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Introduction

k-NN, also known as K nearest neighbor, is a classification algorithm used for assigning a class label
to a particular example based on it’s proximity to the trained classified example datasets(Kubat,
2015). The logic, understanding, and representation of this algorithm is fairly simple and is there-
fore an attractive and simple choice for classification problems. Here we investigate the effect of
irrelevant attributes on the k-NN classification performance. Irrelevant attributes are ones which
are not realistically related to the job or the activity in question. It should be noted that this is
separate from redundant attributes, which provided relevant information in multiple ways rather
than completely irrelevant information. Since k-NN algorithms are based on distances, adding
more attributes directly affects distance calculations. Therefore, it is hypothesized that irrelevant
attributes will significantly reduce the performance of k-NN algorithms.

k-NN Classifier Construction

For the experiments shown here, we constructed a simple k-NN classifier without weighting or
scaling features. The model is designed to work with numeric attributes and classify boolean
classes (i.e. True or False). We implement Euclidian distances to calculate the distance between
nearest neighbors. For a vector X = [z1, T2, ...xm], with m attributes, the distance between Xand
a training example vector E = [e] ea, ...e,,] is defined as

di =/ (xi —e1)?+ (xi —e2)? + .. + (2 — €2,) (1)

In the most simple case of a single nearest neighbor (1-NN) the input vector is classified with the
class of the example vector with the minimum distance. The addition of additional nearest neighbors
introduces a “voting system” such that the most frequently occurring class among the k£ nearest
neighbors found is the class assigned to the (201, 2017)input . Since the experiments presented
here deal with strictly two class scenarios, k£ must always be an odd number to avoid a tie between
classes. An overview of the k-NN voting is shown in table. 1 , where the three examples shown
are the k nearest neighbors (k=3). Examples 1 and 2 are positive (class =1) and example 2 is
negative, leading to a voting result of 2-1 in favor of positive The mathematical form of this logic
is seen in Eq. 2 where ¢! and " represent the positive and negative classes, respectively, and there



are m positive and j negative classes. Since the sum of positive classes is greater than the sum of
negative classes, the result is a positive classification.

Table 1: k-NN voting process
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Example dataset construction

Example Dataset 1

In order to illustrate the effect of irrelevant attributes on the k-NN classifier, two sample datasets
are constructed, both with 2 classes but varied numeric attribute ranges. The first dataset (Fig. 1a )
is comprised of 1000 examples with 2 attributes and positive or negative class separated by a linear
function f(x1). Attribute 1 (x) is a randomly generated number on the interval [0,1]. Attribute 2 is
generated by randomly adding or subtracting a random number the interval [0,3] to each f(x), where
final values greater than f(x) are deemed positive and those less than f(x) are deemed negative. It
should be noted that the actual line function (in the form y=mx+b) was also generated randomly,
meaning a randomly generated intercept and slop value. It was found that the random variations
of the line function had no effect on the outcome of the results here.

Dataset 2 - Mock Test Scores

A second test dataset (Fig. 1b) was generated to simulate a more real-world dataset, where the
average of 2 test scores ranging from 0-30, were used to determine whether a student passed or failed
a class (each test score is an attribute and the average is only used to determine the class). Then a
wide range of numeric irrelevant attributes is added, with values on the interval [0, 50]. While we
do not explicitly name the irrelevant attributes, it is useful to describe a plausible example. In the
case of classifying a pass or fail for a student, an irrelevant attribute might be a student’s shoe size
or the temperature in the north pole. While such examples are so absurd that they are unlikely to
be found in datasets looking at test scores, it serves as a clear thought exercise for defining what is
truly an irrelevant attribute. The larger range of values in the second example dataset also allows
for examining the effects of numeric scaling in irrelevant attributes. In reality, irrelevant attributes
are likely to be different scales than the relevant ones.



X1 (relevant) X2 (relevant) X3 X4 X5

El 18.94 12.21 8.4 2357 4.34
E2 10.65 6.53 2.22 433 3.98
E3 29.91 19.8 3.11 0.1 4.03
E4 6.73 12.2 10.89 17.67 9.83
E5 19.57 5.2 18.3  5.57 2.51

Table 2: First 5 examples and first 5 attributes of test score dataset, where attributes 1 and 2 (X1
&X2) are the relevant attributes

Experiment Setup

Both example datasets were used in an identical experimental procedure, where each dataset was
split 70/30 into training/testing subgroups. Classification is then conducted using the initial 2
(relevant) attributes, and repeated for the range of k values [1,50] (odds only). After each k value
is utilized, a single irrelevant attribute is added and the classifications are repeated. In other words,
an additional column of Table 2 is utilized in each subsequent classification, where the columns in
the table represent an attribute. This procedure is then repeated until all of the randomly generated
attributes are used in classification. It is important to note that the 70/30 split of datasets was
maintained through all the tests. This prevents the examples from training and testing datasets
being reshuffled, which would alter the results of the tests implemented here.

Results

Dataset 1

As an initial test of the classifier, both example datasets are classified without the addition of
any irrelevant attributes. Subsequent classifications are done, adding an additional random value
irrelevant attribute each time. For example, dataset 1, where attributes all fall within a similar
domain, a sharp increase in error rate is seen as irrelevant attributes are added. After the 10th
irrelevant attribute is added, the error rate increases at a slower rate until saturating around 30%
(Fig. 2 ). This trend is clearly unaffected by the number of neighbors used in the classification,
shown by analogous trends in the grey shaded region of the plot which represents varying numbers
of nearest neighbors.

Test Score Dataset

The experiment described above was then conducted on the Test Score dataset, again adding a new
irrelevant attribute after each experiment until 50 irrelevant attributes were present. In this case,
the rise in error rate was far more pronounced and sudden, reaching 35% errors after only several
irrelevant attributes were introduced (Fig.3) Beyond this point, the increase in error saturated
at a similar level to that of the previous example, around 30%. Here also the number of nearest
neighbors utilized did not affect the overall trend. Additionally, while, the range of numeric values
in the irrelevant attributes was larger, scaling also does not seem to have significantly altered
the trend. It is interesting to note that the error rate reaches a similar constant, implying some
underlying property of the euclidian distance formula is affecting the trends seen here.



Final words

Through the experiments shown here, we conclude that the addition of irrelevant attributes neg-
atively impacts k-NN classifiers, regardless of the number of nearest neighbors used. While these
results are for numeric attribute cases, it is unlikely to differ greatly in other cases. This is be-
cause the underlying use of Euclidean distances will be affected whenever you add a new term to
the distance calculation. And in both cases, after an initial rise in error rate, there is an eventual
saturation around 30% error. It would require further experiments to examine if this 30% satura-
tion level is similar for a large range of datasets. These experiments highlight the importance of
using some amount of intuition when applying a k-NN classifier, which would allow you to remove
irrelevant attributes before the actual classifier implementation. Additionally, utilization of alter-
native distance methodologies as well as weighted nearest neighbors may help to reduce the error
of irrelevant attributes.

References

Multiple Classifier Systems. In Encyclopedia of Machine Learning and Data Mining, pages 882—882.
Springer US, 2017. doi: 10.1007/978-1-4899-7687-1_100318. URL https://doi.org/10.1007%
2F978-1-4899-7687-1_100318.

Miroslav Kubat. Similarities: Nearest-Neighbor Classifiers. In An Introduction to Machine Learn-
ing, pages 43—64. Springer International Publishing, 2015. doi: 10.1007/978-3-319-20010-1_3.
URL https://doi.org/10.1007%2F978-3-319-20010-1_3.


https://doi.org/10.1007%2F978-1-4899-7687-1_100318
https://doi.org/10.1007%2F978-1-4899-7687-1_100318
https://doi.org/10.1007%2F978-3-319-20010-1_3

Hyy F + g i
20 +"‘++_f*;r1+ +4 jﬁ:j{,ﬁq + + THa

Attribute 1
Test 2 Score
&
++H
-
&

3 +
5
+

+.

+

+
¥

10 15 20 25 30
Attribute 2 Test 1 Score

Figure 1: (a - left) Random Data sample Separated into 2 classes based on the equation f(x). (b
-right) Dataset containing two test scores and the class separation based on Average test score
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Figure 2: Error rate due to addition of Irrelevant Attributes for the above dataset
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Figure 3: Error rate due to addition of Irrelevant Attributes for the Test score Dataset



