References

1. Nicol, J., et al., Current nematode threats to world agriculture , in Genomics and molecular genetics of plant-nematode interactions . 2011, Springer. p. 21-43.
2. Davis, E.L. and G.L. Tylka, Soybean cyst nematode disease. The plant health instructor, 2000.
3. Jones, J.T., et al., Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular plant pathology, 2013.14 (9): p. 946-961.
4. Koenning, S.R. and J.A. Wrather, Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009. Plant Health Progress, 2010. 10 .
5. Pogorelko, G., et al., A cyst nematode effector binds to diverse plant proteins, increases nematode susceptibility and affects root morphology. Molecular plant pathology, 2016. 17 (6): p. 832-844.
6. Abad, P. and V.M. Williamson, Plant nematode interaction: a sophisticated dialogue , in Advances in botanical research . 2010, Elsevier. p. 147-192.
7. Lilley, C.J., H.J. Atkinson, and P.E. Urwin, Molecular aspects of cyst nematodes. Molecular Plant Pathology, 2005. 6 (6): p. 577-588.
8. Eves-van den Akker, S., et al., The Feeding Tube of Cyst Nematodes: Characterisation of Protein Exclusion. PLOS ONE, 2014.9 (1): p. 1-9.
9. Hewezi, T. and T.J. Baum, Manipulation of plant cells by cyst and root-knot nematode effectors. Molecular Plant-Microbe Interactions, 2013. 26 (1): p. 9-16.
10. Mitchum, M.G., et al., Nematode effector proteins: an emerging paradigm of parasitism. New Phytologist, 2013. 199 (4): p. 879-894.
11. Gao, B., et al., The parasitome of the phytonematode Heterodera glycines. Molecular Plant-Microbe Interactions, 2003.16 (8): p. 720-726.
12. Rai, K.M., et al., Genome wide comprehensive analysis and web resource development on cell wall degrading enzymes from phyto-parasitic nematodes. BMC plant biology, 2015. 15 (1): p. 187.
13. De Boer, J.M., et al., Cloning of a putative pectate lyase gene expressed in the subventral esophageal glands of Heterodera glycines. Journal of nematology, 2002. 34 (1): p. 9.
14. Bekal, S., T.L. Niblack, and K.N. Lambert, A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence. Molecular Plant-Microbe Interactions, 2003. 16 (5): p. 439-446.
15. Mitchum, M.G., X. Wang, and E.L. Davis, Diverse and conserved roles of CLE peptides. Current opinion in plant biology, 2008.11 (1): p. 75-81.
16. Wang, J., et al., Dual roles for the variable domain in protein trafficking and host‐specific recognition of Heterodera glycines CLE effector proteins. New Phytologist, 2010. 187 (4): p. 1003-1017.
17. Wang, J., et al., Identification of potential host plant mimics of CLAVATA3/ESR (CLE)‐like peptides from the plant‐parasitic nematode Heterodera schachtii. Molecular plant pathology, 2011.12 (2): p. 177-186.
18. Matthews, B.F., et al., Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC plant biology, 2014. 14 (1): p. 96.
19. Noon, J.B., et al., Eighteen new candidate effectors of the phytonematode Heterodera glycines produced specifically in the secretory esophageal gland cells during parasitism. Phytopathology, 2015.105 (10): p. 1362-1372.
20. Hewezi, T., Cellular signaling pathways and posttranslational modifications mediated by nematode effector proteins. Plant physiology, 2015. 169 (2): p. 1018-1026.
21. Elling, A.A. and J.T. Jones, Functional characterization of nematode effectors in plants , Plant-Pathogen Interactions . 2014, Springer. p. 113-124.
22. Eves-van den Akker, S., et al., Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes. PLoS pathogens, 2014. 10 (9).
23. Gao, B., et al., Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode Heterodera glycines. Molecular Plant-Microbe Interactions, 2001.14 (10): p. 1247-1254.
24. Maier, T.R., et al., Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification. Molecular Plant-Microbe Interactions, 2013.26 (1): p. 31-35.
25. Vanholme, B., et al., Detection of putative secreted proteins in the plant-parasitic nematode Heterodera schachtii. Parasitology research, 2006. 98 (5): p. 414-424.
26. Wang, X., et al., Signal peptide-selection of cDNA cloned directly from the esophageal gland cells of the soybean cyst nematode Heterodera glycines. Molecular Plant-Microbe Interactions, 2001.14 (4): p. 536-544.
27. Chronis, D., et al., A ubiquitin carboxyl extension protein secreted from a plant‐parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. The Plant Journal, 2013.74 (2): p. 185-196.
28. Haegeman, A., et al., Functional roles of effectors of plant-parasitic nematodes. Gene, 2012. 492 (1): p. 19-31.
29. Hamamouch, N., et al., The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1, 3-endoglucanase may suppress host defence to promote parasitism. Journal of experimental botany, 2012. 63 (10): p. 3683-3695.
30. Hewezi, T., et al., Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant physiology, 2010. 152 (2): p. 968-984.
31. Lee, C., et al., The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiology, 2011.155 (2): p. 866-880.
32. Patel, N., et al., A nematode effector protein similar to annexins in host plants. Journal of Experimental Botany, 2010.61 (1): p. 235-248.
33. Wang, X., et al., A parasitism gene from a plant‐parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Molecular Plant Pathology, 2005. 6 (2): p. 187-191.
34. Lu, S.-W., et al., Alternative splicing: a novel mechanism of regulation identified in the chorismate mutase gene of the potato cyst nematode Globodera rostochiensis. Molecular and biochemical parasitology, 2008. 162 (1): p. 1-15.
35. Noon, J.B. and T.J. Baum, Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients. BMC evolutionary biology, 2016.16 (1): p. 74.
36. Vanholme, B., et al., Structural and functional investigation of a secreted chorismate mutase from the plant‐parasitic nematode Heterodera schachtii in the context of related enzymes from diverse origins. Molecular plant pathology, 2009. 10 (2): p. 189-200.
37. Lu, S.-W., et al., Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. Molecular Plant-Microbe Interactions, 2009.22 (9): p. 1128-1142.
38. Olsen, A.N. and K. Skriver, Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3. Trends in plant science, 2003. 8 (2): p. 55-57.
39. Replogle, A., et al., Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. The Plant Journal, 2011. 65 (3): p. 430-440.
40. Masonbrink, R.E., et al., The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes. bioRxiv, 2018: p. 391276.
41. Lian, Y., et al., Chromosome‐level reference genome of X12, a highly virulent race of the soybean cyst nematode Heterodera glycines.Molecular ecology resources, 2019. 19 (6): p. 1637-1646.
42. Putnam, N.H., et al., Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome research, 2016.26 (3): p. 342-350.
43. Lieberman-Aiden, E., et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome.science, 2009. 326 (5950): p. 289-293.
44. Chin, C.-S., et al., Phased diploid genome assembly with single-molecule real-time sequencing. Nature methods, 2016.13 (12): p. 1050-1054.
45. Boetzer, M. and W. Pirovano, SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC bioinformatics, 2014. 15 (1): p. 211.
46. Kosugi, S., H. Hirakawa, and S. Tabata, GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments. Bioinformatics, 2015. 31 (23): p. 3733-3741.
47. Walker, B.J., et al., Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS one, 2014. 9 (11): p. e112963.
48. Krueger, F., Trim galore. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, 2015.
49. Kim, D., B. Langmead, and S. Salzberg, HISAT2: graph-based alignment of next-generation sequencing reads to a population of genomes . 2017.
50. Li, H., et al., The sequence alignment/map format and SAMtools. Bioinformatics, 2009. 25 (16): p. 2078-2079.
51. Dudchenko, O., et al., De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 2017.356 (6333): p. 92-95.
52. Durand, N.C., et al., Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell systems, 2016.3 (1): p. 99-101.
53. Venturini, L., et al., Leveraging multiple transcriptome assembly methods for improved gene structure annotation. GigaScience, 2018. 7 (8): p. giy093.
54. Smit, A., R. Hubley, and P. Green, RepeatModeler Open-1.0. 2008-2010. Access date Dec, 2014.
55. Smit, A., R. Hubley, and P. Green, RepeatMasker Open-4.0. 2013–2015. Institute for Systems Biology. http://repeatmasker.org, 2015.
56. Wu, T.D., et al., GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality.Statistical Genomics: Methods and Protocols, 2016: p. 283-334.
57. Hoff, K.J., et al., BRAKER2: incorporating protein homology information into gene prediction with GeneMark-EP and AUGUSTUS. Plant and Animal Genomes XXVI, 2018.
58. Haas, B.J., et al., De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols, 2013. 8 (8): p. 1494-1512.
59. Henschel, R., et al. Trinity RNA-Seq assembler performance optimization . in Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond . 2012.
60. Song, L., S. Sabunciyan, and L. Florea, CLASS2: accurate and efficient splice variant annotation from RNA-seq reads. Nucleic acids research, 2016. 44 (10): p. e98-e98.
61. Pertea, M., et al., Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature protocols, 2016. 11 (9): p. 1650.
62. Pertea, M., et al., StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature biotechnology, 2015.33 (3): p. 290.
63. Bankevich, A., et al., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology, 2012. 19 (5): p. 455-477.
64. Cantarel, B.L., et al., MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome research, 2008. 18 (1): p. 188-196.
65. Trapnell, C., et al., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.Nature protocols, 2012. 7 (3): p. 562.
66. Howe, K.L., et al., WormBase ParaSite− a comprehensive resource for helminth genomics. Molecular and biochemical parasitology, 2017. 215 : p. 2-10.
67. Coordinators, N.R., Database resources of the national center for biotechnology information. Nucleic acids research, 2016.44 (Database issue): p. D7.
68. Consortium, U., UniProt: a worldwide hub of protein knowledge. Nucleic acids research, 2019. 47 (D1): p. D506-D515.
69. Kikuchi, T., et al., Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus.PLoS pathogens, 2011. 7 (9): p. e1002219.
70. Cotton, J.A., et al., The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome biology, 2014. 15 (3): p. R43.
71. Eves-van den Akker, S., et al., The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome biology, 2016.17 (1): p. 124.
72. Phillips, W.S., et al., The Draft Genome of Globodera ellingtonae. Journal of nematology, 2017. 49 (2): p. 127.
73. Lunt, D.H., et al., The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ, 2014.2 : p. e356.
74. Opperman, C.H., et al., Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism.Proceedings of the National Academy of Sciences, 2008. 105 (39): p. 14802-14807.
75. Abad, P., et al., Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature biotechnology, 2008. 26 (8): p. 909.
76. Hoff, K.J., et al., BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics, 2015: p. btv661.
77. Finn, R.D., et al., InterPro in 2017—beyond protein family and domain annotations. Nucleic acids research, 2016. 45 (D1): p. D190-D199.
78. Madden, T., The BLAST sequence analysis tool , in The NCBI Handbook [Internet]. 2nd edition . 2013, National Center for Biotechnology Information (US).
79. Quinlan, A.R., BEDTools: the Swiss‐army tool for genome feature analysis. Current protocols in bioinformatics, 2014: p. 11.12. 1-11.12. 34.
80. Wang, L., S. Wang, and W. Li, RSeQC: quality control of RNA-seq experiments. Bioinformatics, 2012. 28 (16): p. 2184-2185.
81. Wang, L., et al., Measure transcript integrity using RNA-seq data. BMC Bioinformatics, 2016. 17 (1): p. 58.
82. Liao, Y., G.K. Smyth, and W. Shi, The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic acids research, 2013. 41 (10): p. e108-e108.
83. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 2014. 15 (12): p. 550.
84. Seppey, M., M. Manni, and E.M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness , in Gene Prediction . 2019, Springer. p. 227-245.
85. Simão, F.A., et al., BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 2015: p. btv351.
86. Waterhouse, R.M., et al., BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular biology and evolution, 2017. 35 (3): p. 543-548.
87. Buchfink, B., C. Xie, and D.H. Huson, Fast and sensitive protein alignment using DIAMOND. Nature methods, 2015. 12 (1): p. 59-60.
88. Armenteros, J.J.A., et al., SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature biotechnology, 2019. 37 (4): p. 420-423.
89. Ou, S., et al., Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome biology, 2019. 20 (1): p. 1-18.
90. Benson, G., Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids research, 1999. 27 (2): p. 573-580.
91. Kurtz, S., et al., Versatile and open software for comparing large genomes. Genome biology, 2004. 5 (2): p. R12.
92. Krzywinski, M., et al., Circos: an information aesthetic for comparative genomics. Genome research, 2009. 19 (9): p. 1639-1645.
93. Proost, S., et al., i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. Nucleic acids research, 2011. 40 (2): p. e11-e11.
94. Cotten, J., Cytological investigations in the genus heterodera. Nematologica, 1965. 11 (3): p. 337-342.
95. Weinstein, D.J., et al., The genome of a subterrestrial nematode reveals adaptations to heat. Nature communications, 2019.10 (1): p. 1-14.
96. Lin, M., Characterization of 16B09 and 2D01 effector proteins in cyst nematodes. 2016.
97. Quentin, M., P. Abad, and B. Favery, Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Frontiers in plant science, 2013. 4 : p. 53.