References
1. Nicol, J., et al., Current nematode threats to world
agriculture , in Genomics and molecular genetics of plant-nematode
interactions . 2011, Springer. p. 21-43.
2. Davis, E.L. and G.L. Tylka, Soybean cyst nematode disease. The
plant health instructor, 2000.
3. Jones, J.T., et al., Top 10 plant‐parasitic nematodes in
molecular plant pathology. Molecular plant pathology, 2013.14 (9): p. 946-961.
4. Koenning, S.R. and J.A. Wrather, Suppression of soybean yield
potential in the continental United States by plant diseases from 2006
to 2009. Plant Health Progress, 2010. 10 .
5. Pogorelko, G., et al., A cyst nematode effector binds to
diverse plant proteins, increases nematode susceptibility and affects
root morphology. Molecular plant pathology, 2016. 17 (6): p.
832-844.
6. Abad, P. and V.M. Williamson, Plant nematode interaction: a
sophisticated dialogue , in Advances in botanical research . 2010,
Elsevier. p. 147-192.
7. Lilley, C.J., H.J. Atkinson, and P.E. Urwin, Molecular aspects
of cyst nematodes. Molecular Plant Pathology, 2005. 6 (6): p.
577-588.
8. Eves-van den Akker, S., et al., The Feeding Tube of Cyst
Nematodes: Characterisation of Protein Exclusion. PLOS ONE, 2014.9 (1): p. 1-9.
9. Hewezi, T. and T.J. Baum, Manipulation of plant cells by cyst
and root-knot nematode effectors. Molecular Plant-Microbe Interactions,
2013. 26 (1): p. 9-16.
10. Mitchum, M.G., et al., Nematode effector proteins: an emerging
paradigm of parasitism. New Phytologist, 2013. 199 (4): p.
879-894.
11. Gao, B., et al., The parasitome of the phytonematode
Heterodera glycines. Molecular Plant-Microbe Interactions, 2003.16 (8): p. 720-726.
12. Rai, K.M., et al., Genome wide comprehensive analysis and web
resource development on cell wall degrading enzymes from phyto-parasitic
nematodes. BMC plant biology, 2015. 15 (1): p. 187.
13. De Boer, J.M., et al., Cloning of a putative pectate lyase
gene expressed in the subventral esophageal glands of Heterodera
glycines. Journal of nematology, 2002. 34 (1): p. 9.
14. Bekal, S., T.L. Niblack, and K.N. Lambert, A chorismate mutase
from the soybean cyst nematode Heterodera glycines shows polymorphisms
that correlate with virulence. Molecular Plant-Microbe Interactions,
2003. 16 (5): p. 439-446.
15. Mitchum, M.G., X. Wang, and E.L. Davis, Diverse and conserved
roles of CLE peptides. Current opinion in plant biology, 2008.11 (1): p. 75-81.
16. Wang, J., et al., Dual roles for the variable domain in
protein trafficking and host‐specific recognition of Heterodera glycines
CLE effector proteins. New Phytologist, 2010. 187 (4): p.
1003-1017.
17. Wang, J., et al., Identification of potential host plant
mimics of CLAVATA3/ESR (CLE)‐like peptides from the plant‐parasitic
nematode Heterodera schachtii. Molecular plant pathology, 2011.12 (2): p. 177-186.
18. Matthews, B.F., et al., Arabidopsis genes, AtNPR1, AtTGA2 and
AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera
glycines) when overexpressed in transgenic soybean roots. BMC plant
biology, 2014. 14 (1): p. 96.
19. Noon, J.B., et al., Eighteen new candidate effectors of the
phytonematode Heterodera glycines produced specifically in the secretory
esophageal gland cells during parasitism. Phytopathology, 2015.105 (10): p. 1362-1372.
20. Hewezi, T., Cellular signaling pathways and posttranslational
modifications mediated by nematode effector proteins. Plant physiology,
2015. 169 (2): p. 1018-1026.
21. Elling, A.A. and J.T. Jones, Functional characterization of
nematode effectors in plants , Plant-Pathogen Interactions . 2014,
Springer. p. 113-124.
22. Eves-van den Akker, S., et al., Identification and
characterisation of a hyper-variable apoplastic effector gene family of
the potato cyst nematodes. PLoS pathogens, 2014. 10 (9).
23. Gao, B., et al., Identification of putative parasitism genes
expressed in the esophageal gland cells of the soybean cyst nematode
Heterodera glycines. Molecular Plant-Microbe Interactions, 2001.14 (10): p. 1247-1254.
24. Maier, T.R., et al., Isolation of whole esophageal gland cells
from plant-parasitic nematodes for transcriptome analyses and effector
identification. Molecular Plant-Microbe Interactions, 2013.26 (1): p. 31-35.
25. Vanholme, B., et al., Detection of putative secreted proteins
in the plant-parasitic nematode Heterodera schachtii. Parasitology
research, 2006. 98 (5): p. 414-424.
26. Wang, X., et al., Signal peptide-selection of cDNA cloned
directly from the esophageal gland cells of the soybean cyst nematode
Heterodera glycines. Molecular Plant-Microbe Interactions, 2001.14 (4): p. 536-544.
27. Chronis, D., et al., A ubiquitin carboxyl extension protein
secreted from a plant‐parasitic nematode Globodera rostochiensis is
cleaved in planta to promote plant parasitism. The Plant Journal, 2013.74 (2): p. 185-196.
28. Haegeman, A., et al., Functional roles of effectors of
plant-parasitic nematodes. Gene, 2012. 492 (1): p. 19-31.
29. Hamamouch, N., et al., The interaction of the novel 30C02 cyst
nematode effector protein with a plant β-1, 3-endoglucanase may suppress
host defence to promote parasitism. Journal of experimental botany,
2012. 63 (10): p. 3683-3695.
30. Hewezi, T., et al., Arabidopsis spermidine synthase is
targeted by an effector protein of the cyst nematode Heterodera
schachtii. Plant physiology, 2010. 152 (2): p. 968-984.
31. Lee, C., et al., The novel cyst nematode effector protein
19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to
control feeding site development. Plant Physiology, 2011.155 (2): p. 866-880.
32. Patel, N., et al., A nematode effector protein similar to
annexins in host plants. Journal of Experimental Botany, 2010.61 (1): p. 235-248.
33. Wang, X., et al., A parasitism gene from a plant‐parasitic
nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis
thaliana. Molecular Plant Pathology, 2005. 6 (2): p. 187-191.
34. Lu, S.-W., et al., Alternative splicing: a novel mechanism of
regulation identified in the chorismate mutase gene of the potato cyst
nematode Globodera rostochiensis. Molecular and biochemical
parasitology, 2008. 162 (1): p. 1-15.
35. Noon, J.B. and T.J. Baum, Horizontal gene transfer of
acetyltransferases, invertases and chorismate mutases from different
bacteria to diverse recipients. BMC evolutionary biology, 2016.16 (1): p. 74.
36. Vanholme, B., et al., Structural and functional investigation
of a secreted chorismate mutase from the plant‐parasitic nematode
Heterodera schachtii in the context of related enzymes from diverse
origins. Molecular plant pathology, 2009. 10 (2): p. 189-200.
37. Lu, S.-W., et al., Structural and functional diversity of
CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera
rostochiensis. Molecular Plant-Microbe Interactions, 2009.22 (9): p. 1128-1142.
38. Olsen, A.N. and K. Skriver, Ligand mimicry? Plant-parasitic
nematode polypeptide with similarity to CLAVATA3. Trends in plant
science, 2003. 8 (2): p. 55-57.
39. Replogle, A., et al., Nematode CLE signaling in Arabidopsis
requires CLAVATA2 and CORYNE. The Plant Journal, 2011. 65 (3):
p. 430-440.
40. Masonbrink, R.E., et al., The genome of the soybean cyst
nematode (Heterodera glycines) reveals complex patterns of duplications
involved in the evolution of parasitism genes. bioRxiv, 2018: p.
391276.
41. Lian, Y., et al., Chromosome‐level reference genome of X12, a
highly virulent race of the soybean cyst nematode Heterodera glycines.Molecular ecology resources, 2019. 19 (6): p. 1637-1646.
42. Putnam, N.H., et al., Chromosome-scale shotgun assembly using
an in vitro method for long-range linkage. Genome research, 2016.26 (3): p. 342-350.
43. Lieberman-Aiden, E., et al., Comprehensive mapping of
long-range interactions reveals folding principles of the human genome.science, 2009. 326 (5950): p. 289-293.
44. Chin, C.-S., et al., Phased diploid genome assembly with
single-molecule real-time sequencing. Nature methods, 2016.13 (12): p. 1050-1054.
45. Boetzer, M. and W. Pirovano, SSPACE-LongRead: scaffolding
bacterial draft genomes using long read sequence information. BMC
bioinformatics, 2014. 15 (1): p. 211.
46. Kosugi, S., H. Hirakawa, and S. Tabata, GMcloser: closing gaps
in assemblies accurately with a likelihood-based selection of contig or
long-read alignments. Bioinformatics, 2015. 31 (23): p.
3733-3741.
47. Walker, B.J., et al., Pilon: an integrated tool for
comprehensive microbial variant detection and genome assembly
improvement. PloS one, 2014. 9 (11): p. e112963.
48. Krueger, F., Trim galore. A wrapper tool around Cutadapt and
FastQC to consistently apply quality and adapter trimming to FastQ
files, 2015.
49. Kim, D., B. Langmead, and S. Salzberg, HISAT2: graph-based
alignment of next-generation sequencing reads to a population of
genomes . 2017.
50. Li, H., et al., The sequence alignment/map format and
SAMtools. Bioinformatics, 2009. 25 (16): p. 2078-2079.
51. Dudchenko, O., et al., De novo assembly of the Aedes aegypti
genome using Hi-C yields chromosome-length scaffolds. Science, 2017.356 (6333): p. 92-95.
52. Durand, N.C., et al., Juicebox provides a visualization system
for Hi-C contact maps with unlimited zoom. Cell systems, 2016.3 (1): p. 99-101.
53. Venturini, L., et al., Leveraging multiple transcriptome
assembly methods for improved gene structure annotation. GigaScience,
2018. 7 (8): p. giy093.
54. Smit, A., R. Hubley, and P. Green, RepeatModeler Open-1.0.
2008-2010. Access date Dec, 2014.
55. Smit, A., R. Hubley, and P. Green, RepeatMasker Open-4.0.
2013–2015. Institute for Systems Biology.
http://repeatmasker.org, 2015.
56. Wu, T.D., et al., GMAP and GSNAP for genomic sequence
alignment: enhancements to speed, accuracy, and functionality.Statistical Genomics: Methods and Protocols, 2016: p. 283-334.
57. Hoff, K.J., et al., BRAKER2: incorporating protein homology
information into gene prediction with GeneMark-EP and AUGUSTUS. Plant
and Animal Genomes XXVI, 2018.
58. Haas, B.J., et al., De novo transcript sequence reconstruction
from RNA-seq using the Trinity platform for reference generation and
analysis. Nature protocols, 2013. 8 (8): p. 1494-1512.
59. Henschel, R., et al. Trinity RNA-Seq assembler performance
optimization . in Proceedings of the 1st Conference of the Extreme
Science and Engineering Discovery Environment: Bridging from the eXtreme
to the campus and beyond . 2012.
60. Song, L., S. Sabunciyan, and L. Florea, CLASS2: accurate and
efficient splice variant annotation from RNA-seq reads. Nucleic acids
research, 2016. 44 (10): p. e98-e98.
61. Pertea, M., et al., Transcript-level expression analysis of
RNA-seq experiments with HISAT, StringTie and Ballgown. Nature
protocols, 2016. 11 (9): p. 1650.
62. Pertea, M., et al., StringTie enables improved reconstruction
of a transcriptome from RNA-seq reads. Nature biotechnology, 2015.33 (3): p. 290.
63. Bankevich, A., et al., SPAdes: a new genome assembly algorithm
and its applications to single-cell sequencing. Journal of
computational biology, 2012. 19 (5): p. 455-477.
64. Cantarel, B.L., et al., MAKER: an easy-to-use annotation
pipeline designed for emerging model organism genomes. Genome research,
2008. 18 (1): p. 188-196.
65. Trapnell, C., et al., Differential gene and transcript
expression analysis of RNA-seq experiments with TopHat and Cufflinks.Nature protocols, 2012. 7 (3): p. 562.
66. Howe, K.L., et al., WormBase ParaSite− a comprehensive
resource for helminth genomics. Molecular and biochemical parasitology,
2017. 215 : p. 2-10.
67. Coordinators, N.R., Database resources of the national center
for biotechnology information. Nucleic acids research, 2016.44 (Database issue): p. D7.
68. Consortium, U., UniProt: a worldwide hub of protein
knowledge. Nucleic acids research, 2019. 47 (D1): p. D506-D515.
69. Kikuchi, T., et al., Genomic insights into the origin of
parasitism in the emerging plant pathogen Bursaphelenchus xylophilus.PLoS pathogens, 2011. 7 (9): p. e1002219.
70. Cotton, J.A., et al., The genome and life-stage specific
transcriptomes of Globodera pallida elucidate key aspects of plant
parasitism by a cyst nematode. Genome biology, 2014. 15 (3): p.
R43.
71. Eves-van den Akker, S., et al., The genome of the yellow
potato cyst nematode, Globodera rostochiensis, reveals insights into the
basis of parasitism and virulence. Genome biology, 2016.17 (1): p. 124.
72. Phillips, W.S., et al., The Draft Genome of Globodera
ellingtonae. Journal of nematology, 2017. 49 (2): p. 127.
73. Lunt, D.H., et al., The complex hybrid origins of the root
knot nematodes revealed through comparative genomics. PeerJ, 2014.2 : p. e356.
74. Opperman, C.H., et al., Sequence and genetic map of
Meloidogyne hapla: A compact nematode genome for plant parasitism.Proceedings of the National Academy of Sciences, 2008. 105 (39):
p. 14802-14807.
75. Abad, P., et al., Genome sequence of the metazoan
plant-parasitic nematode Meloidogyne incognita. Nature biotechnology,
2008. 26 (8): p. 909.
76. Hoff, K.J., et al., BRAKER1: unsupervised RNA-Seq-based genome
annotation with GeneMark-ET and AUGUSTUS. Bioinformatics, 2015: p.
btv661.
77. Finn, R.D., et al., InterPro in 2017—beyond protein family
and domain annotations. Nucleic acids research, 2016. 45 (D1):
p. D190-D199.
78. Madden, T., The BLAST sequence analysis tool , in The
NCBI Handbook [Internet]. 2nd edition . 2013, National Center for
Biotechnology Information (US).
79. Quinlan, A.R., BEDTools: the Swiss‐army tool for genome
feature analysis. Current protocols in bioinformatics, 2014: p. 11.12.
1-11.12. 34.
80. Wang, L., S. Wang, and W. Li, RSeQC: quality control of
RNA-seq experiments. Bioinformatics, 2012. 28 (16): p.
2184-2185.
81. Wang, L., et al., Measure transcript integrity using RNA-seq
data. BMC Bioinformatics, 2016. 17 (1): p. 58.
82. Liao, Y., G.K. Smyth, and W. Shi, The Subread aligner: fast,
accurate and scalable read mapping by seed-and-vote. Nucleic acids
research, 2013. 41 (10): p. e108-e108.
83. Love, M.I., W. Huber, and S. Anders, Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
biology, 2014. 15 (12): p. 550.
84. Seppey, M., M. Manni, and E.M. Zdobnov, BUSCO: assessing
genome assembly and annotation completeness , in Gene Prediction .
2019, Springer. p. 227-245.
85. Simão, F.A., et al., BUSCO: assessing genome assembly and
annotation completeness with single-copy orthologs. Bioinformatics,
2015: p. btv351.
86. Waterhouse, R.M., et al., BUSCO applications from quality
assessments to gene prediction and phylogenomics. Molecular biology and
evolution, 2017. 35 (3): p. 543-548.
87. Buchfink, B., C. Xie, and D.H. Huson, Fast and sensitive
protein alignment using DIAMOND. Nature methods, 2015. 12 (1):
p. 59-60.
88. Armenteros, J.J.A., et al., SignalP 5.0 improves signal
peptide predictions using deep neural networks. Nature biotechnology,
2019. 37 (4): p. 420-423.
89. Ou, S., et al., Benchmarking transposable element annotation
methods for creation of a streamlined, comprehensive pipeline. Genome
biology, 2019. 20 (1): p. 1-18.
90. Benson, G., Tandem repeats finder: a program to analyze DNA
sequences. Nucleic acids research, 1999. 27 (2): p. 573-580.
91. Kurtz, S., et al., Versatile and open software for comparing
large genomes. Genome biology, 2004. 5 (2): p. R12.
92. Krzywinski, M., et al., Circos: an information aesthetic for
comparative genomics. Genome research, 2009. 19 (9): p.
1639-1645.
93. Proost, S., et al., i-ADHoRe 3.0—fast and sensitive
detection of genomic homology in extremely large data sets. Nucleic
acids research, 2011. 40 (2): p. e11-e11.
94. Cotten, J., Cytological investigations in the genus
heterodera. Nematologica, 1965. 11 (3): p. 337-342.
95. Weinstein, D.J., et al., The genome of a subterrestrial
nematode reveals adaptations to heat. Nature communications, 2019.10 (1): p. 1-14.
96. Lin, M., Characterization of 16B09 and 2D01 effector proteins
in cyst nematodes. 2016.
97. Quentin, M., P. Abad, and B. Favery, Plant parasitic nematode
effectors target host defense and nuclear functions to establish feeding
cells. Frontiers in plant science, 2013. 4 : p. 53.