Step 2.
Thus, we subtract 256 from 310 which is 310-256 = 54. Obviously the value 54 does not belong to the 2n sequence. Therefore, the function f(x)=m310 can be rewritten as:
f(x)=m256×m54. This is because in a multiplication operation, when the two bases are the same, we can add the exponents together and so m256×m54 = m310.
So how do we calculate f(x)=m54 yet 54 does not fall on the 2n sequence? We do this by engaging in the same multiplication operation involving exponents of the 2nsequence until we get a result greater than 54. This will be step three.