Escuelas de pensamiento:
La IA se divide en dos escuelas de pensamiento:
- La inteligencia artificial convencional.
- La inteligencia computacional.
Inteligencia artificial convencional:
Se conoce también como IA simbólico-deductiva. Está basada en el análisis formal y estadístico del comportamiento humano ante diferentes problemas:
- Razonamiento basado en casos: Ayuda a tomar decisiones mientras se resuelven ciertos problemas concretos y, aparte de que son muy importantes, requieren de un buen funcionamiento.
- Sistemas expertos: Infieren una solución a través del conocimiento previo del contexto en que se aplica y ocupa de ciertas reglas o relaciones.
- Redes bayesianas: Propone soluciones mediante inferencia probabilística.
- Inteligencia artificial basada en comportamientos: Esta inteligencia contiene autonomía y puede auto-regularse y controlarse para mejorar.
- Smart process management: Facilita la toma de decisiones complejas, proponiendo una solución a un determinado problema al igual que lo haría un especialista en dicha actividad.
Inteligencia artificial computacional:
La Inteligencia Computacional (también conocida como IA subsimbólica-inductiva) implica desarrollo o aprendizaje interactivo (por ejemplo, modificaciones interactivas de los parámetros en sistemas de conexiones).
Aplicaciones prácticas de la Inteligencia Artificial:
La mayoría de los juegos de mesa y una gran cantidad de problemas informáticos mediante la modelización del problema en estados con la posterior aplicación de un algoritmo de búsqueda entre estos estados.
La aplicación más evidente es el control de los PNJ (Personaje No Jugador) en el juego. La búsqueda de ruta es otro de uso común para la IA, buscar un camino para mover un PNJ de un punto en un mapa a otro, teniendo en cuenta el terreno y evitando los obstáculos. Más allá de búsqueda de caminos, la navegación es un subcampo de la IA del juego que se centra en dar a los PNJ la capacidad de navegar en su entorno, la búsqueda de un camino hacia un objetivo, evitando colisiones con otras entidades o colaborar con ellos. La IA también está involucrada con el equilibrio de la dificultad del juego, que consiste en el ajuste de la dificultad de un videojuego en tiempo real basado en la habilidad del jugador, aumentando la dificultad del juego se aumentaría la capacidad de la IA reduciendo así el «tiempo de reacción» a determinados sucesos.
Técnicas principales de la Inteligencia artificial:
Aprendizaje automático: Generalmente, el concepto de Aprendizaje automático se confunde con el de “IA débil”. Es en este campo en donde los avances más importantes de la IA se están llevando a cabo. En términos prácticos, “el Aprendizaje automático es la ciencia que se encarga de hacer que las computadoras realicen acciones sin necesidad de programación explícita”. La idea principal aquí es que se les puede proporcionar datos a los algoritmos de Aprendizaje automático y luego usarlos para saber cómo hacer predicciones o guiar decisiones.
Algunos ejemplos de algoritmos de Aprendizaje automático incluyen los siguientes: diagramas de decisiones, algoritmos de agrupamiento, algoritmos genéticos, redes Bayesianas y Aprendizaje profundo.
Descubrimiento de datos inteligentes: Es el próximo paso en soluciones de IE (Inteligencia empresarial). La idea consiste en permitir la automatización total del ciclo de la IE: la incorporación y preparación de datos, el análisis predictivo y los patrones y la identificación de hipótesis. Este es un ejemplo interesante de la recuperación de datos inteligentes en acción. La información que ninguna herramienta de IE había descubierto.
Análisis predictivo: Es el mismo principio que se emplea en los modelos predictivos de crédito para identificar a los buenos y malos pagadores. Por lo tanto, el concepto principal de análisis predictivo (o modelado) significa que se puede utilizar un número de variables (ingresos, código postal, edad, etc.) combinadas con resultados (por ejemplo, buen o mal pagador) para generar un modelo que proporcione una puntuación (un número entre 0 y 1) que representa la probabilidad de un evento (por ejemplo, pago, migración de clientes, accidente, etc.).
Los casos de uso en los negocios son amplios: modelos de crédito, modelos de segmentación de clientes (agrupamiento), modelos de probabilidad de compra y modelos de migración de clientes, entre otros.