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Abstract

Complex Event Processing (CEP) deals with collecting events from multiple sources, detecting patterns, filtering, trans-

forming, correlating and aggregating them into complex events. Predictive analytics (PA) on the other hand deals with

anticipating (forecast) the occurrence of events so to be able to react before these occur. We developed a system which

effectively predicts thunderstorms by ingesting real-time streaming data and by using CEP and PA. For this we used

weather data from National Oceanic and Atmospheric Administration (NOAA) and perform Machine Learning and other

complex events to detect the patters as they happen.
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1. Introduction

Weather forecasts are important tools to provide early warning on weather extremes. Given the volatile
climate conditions currently seen in our planet, understanding and noticing extreme weather conditi-
ons, such as imminent storms, tornadoes and avalanches - and their reasons and impacts - is necessary
to protect vulnerable societies and to build safer living conditions (“High Performance Computing for
Accurate Weather Forecast”, n.d.). However, to achieve achieve high levels of accuracy, modern wea-
ther forecasting models rely on computationally intensive algorithms to analyze huge volumes of data.
This process can take a long time to execute and may negatively impact the promptness of forecast
(Chandrathilake et al. 2016).

Complex Event Processing (CEP) systems can help to address this problem. Research on CEP has been
done since 1990s with Rapide (Luckham 1998). This information processing framework allows analyzing
multiple data streams by finding patterns in realtime. CEP can correlate continous streams of data
from different weather measurements sources, analyze it and detect situations according to modeled
event patterns (Zhou, Simmhan, and Prasanna 2013). Complex Event Processing systems, however, are
not able to consider events that did not happen yet (Christ, Krumeich, and Kempa-Liehr 2016). Data
streams are received, processed and analyzed, but the values are not stored as they only serve to detect
patterns.

In contrast to CEP, Predictive Analysis (PA) uses historical data to perform predictions by applying
Machine Learning (ML) techniques. Also, ML allows to predict a proability of future events and to
calculate estimates on the uncertainty of those predictions. As a major drawback, ML needs a huge data
source to increase accuracy and performance (Christ, Krumeich, and Kempa-Liehr 2016). In addition to
that, these models have low capacity to quickly adapt to changes in the data pattern. A model would
have to be retrained, which can consume a lot of time, where as in CEP, only the patterns need to be
changed.

Taking both advantages into account, with CEP analyzing current data in data streams for realtime
detection and PA using historical data stream information to predict complex events, CEP can be
transformed from a technology that rects to events to one that acts proactively (Christ, Krumeich, and
Kempa-Liehr 2016),

In section 2, related work in the field of CEP will be briefly presented. Section 3 will cover the use case
for our implementation, which is further explained in section 4. In section 5, an evaluation will be done.

2. Related Work

One of the first approaches in combining CEP and PA was done by Toth et al. (2010). The authors
performed a deep literature review on innovative papers and performed an assessment of CEP and PA
tools to analyze the most promising technologies and the main issues to be solved. As a main conclusion,
the paper proposed to include PA results in the CEP Pattern. More recently, Christ et al. (2016) proposed
the applying the concept of Conditional Event Occurrence Density Estimation (CEODE) to CEP. These
algorithms calculates the probability distribution of the occurrence of specific events. By calculating the
probability of typical event combinations, CEP patterns could be predicted and some decision could be
taken in advance.
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In the field of weather forecasting, Chandrathilake et al. (2016) showed how CEP and Machine Learning
techniques could reduce the computational time to run complex weather forecasting algorithms. By
using ML to cluster some regions and identify which had more probability of thunderstorm occurence,
the authors could reduce the time needed to run specialized weather forecasting algorithms. This is a
very sensitive issue in the field of meteorological forecasting, as the specialized systems are very resource
consuming. Also in this field, Banchero (2017) showed the benefits of combining different data-sources
and using weather convection parameters applied to ML algorithms to predict hail storms.

3. Use case

The use case presentend in this paper focus on thunderstorms predictions. This extreme weather event
have a destructive power, such as high winds, large hail, flash floods and the initiation of wildfires
through production of lightning (Singh et al. 2017). Meteorologists expect that stronger or more frequent
weather extremes will occur in the next years. In this scenario, an improved weather prediction is essential
to extend the time to prepare for extreme events, protecting lives and reducing the impact on cities
infrastructure (Lubchenco and Hayes 2012).

In this scenario, both CEP and PA can be useful. CEP is helpful to combine patterns of several measure-
ments and to detect which weather conditions can trigger a thunderstorm. To extend this capability and
allow predictions in a wider time frame, PA can, in addition to CEP, be used to estimate the patterns
for the next periods.

3.1. Dataset

This study comprises 14 different cities in Germany. The occurrence of thunderstorm was analyzed in
the period between January 2015 and June 2018. Two different weather data sources were combined,
both provided provided by the National Oceanic and Atmospheric Administration (NOAA).

Station Code City Latitude Longitude
10147099999 HAMBURG 53.63 9.99
10224099999 BREMEN 53.05 8.79
10338099999 HANNOVER 52.46 9.69
10382099999 TEGEL 52.56 13.29
10416099999 DORTMUND 51.52 7.61
10469099999 LEIPZIG HALLE 51.42 12.24
10488099999 DRESDEN 51.13 13.77
10513099999 KOLN BONN 50.87 7.14
10637099999 FRANKFURT MAIN 50.03 8.54
10708099999 SAARBRUCKEN 49.22 7.11
10738099999 STUTTGART 48.69 9.22
10763099999 NURNBERG 49.5 11.08
10852099999 AUGSBURG 48.43 10.93
10866099999 MUNCHEN 48.35 11.79

Table 1: List of stations analyzed in the presented work
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3.1.1 Thunderstorm convection parameters

The thunderstorm convection parameters dataset was provided by the National Centers for Environmen-
tal Prediction (NCEP) Global Forecast System (GFS). NCEP is a department of NOAA, and the dataset
contains forecasts with deterministic and probabilistic estimated for the following 16 days from the date
of measurement. The global data assimilation and forecasts are made daily at midnight, 6am, 12pm and
6pm UTC. (“National Centers for Environmental Prediction”, n.d.) From this dataset were obtained a
set of 36 variables that are necessary to calculate the indexes to predict thunderstorms. The forecast
data from GFS are provided for regular squares of 0.25 degrees of longitude and latitude. (Banchero
2017)

This data is provided in GRIB (General Regularly-distributed Information in Binary form) format. As
neither Python or Flink support GRIB, the data is first converted into CSV format. The converted data
is then fed into the CEP engine as a data stream. The conversion is done using the software wgrib2,
provided by NCEP. After that, the data was consolidated in CSV files to be sent to Flink. This process
has some drawbacks, such as the overhead to convert the files to CSV and the excessive size of final
files. For our observations, each GRIB file size was around 80kb. After conversion, each file achieved
around 4mb.

3.1.2 Thunderstorm reports

To indentify the days where thunderstorms happend, it was used the dataset provided by the National
Centers for Environmental Information (NCEI), also a department of NOAA. It contains sensor data such
as temperature, pressure, humidity and wind direction that are measured at weather stations around the
globe. Also it contains inputed data about the sky conditions, occurence of rain, snow, thunderstorms
and other weather events. The data is provided as a CSV file, with each file corresponding to a specific
station. In our use case, the stations were located at 14 different cities.

Prediction Time
Analysis day Time of Analysis 12pm 6pm

Before 12pm x -
6pm x x

Current Day 12am x x
6am - x

Table 2: Analysis and forecasts from GFS used in the present work. Adapted from (Banchero 2015)

4. Solution architecture

4.1 General achitecture

The general architecture to implement this project consists of two main parts: - Complex Event Pro-
cessing in Java with Apache Flink with Apache Kafka as a connector - Predictive Analysis in Python
with h2o library for Machine Learning
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As the data streams can have a huge size, Apache Flink is used to process the stream. Unlike other
competitors (i.e. Spark), Flink supports realtime data streaming instead of using mini batches. Flink
also supports CEP with the flink-cep library which enables the predefinition of classes and methods to
set atterns.

The input and output of the two components are linked with Apache Kafka. Kafka is used for building
real-time data pipelines and streaming apps. It is horizontally scalable, fault-tolerant, wicked fast, and
runs in production in thousands of companies. We are using Kafka as a streaming source provider and
can be used as a sink as well. It works by providing Producers and Consumers, which are implement
by various frameworks such as Apache Flink, Spark or a library in Python. By doing so, different
programming languages and systems can be combined, which enables us to implement CEP and PA in
completely different structures. For testing purposes, a csv file containing streaming data was used. To
emulate a data stream, the table will be parsed in python and used as a producer via Kafka.

4.2. Complex Event Processing Component

The input of the CEP component will be a data stream containing various events such as temperature.
After being parsed into an object, it will be checked upon known pattern. Fig 1. shows three patterns
to detect thunderstorms and additional properties.

Figure 1: Simple Thunderstorm patterns as proposed by Chandrathilake
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Based on these tables, a detection class is implemented, which will serve as the basic event. The
following code excerpt shows the Flink implemention of two lifted index patterns, which result in a
complex pattern.

Pattern<ThunderStormEvent, ?> liftedWarning = Pattern

.<ThunderStormEvent>begin("Lifted1")

.where(new IterativeCondition<ThunderStormEvent>() {

@Override

public boolean filter(ThunderStormEvent thunderStormEvent,

Context<ThunderStormEvent> context)

throws Exception {

//System.out.println("hiEv2");

return thunderStormEvent.getLiftedIndex() >= -2;

}

})

.next("Lifted2")

.where(new IterativeCondition<ThunderStormEvent>() {

@Override

public boolean filter(ThunderStormEvent thunderStormEvent,

Context<ThunderStormEvent> context)

throws Exception {

//System.out.println("loEv2");

return thunderStormEvent.getLiftedIndex() <= -2;

}

})

.within(Time.seconds(60));

By using a window with the size of two values, two simple events can be tracked. The first one, related
to the ”Lifted1” begin command, triggers when the lifted index shown in Fig. 1 is above -2. This pattern
check is applied to every incoming event in the data stream. The second one, which is indicated by the
next command, checks whether the proceeding event has a lifted index value below -2. The complex
event pattern results in the combination of the simple ones. For the CIN index, the implementation for
the pattern detection is the same.

Because the result of the pattern checks is treated as a data stream, the complex event processing result
can be used for another complex event processing. This feature is used to combine the CEP result with
the Predictive Analysis. The prediction only is meaningful as a result, when it is providded before the
CEP detects the thunderstorm. Therefore, the PA result will be used as an event.

4.3 Predictive Analysis

Thunderstorms forecasting is a tool historically used to protect lives and properties. In general, standard
models identify a single behaviour a storm could potentially have, which could be later confirmed or not.
Predictive analysis can increase the power of these models identifying the first signs of the probability
of a thunderstorm. As a result, these models can tell emergency responders how the weather events
can impact people, buildings and access points. In this way, local governments can predict damage
and prevent post-event behaviors hence protecting lives and saving money (“Predictive Weather Data:
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Forecasting Storm Paths to Protect”, n.d.)

The predictive analysis was done using regression models to estimating the occurence of thunderstorms.
The statistical models are Logistic Regression and Random Forest. Both models were implemented
using Python 3.6 and the library H2O. This library was chosen because it is open source and provides
interesting features, such as a parallel processing engine, analytics, math, and machine learning libraries,
along with data preprocessing and evaluation tools (Landset et al. 2015).

4.3 Research goals

The present use case will predict the probability of happening a thunderstorm at 12pm during the months
of January to June 2018. In 14 German cities. To perform theses predictions, the datasets of 24 hours,
18 hours and 12 hours before the predicted period were used, combined with historical data for the same
period (January to June) from 2015 to 2017. The Table 1 shows the indexes forecasts used for each
prediction.

With this dataset, the present study aims to answer two main research goals:

a) Compare the performance time for weather forecast predictions, based on the framework proposed
by Chandratilake et al. (2016)

b) Apply machine learning and conditional density estimations to predict future patterns of CEP,
based on the framework proposed by Christ et al. (2016)

To analyze the research goals, we selected some weather indexes that are generally correlated with the
occurence of weather events such as thunderstorms. These indexes follow simplified conceptual models
of the conditions that cause thunderstorms. Thresholds have been defined for most of the parameters
to transform them to different levels of warnings (Grieser 2012).

5. Methodology and discussion

5.1 Comparing performance time for weather forecast predictions

In this first research goal, this study aimed to identify how CEP can improve the performance of analysis
of weather forecast predictions by reducing the computational time. Based on the thresholds presented
on Fig. 2, we used CEP results to trigger the execution of the Machine Learning models. The result
of the CEP implemention is shown in the code block below. Due to many additional unknown weather
factors though, which cannot be explained by us due to missing knowledge of the domain, the patterns
only detected 60% of the thunderstorms. To increase these numbers, the PA component is tasked to
find additional patterns for the CEP. If at least one city presented values for Convective Inhibition higher
than 50J/kg and Lifted Index less than -2K, CEP triggered the ML algorithm to predict for the selected
regions.

1> Moderate weather condition based on CIN -64.9546

1> Moderate weather condition based on CIN -52.2341

1> Moderate weather condition based on CIN -72.7248

1> Moderate weather condition based on CIN -51.2168

1> Moderate weather condition based on CIN -71.5582
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1> Thunderstorm possible based on LI -2.0

1> Thunderstorm possible based on LI -2.2

1> Thunderstorm possible based on LI -9.1

1> Thunderstorm possible based on LI -2.0

1> Thunderstorm possible based on LI -4.2

Isobaric surface [hPa] Surface
Variables 300 500 700 850 925

Geopotential Height [gpm] x x x x x
Relative Humidity [%] x x x x x

Temperature [K] x x x x x
u-component of wind x x x x x
v-component of wind x x x x x

Vertical velocity (pressure) x x x x x
Surface lifted index x

Convective available potential energy x
Convective inhibition x

Table 3: Variables and indexes forecasted by GFS used in this paper. Isobaric surfaces are measured in
hectopascals (hPa) (Banchero 2015)

5.1.1 Machine Learn Algorithms

To perform this analysis, we manually modeled and tested several algorithms provided by H2O library,
among of them Decision Trees, Logistic Regression, Naive Bayes. We used the data from the first
semester of the years 2015 to 2017 as training and validation data, and the data from January to June
2018 as test set. The selected variables were based on (Banchero 2015) and are presented on the
After testing more than 5 different algorithms, none of them presented a good performance. Although
the accuracy was higher than 98% (which could be considered as a very good performance), the false
positive rate was around 60%. This evaluation measure is calculated as the number of incorrect positive
predictions divided by the total number of negatives (Fawcett 2006). In order to identify if there was a
model that suited well to the data, we used the AutoML functionality provided by H2O. It uses Stacked
Ensembles and includes automatic training and tuning of many models within a defined time-limit to
identify which models have an optimal predictive performance (AutoML: Automatic Machine Learning
— H2O 3.20.0.2 Documentation, n.d.). In this case the models selected by AutoML showed a slight
better performance in accuracy. The best model was a GBM algorithm and achieved an accuracy of
98.7%. But again the false positive rate was close to 50%, which cannot be considered a good result.

5.1.2 Comparison of performance with CEP

After selecting the GBM model proposed by H2O AutoML, the algorithm was applied to the regions
where CEP identified the trigger values for Convective Inhibition and Lifted Index. The next step was to
compare the time needed to run the algorithm. Rhe scenario of filtering the regions with CEP showed a
better performance, with an average time of processing of 0.8s, while to analyze the whole dataset was
around 2s. There was no significant difference in accuracy and false positive rate levels
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5.2 Apply machine learning and conditional density estimations to predict future pat-
terns of CEP

To perform this task, we were interested in predicting the values of the indexes Convective Inhibition
and Surface Lifted Index, since these ones identified by CEP as triggers of thunderstorms, as presented
on 1. To do that, the variables shown on 3 were used. Based on the forecasts from 24, 18 and 12 hours
before, the model aimed to forecast the result of Convective Inhibition and Lifted Index. The model
used was a Linear Regression, and presented a R² of 0.7.

6. Summary

The combination between Predictive Analysis and Complex Events Processing frameworks can present
good results. Although, in the presented study the results were not as good as expected. Due to the
low number of the occurrence of thunderstorms during the analyzed period, the models provided a high
level of false positive rates. Also, albeit the convection parameters used with CEP (Convective inhibition
and Lifted index) are useful to the identification of thunderstorms, false alarm rates are generally high
and probability of detection can be low (Grieser 2012). As suggestion to future works, the presented
model could be extended by attaching specialized models for detecting rare events. Furthermore, this
same data and approach could be applied to the identification of most common weather events, such
as raining or snow. These events are more common during certain periods of the year and can provide
a more balanced dataset.
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