
Problem Statement1

Let a motion of the pursuer evolve in three-dimensional Euclidean space R3

and its dynamics be subject to the equation

ẍ+ αẋ = ρu, ∥u∥ ≤ 1 (1)

where x = (x1, x2, x3) are geometric coordinates of the object. Here x1, x2

denote coordinates in the horizontal plane and x3 a height. Vectors ẋ = dx
dt

and ẍ = d2x
dt2

are velocity and acceleration, respectively; α - friction coefficient;
ρ > 0 - resource coefficient; u - control, which is chosen in a unit ball centered

at the origin of R3; ∥x∥ =
√
(x, x), where by (·, ·) is denoted a scalar product

of vectors.
It is assumed that control u(t), t ≥ 0, is Lebesgue measurable function

of time. For simplicity’sake and in view of possible practical applications, it
may be assumed that function u(t) is piecewise-continuous or even piecewise-
constant.

The evader moves in the horizontal plane and his motion is described by
the equation

ÿ + βẏ = σϑ, ∥υ∥ ≤ 1 (2)

where y = (y1, y2) are coordinates of the object. Vectors ẏ and ÿ denote ve-
locity and acceleration of the evader at point y, β > 0 - coefficient of friction,
σ > 0 - coefficient of resources, and ϑ - control of the evader, taking its values
in a flat circle centered at the origin. In the sequel we shall sometimes write
ỹ = (y1, y2, 0) or even ỹ = (y, 0) in order to treat y as vector in R3.

The game (??), (??) will be analyzed from the pursuer’s point of view.
His goal is to achieve “soft meeting” with the evader at a finite instant of
time:

∥x− ỹ∥ ≤ ε1,
∥∥∥ẋ− ˙̃y

∥∥∥ ≤ ε2 (3)

where ε1, ε2 are positive numbers, specifying the required proximity of the
players. The hyperplane {y3 = 0} stands for state constraint of the pursuer.
The pursuer is allowed to move in this hyperplane, not intersecting it.
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Without loss of generality, the initial state of the pursuer is assumed to
lie in the upper halfspace, that is x0

3 = x3(0) > 0.
To simplify the treatment, we set ε1 = ε2 = 0, that is we shall study the

precise “soft landing”. Note, that it is easy to pass from this problem to the
problem (??)-(??) and the solution of problem (??)-(??) immediately follows
from the solution of problem on precise “soft landing”.

For the sake of convenience, let us reduce the second order system (??),
(??) to a system of first order but yet of larger dimension with the help of
introduction of new variables

z1 = x, z2 = ẋ, z3 = ỹ, z4 = ˙̃y

Differentiating the above equalities in time and taking into account the
equations (??), (??) we obtain an equivalent system

ż1 = z2
ż2 = −αz2 + ρu
ż3 = z4
ż4 = −βz4 + σϑ

(4)

In the strict sense (??) is a system of 12th order, but, in fact, only of 10th,
since although vectors z1, z2, z3, z4 are three-dimensional, z3 and z4 have
zero third components.

Thus, the pursuer strives to bring a trajectory of system (??) to a linear
subspace

M0 : z1 = z3, z2 = z4 (5)

or to a certain its neighbourhood for any admissible counteraction of the
evader. In order to formulate the problem (??), (??) in a more general form
and to develop a general approach for solution of the linear game problem
we shall present the motion of a conflict-controlled process in the form

ż = Az + u− ϑ, u ∈ U, ϑ ∈ V, z ∈ Rn (6)

where A is a square matrix of order n, U, V are nonempty compacts, and
the terminal set is a cylindrical set

M∗ = M0 +M (7)
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Here M0 is a linear subspace of Rn and M is a compact from the orthog-
onal complement L to M0 in Rn. By π is usually denoted the operator of
orthogonal projection from Rn to L.

One can easily see that the problem of “soft landing”, formulated in the
form (??)-(??) or (??), (??), is a specific case of the differential game (??),
(??). Pontryagin’s condition for the problem (??), (??) means the nonempty
of set-valued mapping

W (t) = πetAU
∗
−πetAV ̸= ∅ ∀t ≥ 0 (8)

The availability of information on a current state of the game to the
pursuer will be specified separately for each particular method, presented in
the paper. Denote states of the players (??), (??) by

x̄ = (x, ẋ) = (z1, z2), ȳ = (ỹ, ˙̃y) = (z3, z4)
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