Creating dynamic video-game inventory, structuring
stored objects and displaying them through the
graphical user interface.

Akvile Krikstaponyte
Affiliation not available

Abstract—This paper investigates data structures’ use in the
game development. The project aim was to create an inventory
system, that automatically groups, counts and names game objects
dynamically in an efficient way. Moreover, this paper presents
the design and implementation of the game inventory system,
developed with the use of data structure known as dictionary.
Furthermore, to demonstrate how the system works, graphical
user interface was created. System appears to be very fast
with large amount of objects, both in insertion and retrieval.
This was achieved by storing a single instance of the object
and incrementing only a count. Some functions used recursion
principle, to avoid looping if not necessary.

INTRODUCTION

In computer science, a specific way of storing and organ-
ising the data is known as data structures. Each data structure
can be designed and implemented to fit the specific purpose
and needs. There are many data structure types, such as arrays,
linked lists, queues, stacks, heaps, binary trees, hash tables and
more. From the fist glance, data structures themselves might
seem not that useful, however they are indispensable when
operated in particular applications with certain algorithms, e.g.,
sorting, searching, deletion, insertion and so on. It allows to
access and manipulate data more efficiently. [1], [2]

Data structures are widely used in game development. In
video-games, operating data with certain algorithms can be
used to create complex interactive experiences for players or
model real-world situations and objects. [2]

For example, data structures can be used for a scene
management in games. Video-games can get way too complex
for any hardware to handle at once, e.g., thousands of polygons
are rendered, physics has to be processed, special effects have
to be drawn and updated in milliseconds. Therefore, data
structures in combination with algorithms are used to speed
up and optimise the performance. [2]

Furthermore, data structures can be used for artificial
intelligence (Al) in video-games. Various data structures and
algorithms are used to control the behavior of dynamic game
elements, even in simple Al systems. [2]

Data structures are also used for the dynamic physics in
video-games. Physics in games handles realistic representa-
tions of laws of physics (e.g., gravity) in object and environ-
ment. Those forces result in object movement or interaction
with other objects or environment, e.g., collision. Physics and
collisions holds their own set of data structures and algorithms

(e.g., rigid bodies, point masses, algorithms to apply external
forces, resolve interactions, etc.) that are carried out to allow
objects to interact in a real time with each other and their
environment. [2]

Moreover, the use of data structures can be seen in a video-
game inventory system development, since game inventory
systems strive to be dynamic, with quickly accessible and
retrievable objects. Most of the seen examples would be im-
plemented with dictionaries instead of just static arrays. Arrays
can offer quick insertion and retrieval, however size has to be
predetermined. Dictionaries, on other hand are dynamic, and
will likely to be much smaller in size than arrays. Furthermore,
dictionaries require Keys to retrieve elements, therefore route
is often direct and as O(1). Some inventories do use linked
lists, however those seem to be rather slow.[3]

Seeing how useful data structures and algorithms can
be, we chose to take an advantage and use it in our own
game production. This work will focus on gathering more
information on already implement inventory systems with the
aid of data structures and algorithms, designing and improving
our own already existing inventory system for the game we
were developing for the past few months.

RELATED WORK

It is very satisfying in a video-game to loot and equip one’s
character. For that a placeholder for collected items throughout
games are usually implemented and called inventory systems.

In game development inventory system is not as complex
in comparison to other operations such as rendering or physics.
However, it is still an important aspect for most adventurous
games. Data as game objects has to be organised and manip-
ulated in a way to complement the overall functionality of the
game and it’s robustness, as well as be presented to the user
in understandable fashion.

According to developers’ discussions in forums, there is no
“correct” way to implement inventory systems and it is highly
dependent on the context and purpose of the game and it’s
overall functionalities. However, when researched, it appears
that the most common way to structure inventory systems
seemed to be by using arrays, lists, or more complex structures
as dictionaries. All of the listed examples below are mostly
drawn from the programming forums - discussions amongst
game developers.



Arrays and Lists

More basic data structures used for inventory systems are
arrays and lists. One example suggests, the building of a
stackable inventory system with the use of lists. Here, different
types of items can be stacked till pre-set limit, before filling
the inventory slot. First of all the base class for all inventory
items are defined, where different types of items are inherited
from this class. FIGURE 1

Then item classes (e.g., “Plant.cs”) are created, where item
can be stacked 50 per inventory slot (see Figure 2.).

So, there would be a static class created that obtains a list
with all the items that could be encountered by the player.
Then, the class where player would store the inventory should
be created. The inventory system class, would hold a list that
holds all the items that are currently stored in the inventory
(see Figure 3.).

When any item is being added to the player’s inventory, the
“AddItem” method is called, passing in the item object, and
the amount which is being added to the player’s inventory.

With the “AddItem” method an inventory slot that already
contains an item with the same ID as the item passed into the
method, which hasn’t reached the maximum stack size can
be found. As much items can be put in that inventory slot as
possible. If the limit is reached, and still there is more to add,
or if there isn’t a partially-filled slot with that item type, the
remaining quantity can be added to the another slot. [4]

Another very similar example implemented with an array
was found.

The base class “Item” that all of the item types are
descended from is created (see Figure 4.) Then the created
child classes e.g., Armor, “Item” variable can be used to store
any of the derived classes.

The “Items” is an array, where any Item-derived object can
be stored, e.g., Armor or Weapon (see Figure 5.). “FirstAvail”
method adds items to the array, where there is a space for it.
When one of the items is in use in the Inventory system, the
way how to deal with them has to be determined.

The code snippet above (see Figure 6) shows how to
behave with collected items. The operation “as” checks the
true type of the object and returns null if it doesn’t match. So
if you store a “Weapon” item in slot O of the inventory, it will
not try to use it as an “Armor” item.

Linked lists and Dictionaries

According to the wiki book “Learning C With Game
Concepts/Designing A Roleplaying Game.” [5] an inventory
system should contain list of items (e.g., objects). Inventory
should also be able to do such processes as insertion, deletion,

and finding of specific or similar items. When same item is
added, number of such items increases and not the instance.
Each of the created items should be inserted in an item node.
Each node can be linked to other nodes to form a data structure,
e.g., linked lists or trees. [S], [6] In this book’s example,
inventory is implemented as double linked list, where node
points to its own item, forward and backward. [5]

Another similar approach is to create inventory system
using dictionary data structure. Data is read into the dictionary
form the item class, where all the properties of items, like type,
name, etc are initialized. Item type is used as a key in the
dictionary. [7] In other cases developers use item itself as the
key and then set the value as amount of the items that players
are carrying. [8]

DESIGN

Purpose of this work is to demonstrate and create useful
implementation for organizing objects. On top of that, orga-
nized objects could be showed to the player in the video-game
scenarios.

Previous work

The last few months we were developing a video-game,
where basic implementation of using associative array was
used when storing player-held objects. The system was called
backpack, and it was a core for an inventory. This backpack
was able to input or find specific elements held inside. It could
also hold special items, for example required by the quest,
that could not be dropped out by the player. Items that player
wanted to store, were picked up or stored directly from where
they lay, parented to the backpack game object and reflected
in predefined array. Predefined array size, was the size of the
backpack capacity, which is a very common and realistic in-
game practice.

Previous work limitations

This backpack system had few limitations, therefore more
advanced structure was needed. First of all, all objects that
were stored initially by the system or picked up by the player
were just parented to backpack’s gameobject. This meant,
that all game objects would be stored in both the array and
the backpack transform. That, theoretically leads to a longer
object reitrieval time, in case where object id for the retrieval
is not known. So for every not known object retrieval, the
complexity is O(n). Furthermore, backpack system was not
organizing objects in any way, they were just added to an
empty array slot (which was also needed to be found) in the
array. Object types were also not recognized nor set in the
objects themselves. This meant that they could not be grouped
to groups as food, weapons, clothes etc, but also that a single
item from the specific group could not be retrieved. Backpack
system was also not able to visualize objects that are currently
stored inside, therefore player could not know what and how
many of the items are currently inside. Lastly, backpack system
was not a separate class and implemented together with the
player class, which is in general not the best practice.



Design requirements

Inspired that backpack objects could be displayed through
the inventory in an organized fashion to the player, we have
decided to redo the backpack system completely. 3.2 Previous
work limitations showed that:

1)  Objects should be stored once, if exactly the same
object is already store;

2)  There should be an indication of how many of each
items there are inside;

3)  Retrieval should be faster than O(n) - looping through
all objects to find one;

4)  Objects should be named and grouped to object types.

To fulfill the first requirement, new object should be
checked among same type of objects in the backpack, and
compared if it has exactly the same parameters. If for example,
two objects are similar, although the size is slightly different,
they can be overwritten and counted as exactly the same.

System should also be very dynamic. Considering that
previous work used a simple array, the first improvement
should be to create a dynamic structure, theoretically allowing
to store as many different objects as possible. This would also
give another improvement - the upgrade of backpack capacity
without any restructuring of already existing data.

New system should be able to do at least the minimum of
what previous system was able to do:

1)  Store object;

2) Initially store objects, before game starts;

3) Retrieve object;

4)  Drop all objects, excluding special items required for
the game quests.

5) Reinitialization of the backpack (change all objects in
the backpack with different graphical style objects)

Lastly, to demonstrate how the new system works, inven-
tory GUI should display what object types and how many of
them backpack is storing.

4 IMPLEMENTATION

This chapter will cover how and why specific decisions
were made while implementing backpack - inventory system.
All other elements as prefabs, models, code, icons, textures,
and some sounds were also created by us. However, only the
backpack system and GUI will be covered in this part.

We have started by implementing the switch between the
use of the new backpack and the old backpack systems.
The new backpack system was created in a separate class,
called Backpack, instead of keeping the code in the Player
class. Firstly, to use dynamic data structure type, instead of
associative array we have chosen to use Dictionary to store
game objects. Dictionary as the List is a dynamic structure,
which does not need predefined size to be known before adding
new objects. After, it was decided to use the ObjectType (apple,
rock, bottle etc.) as the Key (string) and GameObject (Unity

GameObject) as the value in that dictionary. The purpose
of that was to be able to find object according to the type.
Therefore, all objects that can be picked up and stored by
the player, received new property of ObjectType. Later, to add
new feature and fulfill the second requirement (knowing object
type amounts), another dictionary was created to store object
amounts, where Key was again ObjectType, and the value was
the amount of it.

Figure 7.

Instead of using two dictionaries, it is possible to keep the
game object as the Key and value as the amount (as was seen
in example inside Related Work), however, this would require
to find object type trough separate function in order to group
objects according to the ObjectType.

4.1 Storing new objects to the backpack

The storing of new object into the backpack (dictionaries)
was simple at the first glance. By default, the Key and new
game object would go directly to backPackObjects dictionary.
Right after, the same Key and amount of that object would
go to backPackObjectAmount dictionary. To put object in the
backpack, it was required to check if it is already existing or
not. If the type did not exist at all, the new Key value was
added to the first dictionary, e.g. Apple_1 (apple of type 1).
After, same Key and amount of that object was added to the
second dictionary.

Figure 8.

More complexities revealed, when trying to store the same
ObjectType object but with different parameters. See 4.2
Checking if there is the same object in the backpack

for more details.

4.2 Checking if there is the same object in the backpack

If object did exist in the dictionary, it was required to
know if it is similar or exactly the same object. Therefore, new
function CheckIfObjectlsTheSame(gameObject), that checks if
given object is the same as already stored in the backpack
was created. This function, was set to be bool type, to simply
retrieve the answer, if object is the same or not. If answer
is true, function finds which Key in the dictionary has the
same object, and amount of that object is incremented by one
in backPackObjectAmount dictionary (second dictionary that
keeps the amount of objects). Otherwise, if answer is false,
meaning that object is not the same, but such type exists,
Key of the same object type is incremented by one (two
types of apples plus one equals to Apple_3) and added to two
dictionaries.

The use of ObjectType gave possibility to recognize what
type of object it is, therefore, CheckIfObjectlsTheSame does
not need to compare all objects, but only of that type. For
example if the new object is of type “Apple”, it only checks
among different apples of Apple_Type_1, Apple_Type_2 etc.
Function CheckIfObjectlsTheSame, finds if object is the same
or not by checking its size, tag, ObjectType, mesh and weight,
therefore individuality of object is not lost. Function does
not need to check whether majority of set property requiring
components exists at all (for example mass of Rigidbody



component), since if object is in the backpack already, it means
that it did had these properties. However, some exceptions
needed to be made, for example some objects stored in the
backpack can use animations, therefore mesh type is different
than a normal skinned mesh type. Therefore checking if
mesh component exists was a requirement. The function could
be easily advanced in precision, by also checking material,
texture, what sounds it has, etc. If one of the predefined checks
is not true, object is categorized as a similar and not the same.
Picture below shows part of this function, that returns answer
true or false.

Figure 9.

4.3 Retrieving the object from the backpack

TakeObjectFromBackPack(string objectKey) was created
to be able to take out a single, specific object from the
backpack, founded by the inserted Key into the function.
Function was only ran, if received Key was not an empty
string or if there is at least one object in the backpack.
The retrieval from the dictionary is very simple, since no
looping is needed (in general). By default, object can be
retrieved only when specific Key is known. If it is known,
it is only a single line of code, where retrievedObject is equal
to backpackObjects value retrieved by the Key. However, if
exact Key is not known, only ObjectType, some looping is
required. This is useful, for example when retrieving any apple
from the dictionary, when player presses a button to eat some
apple (assuming that Apple_1 or any random apple type no
longer exists, it will retrieve Apple_2 or other). The list of
same ObjectTypes is created by another function called Gen-
erateSameTypeObjectList(objectKey). After function is called,
list and count of unique ObjectTypes as apples is generated.
After that, loop finds the first ObjectType (most often it is
looped once, since e.g. type of Apple_1 is most common as
any new apple inserted in the dictionary will receive such key
value automatically in this implementation) and instantiates
such game object in front of the player.

Figure 10.

This function could be optimized by checking whether
specific Key is given (Bottle_2 and not only Bottle). Therefore,
if the specific Key is given, only required check before the
retrieval is to check if that Key exists in the dictionary at
all. Our specific implementation required that special objects
would be given to player to hold right after they are taken out
from the backpack. For example, it was required that player
drinks water after water bottle is taken out. In this case specific
Key is give to the function, and retrieved object was sent to
the Player class HoldObject(gameObject) function.

Figure 11.

There were more special cases, for example when player
already holds object. Object held in hands was dropped out
automatically and new special object would be held in hands
by the system instead.

Lastly, dictionaries needed to be adjusted to reduce or and
remove Key completely if ObjectType was the last of it’s
specific kind. For example, if Apple_3 amount was 3, and one
was taken out, value will be reduced by 1 in the dictionary.

If Apple_3 amount was 1 and one such apple was taken out,
two dictionaries would remove Apple_3 Key completely.

Figure 12.

Later, new useful functionality was added to take out
specified amount of objects. Override method of TakeOb-
jectFromBackPack(string objectKey, int amount) was created,
that iteratively will call TakeObjectFromBackPack(string ob-
jectKey) until object amount becomes zero. If given amount is
greater than available object amount, recursion will be stopped
after all existing objects are dropped.

4.4 Removing all objects from the backpack

It is useful to drop all items from the backpack, considering
player’s time (if he or she wants to drop all items out) and
that items can be taken away, lost or any other in video-
game possible situation. Function ThrowoutAllObjects() was
created in iterative fashion, without the use of loops. Function
will call itself after a single item was dropped out to drop
the next item. Before it calls itself, it does few checks and
adjustments of dictionaries. To track how many items and
how many ObjectTypes remains, after dropping a single item,
dictionaries are adjusted as in 4.3 Retrieving the object from
the backpack.

As in majority video-games, a quest items (in our case
the specialltem) cannot and should not be removed from the
backpack by the player this was also implemented in this
backpack system. The check and implementation of special
object was problematic. Multiple approaches were considered,
one of those was to skip special item if it is found. Then,
function would call itself, with a different Key and try to
remove that object. However, it appeared that the constant
check if item was special and empty recursive function call
(if there is a huge cluster of special items) was not needed.
It was decided to store special items in the beginning of the
dynamic List objectTypes and when recursive function hits the
first special item, function stops. After that, the only remaining
items that stays in the backpack are the specialltems.

4.5 Puting initial objects into the backpack

When experimenting, and placing huge initial amounts
of object into the backpack, Unity GUI limits were reached
(errors were given), as a huge amount of objects were shown
in the Inspector, where they were placed. It was realized
that this is not a smart approach. Second list initialBack-
PackObjectAmount that holds amounts (integer) of initially
placed objects were created, see picture XXX. Therefore, a
single object could be placed in the inspector, and amount
of such objects indicated by that integer. After, code was
adjusted to not to loop (initially on start) through this amount
when adding new items. Instead initialBackPackObjectAmount
array numbers were reflected to backPackObjectAmount(Key)
dictionary, when initial objects were inserted. More convenient
and clean method would be to access the dictionary directly
from the Inspector and two additional lists of initial gameo
bjects and amounts would not be required. However, Unity
currently does not support serialization of dictionaries (used



in the inspector, to reflect properties held in the data types),
therefore, dictionaries are not accessible through the Inspector.

4.6 Inventory GUI

The new backpack system received the graphical user
interface (GUI) showing how objects are grouped, named and
counted. This required to create some graphical elements as
object icons, basic inventory background and text fields. Since
the grouping, object count and naming was prepared by the
dictionaries, only remaining implementation was to display this
information on-screen to the player. This required the creation
of numeric grid (pre-defined positions for icons) to store the
icons when player turns on the inventory. Picture below shows
how the inventory GUI functions. Three different green apples
are in different sizes or weights, therefore they are grouped as
different objects.

Figure 14.

Inventory is made to be flexible and dynamic - icons and
names does not need to be assigned before in the game engine.
Therefore, if object that is completely new and created by
someone else these elements will be still shown in the GUI
inventory. This was made by leaving important and individual
properties inside the object itself.

4.7 Implementation conclusion

All functionalities of the old backpack was created and
tested in our video-game. In addition to that, new functionali-
ties as inventory GUI for the player was created. At this point
it is minimal, and might experience some issues, however it is
a good and pleasing milestone for us as the developers. Full
code of the backpack can be seen in the appendix A while
GUI code can be seen in appendix B.

5 PLAY-TESTING

It is hard to say how fast this system is, however in most
of the video-games inventories will not include ten thousands
of objects (also in backpack of the player). Nevertheless, the
loading time of the game is very fast, when using this new
system with 100 000 000 initial objects in the backpack.
When system is disabled completely (and backpack is empty),
the loading time does not differ from when such big amount
of objects is loaded. Both loading times were approximately
3 seconds. Theoretically such huge amount could also be
taken out from the backpack, although in the testing, hardware
started struggling after approx. 5000 objects were taken out.

Figure 15.

6 CONCLUSION

6.1 Critique

In comparison and appart from new features, this system
is much more complex than previous backpack system. Many
more checks and operations are done per object in insertion
and retrieval. On top of that, since no multiple same objects
are held by any array, nor “physically” in the game hierarchy,
new objects have to be instantiated again in real-time. On

top of that, their transform properties as the position, rotation
transform-parenting etc. has to be set. While the old system
had to just unparent the object from the backpack gameObject
and enable it. It might be, that due to instantiation of the
new and more resource-craving objects (many at the same
time) “performance decrease spikes” could appear in some
situations. Although, we did not experience this in our small
scene with simple prefabs. Furthermore, as mentioned before,
there is no need for ten thousands of objects to be held in the
backpack, therefore overall performance might be worse than
just having predefined array and parented gameObjects in the
backpack. This is not clear - test to compare both systems
should be made.

6.2 Current limitations and future works

GUI is not finished, and it will malfunction if objects are
taken out or stored when it is on. This should be fixed, by
refreshing lists and reflecting that back to GUI immediately.
This will be also useful, when implementation of rearranging
the objects in the inventory will be made. Furthermore, all
basic functions as taking out one item, taking out all items,
equipping item, eating food etc. of inventory should be made.
Majority of these functions are already created, therefore the
remaining part is to work on the GUI and tie these options to
appropriate inventory buttons.



