− dn

dbn

( √
a

b− a

)]
= π

[
n∑

ℓ=0

(
n

ℓ

)
dℓ

dbℓ
(√

b
) dn−ℓ

dbn−ℓ

(
1

b− a

)
−

√
a (−1)nn!

(b− a)n+1

]

= π

[
n∑

ℓ=0

(
n

ℓ

)〈
1

2

〉
ℓ

b1/2−ℓ (−1)n−ℓ(n− ℓ)!

(b− a)n−ℓ+1
−

√
a (−1)nn!

(b− a)n+1

]

= −π
(−1)nn!

(b− a)n+1

[
√
a − (b− a)n+1

(−1)nn!

n∑
ℓ=0

(
n

ℓ

)〈
1

2

〉
ℓ

b1/2−ℓ (−1)n−ℓ(n− ℓ)!

(b− a)n−ℓ+1

]
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= −π
(−1)nn!

(b− a)n+1

[
√
a −

√
b

n∑
ℓ=0

(−1)ℓ

ℓ!

〈
1

2

〉
ℓ

(
1− a

b

)ℓ
]

= −π
(−1)nn!

(b− a)n+1

[
√
a −

√
b

n∑
ℓ=0

(−1)ℓ

ℓ!

1

2

(
−1

2

)
· · ·

(
1

2
− ℓ+ 1

)(
1− a

b

)ℓ
]

= −π
(−1)nn!

(b− a)n+1

[
√
a +

√
b

n∑
ℓ=0

(2ℓ− 3)!!

(2ℓ)!!

(
1− a

b

)ℓ
]
.

The integral formula (6.4) is thus proved. □

Remark 6.1. The formula (6.3) can also be rearranged as∫ ∞

0

√
t

(a+ t)(b+ t)
dt =

π
√
a +

√
b
.

Differentiating n times with respect to b on both sides of the above equality, utilizing Faà di
Bruno’s formula (2.2), making use of the identity (2.3), and employing the formula (2.6) reveal∫ ∞

0

(−1)nn!
√
t

(a+ t)(b+ t)n+1
dt =

dn

dbn

(
π

√
a +

√
b

)
=

n∑
k=0

dk

dxk

(
π√

a + x

)∣∣∣∣
x=

√
b

Bn,k

((√
b
)′
,
(√

b
)′′
, . . . ,

(√
b
)n−k+1

)
= π

n∑
k=0

(−1)kk!

(
√
a + x)k+1

∣∣∣∣
x=

√
b

Bn,k

(
b1/2−1

〈
1

2

〉
1

, b1/2−2

〈
1

2

〉
2

, . . . , b1/2−(n−k+1)

〈
1

2

〉
n−k+1

)

= π

n∑
k=0

(−1)kk!

(
√
a +

√
b )k+1

bk/2−n Bn,k

(〈
1

2

〉
1

,

〈
1

2

〉
2

, . . . ,

〈
1

2

〉
n−k+1

)

= π

n∑
k=0

(−1)kk!

(
√
a +

√
b )k+1

bk/2−n(−1)n+k[2(n− k)− 1]!!

(
1

2

)n(
2n− k − 1

2(n− k)

)
which recovers the integral formula (5.2), where a ≥ 0 and b > 0.

Remark 6.2. For a ≥ 0 and b > 0, combining (5.2) and (6.4) results in an identity

n∑
k=0

(
2n− k − 1

2(n− k)

)
k![2(n− k)− 1]!!(
1 +

√
a/b

)k+1
= − (2n)!!

(1− a/b)n+1

[√
a

b
+

n∑
ℓ=0

(
1− a

b

)ℓ
(2ℓ− 3)!!

(2ℓ)!!

]
which can be further simplified as

n∑
k=0

(
2n− k − 1

2(n− k)

)
k![2(n− k)− 1]!!

(1 + x)k+1
= − (2n)!!

(1− x2)n+1

[
x+

n∑
ℓ=0

(2ℓ− 3)!!

(2ℓ)!!

(
1− x2

)ℓ]
(6.5)

for x ≥ 0 with (−3)!! = −1 and (−1)!! = 0!! = 1.
More extensively, the identity (6.5) is valid for all x ∈ C \ {−1, 1}, because both sides of (6.5)

are analytic on the set C \ {−1, 1}.

Remark 6.3. We note that all proofs in this section are elementary. In other words, Cauchy’s
integral formula in complex analysis is not employed in all proofs of Lemma 6.1, Lemma 6.2, and
Theorem 6.1.
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7. More remarks

Finally, we list more remarks on main results of this paper.

Remark 7.1. Let a ≥ 0, b > 0, and 0 < p < 1. Then, motivated by (4.1), one can consider the
function

C(a, b; p;x) =
sin(pπ)

π

∫ ∞

0

tp

a2 + 2a cos(pπ)tp + t2p
1

(b+ t)x+1
dt

for x ≥ 0. Can one compute this integral explicitly in terms of closed forms? For more details
on so-called closed forms, please refer to [4] and closely related references therein.

Remark 7.2. We do not find integral formulas (5.1), (5.2), and (6.4) in monographs and hand-
books [1, 9, 27, 58].

Remark 7.3. Integral representations of the Catalan numbers Cn for n ≥ 0 have been reviewed
and surveyed in [36, Section 2]. The first integral representation

Cn =
1

2π

∫ 4

0

√
4− x

x
xndx, n ≥ 0 (7.1)

was discovered in [28] and applied in [51]. An alternative integral representation

Cn =
1

π

∫ ∞

0

√
t

(t+ 1/4)n+2
dt (7.2)

was derived in [46, Theorem 1.3]. The equivalence of integral representations (7.1) and (7.2) was
proved in [32, Theorem 1.3]. The integral representation (7.2) can be recovered from (4.1) by
setting a = 1

2 , b =
1
4 , and p = 1

2 .

Remark 7.4. For α ∈ R, we consider the sequence Zn,k(α) generated by

[(1 + T )α − 1]k

k!
=

∑
n≥k≥0

Zn,k(α)
Tn

n!
.

See [6, p. 158]. When α = 1
2 , straightforward computation yields[

(1 + T )1/2 − 1
]k

k!
=

1

k!

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)
(1 + T )ℓ/2

=
1

k!

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

) ∞∑
n=0

(
ℓ/2

n

)
Tn

=

∞∑
n=0

[
1

k!

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)〈
ℓ

2

〉
n

]
Tn

n!

which means that

Zn,k

(
1

2

)
=

(−1)k

k!

n∑
ℓ=0

(−1)ℓ
(
k

ℓ

)〈
ℓ

2

〉
n

.

On the other hand, it is listed in [6, p. 158] that

Zn,k

(
1

2

)
= (−1)n−k (n− 1)!

(k − 1)!

(
2n− k − 2

n− 1

)
1

22n−k
.

Accordingly, we obtain the equality

(−1)k

k!

n∑
ℓ=0

(−1)ℓ
(
k

ℓ

)〈
ℓ

2

〉
n

= (−1)n−k (n− 1)!

(k − 1)!

(
2n− k − 2

n− 1

)
1

22n−k
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which can be rearranged as (2.5). Consequently, we recover the identity (2.5).

Remark 7.5. This paper is a revised version of the electronic preprint [20, 21].

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Dover
Publications, New York and Washington, 1972.

[2] J.-C. Aval, Multivariate Fuss-Catalan numbers, Discrete Math. 308 (2008), no. 20, 4660–4669; available

online at https://doi.org/10.1016/j.disc.2007.08.100.
[3] C. Ballot, Lucasnomial Fuss-Catalan numbers and related divisibility questions, J. Integer Seq. 21 (2018),

no. 6, Art. 18.6.5, 36 pages.

[4] J. M. Borwein and R. E. Crandall, Closed forms: what they are and why we care, Notices Amer. Math. Soc.
60 (2013), no. 1, 50–65; available online at https://doi.org/10.1090/noti936.

[5] W.-C. Chu, A new combinatorial interpretation for generalized Catalan number, Discrete Math. 65 (1987),
no. 1, 91–94; available online at https://doi.org/10.1016/0012-365X(87)90214-7.

[6] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged

Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974; available online at https://doi.org/10.

1007/978-94-010-2196-8.

[7] S. J. Dilworth and S. R. Mane, Applications of Fuss-Catalan numbers to success runs of Bernoulli trials, J.

Probab. Stat. 2016, Art. ID 2071582, 13 pages; available online at https://doi.org/10.1155/2016/2071582.
[8] N. I. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales

resolvi queat, Nova Acta Academiae Sci. Petropolitanae 9 (1791), 243–251.

[9] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Translated from the Russian,
Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth edition, Revised from

the seventh edition, Elsevier/Academic Press, Amsterdam, 2015; available online at https://doi.org/10.

1016/B978-0-12-384933-5.00013-8.
[10] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics—A Foundation for Computer Science,

2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994.
[11] R. P. Grimaldi, Fibonacci and Catalan Numbers, John Wiley & Sons, Inc., Hoboken, NJ, 2012; available

online at https://doi.org/10.1002/9781118159743.

[12] B.-N. Guo and F. Qi, On the Wallis formula, Internat. J. Anal. Appl. 8 (2015), no. 1, 30–38.
[13] P. Hilton and J. Pedersen, Catalan numbers, their generalization, and their uses, Math. Intelligencer 13

(1991), no. 2, 64–75; available online at https://doi.org/10.1007/BF03024089.

[14] C. Jordan, Calculus of Finite Differences, Hungarian Agent Eggenberger Book-Shop, Budapest, 1939.
[15] D. A. Klarner, Correspondences between plane trees and binary sequences, J. Combin. Theory 9 (1970),

no. 4, 401–411; available online at https://doi.org/10.1016/S0021-9800(70)80093-X.

[16] T. Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, 2009.
[17] P. Larcombe, On the history of the Catalan numbers: a first record in China, Math. Today (Southend-on-Sea)

35 (1999), no. 3, 89–89.
[18] P. J. Larcombe, The 18th century Chinese discovery of the Catalan numbers, Math. Spectrum 32 (1999/2000)

no. 1, 5–7.

[19] W.-H. Li, J. Cao, D.-W. Niu, J.-L. Zhao, and F. Qi, An analytic generalization of the Catalan numbers and
its integral representation, arXiv (2021), available online at https://arxiv.org/abs/2005.13515v2.

[20] W.-H. Li and F. Qi, A further generalization of the Catalan numbers and its explicit formula and integral

representation, Authorea (2020), available online at https://doi.org/10.22541/au.159844115.58373405.
[21] W.-H. Li, F. Qi, O. Kouba, and I. Kaddoura, A further generalization of the Catalan numbers and its explicit

formula and integral representation, OSF Preprints (2020), available online at https://doi.org/10.31219/
osf.io/zf9xu.

[22] F.-F. Liu, X.-T. Shi, and F. Qi, A logarithmically completely monotonic function involving the gamma

function and originating from the Catalan numbers and function, Glob. J. Math. Anal. 3 (2015), no. 4,

140–144; available online at https://doi.org/10.14419/gjma.v3i4.5187.
[23] X. R. Ma, The general solution of Ming Antu’s problem, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 1,

157–162; available online at https://doi.org/10.1007/s10114-003-0282-2.
[24] M. McKiernan, On the nth derivative of composite functions, Amer. Math. Monthly 63 (1956), no. 5, 331–333;

available online at https://doi.org/10.2307/2310518.

[25] M. Mahmoud and F. Qi, Three identities of the Catalan–Qi numbers, Mathematics 4 (2016), no. 2, Article 35,

7 pages; available online at https://doi.org/10.3390/math4020035.

https://doi.org/10.1016/j.disc.2007.08.100
https://doi.org/10.1090/noti936
https://doi.org/10.1016/0012-365X(87)90214-7
https://doi.org/10.1007/978-94-010-2196-8
https://doi.org/10.1007/978-94-010-2196-8
https://doi.org/10.1155/2016/2071582
https://doi.org/10.1016/B978-0-12-384933-5.00013-8
https://doi.org/10.1016/B978-0-12-384933-5.00013-8
https://doi.org/10.1002/9781118159743
https://doi.org/10.1007/BF03024089
https://doi.org/10.1016/S0021-9800(70)80093-X
https://arxiv.org/abs/2005.13515v2
https://doi.org/10.22541/au.159844115.58373405
https://doi.org/10.31219/osf.io/zf9xu
https://doi.org/10.31219/osf.io/zf9xu
https://doi.org/10.14419/gjma.v3i4.5187
https://doi.org/10.1007/s10114-003-0282-2
https://doi.org/10.2307/2310518
https://doi.org/10.3390/math4020035


A FURTHER GENERALIZATION OF THE CATALAN NUMBERS 19

[26] A. Nkwanta and A. Tefera, Curious relations and identities involving the Catalan generating function and
numbers, J. Integer Seq. 16 (2013), no. 9, Article 13.9.5, 15 pages.

[27] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical

Functions, Cambridge University Press, New York, 2010; available online at http://dlmf.nist.gov/.
[28] K. A. Penson and J.-M. Sixdeniers, Integral representations of Catalan and related numbers, J. Integer Seq.

4 (2001), no. 2, Article 01.2.5.

[29] F. Qi, An improper integral, the beta function, the Wallis ratio, and the Catalan numbers, Probl. Anal. Issues
Anal. 7 (25) (2018), no. 1, 104–115; available online at https://doi.org/10.15393/j3.art.2018.4370.

[30] F. Qi, Inverse of a triangular matrix and several identities of Catalan numbers, J. Hunan Inst. Sci. Technol.
(Nat. Sci.) 33 (2020), no. 2, 1–11 and 22; available online at https://doi.org/10.16740/j.cnki.cn43-1421/

n.2020.02.001. (Chinese)

[31] F. Qi, Parametric integrals, the Catalan numbers, and the beta function, Elem. Math. 72 (2017), no. 3,
103–110; available online at https://doi.org/10.4171/EM/332.

[32] F. Qi, Some properties of the Catalan numbers, Ars Combin. (2022), in press; available online at https:

//doi.org/10.13140/RG.2.1.4371.6321.
[33] F. Qi, A. Akkurt, and H. Yildirim, Catalan numbers, k-gamma and k-beta functions, and parametric inte-

grals, J. Comput. Anal. Appl. 25 (2018), no. 6, 1036–1042.

[34] F. Qi and P. Cerone, Some properties of the Fuss–Catalan numbers, Mathematics 6 (2018), no. 12, Article 277,
12 pages; available online at https://doi.org/10.3390/math6120277.

[35] F. Qi and B.-N. Guo, From inequalities involving exponential functions and sums to logarithmically complete

monotonicity of ratios of gamma functions, J. Math. Anal. Appl. 493 (2021), no. 1, Art. 124478, 19 pages;
available online at https://doi.org/10.1016/j.jmaa.2020.124478.

[36] F. Qi and B.-N. Guo, Integral representations of the Catalan numbers and their applications, Mathematics

5 (2017), no. 3, Article 40, 31 pages; available online at https://doi.org/10.3390/math5030040.
[37] F. Qi and B.-N. Guo, Logarithmically complete monotonicity of a function related to the Catalan–Qi func-

tion, Acta Univ. Sapientiae Math. 8 (2016), no. 1, 93–102; available online at https://doi.org/10.1515/

ausm-2016-0006.

[38] F. Qi and B.-N. Guo, Logarithmically complete monotonicity of Catalan–Qi function related to Catalan

numbers, Cogent Math. 3 (2016), Paper No. 1179379, 6 pages; available online at https://doi.org/10.

1080/23311835.2016.1179379.

[39] F. Qi and B.-N. Guo, Some properties and generalizations of the Catalan, Fuss, and Fuss–Catalan numbers,

Chapter 5 in Mathematical Analysis and Applications: Selected Topics, pp. 101–133; Edited by Michael
Ruzhansky, Hemen Dutta, and Ravi P. Agarwal; Published by John Wiley & Sons, Inc. 2018; available

online at https://doi.org/10.1002/9781119414421.ch5.

[40] F. Qi and B.-N. Guo, Sums of infinite power series whose coefficients involve products of the Catalan–Qi
numbers, Montes Taurus J. Pure Appl. Math. 1 (2019), no. 2, Art. ID MTJPAM-D-19-00007, 1–12.

[41] F. Qi, W.-H. Li, J. Cao, D.-W. Niu, and J.-L. Zhao, An analytic generalization of the Catalan numbers and

its integral representation, arXiv (2020), available online at https://arxiv.org/abs/2005.13515v1.
[42] F. Qi, M. Mahmoud, X.-T. Shi, and F.-F. Liu, Some properties of the Catalan–Qi function related to the

Catalan numbers, SpringerPlus 5 (2016), Paper No. 1126, 20 pages; available online at https://doi.org/

10.1186/s40064-016-2793-1.

[43] F. Qi, D.-W. Niu, D. Lim, and B.-N. Guo, Closed formulas and identities for the Bell polynomials and

falling factorials, Contrib. Discrete Math. 15 (2020), no. 1, 163–174; available online at https://doi.org/

10.11575/cdm.v15i1.68111.

[44] F. Qi, D.-W. Niu, D. Lim, and Y.-H. Yao, Special values of the Bell polynomials of the second kind for some

sequences and functions, J. Math. Anal. Appl. 491 (2020), no. 2, Art. 124382, 31 pages; available online at
https://doi.org/10.1016/j.jmaa.2020.124382.

[45] F. Qi, X.-T. Shi, and P. Cerone, A unified generalization of the Catalan, Fuss, and Fuss–Catalan numbers,

Math. Comput. Appl. 24 (2019), no. 2, Art. 49, 16 pages; available online at https://doi.org/10.3390/

mca24020049.

[46] F. Qi, X.-T. Shi, and F.-F. Liu, An integral representation, complete monotonicity, and inequalities of
the Catalan numbers, Filomat 32 (2018), no. 2, 575–587; available online at https://doi.org/10.2298/

FIL1802575Q.
[47] F. Qi, X.-T. Shi, F.-F. Liu, and D. V. Kruchinin, Several formulas for special values of the Bell polynomials

of the second kind and applications, J. Appl. Anal. Comput. 7 (2017), no. 3, 857–871; available online at

https://doi.org/10.11948/2017054.

[48] F. Qi, X.-T. Shi, M. Mahmoud, and F.-F. Liu, Schur-convexity of the Catalan–Qi function related to the
Catalan numbers, Tbilisi Math. J. 9 (2016), no. 2, 141–150; available online at https://doi.org/10.1515/

tmj-2016-0026.

http://dlmf.nist.gov/
https://doi.org/10.15393/j3.art.2018.4370
https://doi.org/10.16740/j.cnki.cn43-1421/n.2020.02.001
https://doi.org/10.16740/j.cnki.cn43-1421/n.2020.02.001
https://doi.org/10.4171/EM/332
https://doi.org/10.13140/RG.2.1.4371.6321
https://doi.org/10.13140/RG.2.1.4371.6321
https://doi.org/10.3390/math6120277
https://doi.org/10.1016/j.jmaa.2020.124478
https://doi.org/10.3390/math5030040
https://doi.org/10.1515/ausm-2016-0006
https://doi.org/10.1515/ausm-2016-0006
https://doi.org/10.1080/23311835.2016.1179379
https://doi.org/10.1080/23311835.2016.1179379
https://doi.org/10.1002/9781119414421.ch5
https://arxiv.org/abs/2005.13515v1
https://doi.org/10.1186/s40064-016-2793-1
https://doi.org/10.1186/s40064-016-2793-1
https://doi.org/10.11575/cdm.v15i1.68111
https://doi.org/10.11575/cdm.v15i1.68111
https://doi.org/10.1016/j.jmaa.2020.124382
https://doi.org/10.3390/mca24020049
https://doi.org/10.3390/mca24020049
https://doi.org/10.2298/FIL1802575Q
https://doi.org/10.2298/FIL1802575Q
https://doi.org/10.11948/2017054
https://doi.org/10.1515/tmj-2016-0026
https://doi.org/10.1515/tmj-2016-0026


20 W.-H. LI, F. QI, O. KOUBA, AND I. KADDOURA

[49] F. Qi, X.-T. Shi, M. Mahmoud, and F.-F. Liu, The Catalan numbers: a generalization, an exponential
representation, and some properties, J. Comput. Anal. Appl. 23 (2017), no. 5, 937–944.

[50] F. Qi and Y.-H. Yao, Simplifying coefficients in differential equations for generating function of Catalan

numbers, J. Taibah Univ. Sci. 13 (2019), no. 1, 947–950; available online at https://doi.org/10.1080/

16583655.2019.1663782.

[51] F. Qi, Q. Zou, and B.-N. Guo, The inverse of a triangular matrix and several identities of the Catalan

numbers, Appl. Anal. Discrete Math. 13 (2019), no. 2, 518–541; available online at https://doi.org/10.

2298/AADM190118018Q.

[52] S. Roman, An Introduction to Catalan Numbers, with a foreword by Richard Stanley, Compact Text-
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