
Abstract1

Many pathogens have clusters of variation in their genotypes that we refer to as strain structure. Importantly, when2

considering related pathogen strains, host immunity to one strain is often neither independent from nor equivalent3

to immunity to other strains. This partial cross-reactive immunity can thus allow repeated infection with (different4

strains of) the same pathogen and shapes disease dynamics across a population, in turn influencing the effectiveness of5

intervention strategies. To better understand the dynamics governing multi-strain pathogens in complex landscapes,6

we combine two frameworks well-studied in their own right: multi-strain disease dynamics and metapopulation7

network structure. We simulate the dynamics of a multi-strain disease on a network of populations connected by8

migration and characterize the joint effects of disease model parametrization and network structure on these dynamics.9

We find that the movement of (partially) immune individuals tends to have a larger impact than the movement of10

infectious individuals, dampening infection dynamics in populations further along a chain. When disease parameters11

differ between populations, we find that dynamics can propagate from one population to another, alternatively12

stabilizing or destabilizing destinations populations based on the dynamics of origin populations. In addition to13

providing novel insights into the role of host movement on disease dynamics, this work provides a framework for14

future predictive modelling of multi-strain diseases across generalized population structures.15

1 Introduction16

Many of the most impactful infectious diseases that affect humans (influenza, malaria, human17

papillomavirus, etc.), livestock (porcine reproductive and respiratory syndrome, foot-and-mouth18

disease, etc.), and wildlife (anthrax, plague, etc.) have clusters in their population-genetic variability19

that we classify as strains. This variation in pathogen genotype is often associated with differences20

in phenotype, which can have profound effects on the efficacy of host immune defenses. While the21

human immune system is usually capable of preventing re-infection—i.e. infection with something22

to which it has been previously exposed—sufficient, divergent evolution among pathogen strains can23

reduce the ability of the host to recognize, and thus mount an immunological response to, subsequent24

exposures. In some cases, this change is not sufficient to completely avoid recognition by the host’s25

immune system, yielding an immune response that is neither as strong as it would be in the case26
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of re-exposure to the same strain, nor as weak as in the case of exposure to a novel pathogen.27

This partial cross-reactive immunity can likewise lead to reduced transmissibility, affecting disease28

dynamics across the population.29

While the study of multi-strain diseases goes back decades (1; 2), the resulting modelling frame-30

work has not yet been generalized to a collection of sub-populations connected through host move-31

ment, i.e. a metapopulation (but see (3)). Initially introduced through the concepts of island32

biogeography (4), the network approach of metapopulations can be applied to a variety of systems,33

including human movement between cities, livestock transport between farms, and wildlife living34

in fragmented natural habitats. In each case, there exist relatively high-density areas which are35

connected to one another through a network of individuals’ movement. A metapopulation frame-36

work allows the application of network analyses to characterize patterns of connection within the37

larger system, and can provide unique insights across scales.38

Historically, metapopulation studies have been been divided into two main camps: those that mo-39

del within-population dynamics and “cell occupancy” models. The latter of which, where only the40

presence or absence of a given species within a population is recorded in a given timepoint (5), has41

received much more theoretical attention. Importantly, cell occupancy models rest on an assump-42

tion of temporal separation in which local dynamics occur on a timescale that can be treated as43

instantaneous relative to that of the between-population dynamics (6). When considering patho-44

gens in systems with relatively high migration rates, however, this assumption rarely holds, and the45

presence-absence approach can significantly limit model accuracy (7; 8; 9).46

The presence of metapopulation structure has been repeatedly associated with increased stabili-47

ty (10; 11; 12). This is due in part to the ability of migration between asynchronous populations to48

rescue temporarily low density populations from extinction (13). This is particularly relevant when49

populations are undergoing cyclical or chaotic dynamics, where repeated instances of low density50

are generally considered to be at greater risk of extinction than a population maintaining steady51

state dynamics (14; 15).52

Here, we build on the strain theory of host-pathogen systems proposed by (16), considering a scenario53
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where a collection of populations undergoing local dynamics are furthermore interconnected through54

the movement of individuals between populations. We simulate disease dynamics on this system,55

characterizing the effects of parametrization and network structure on these dynamics. This work is56

divided into three sections: first, we explore a case of interconnected populations which have been57

parametrized to display identical dynamics in the absence of host migration. Second, we consider58

cases where parameters differ between populations. Finally, we explore the role of network structure59

on disease dynamics in larger networks of connected populations.60

2 Methods61

2.1 Model framework for one population62

We work from a system of ordinary differential equations which delineate a population into classes63

based on current and past exposure to different strains of a pathogen. Pathogens with strain struc-64

ture can differ in both the number of strains and the level of cross-reactive immunity afforded by65

past exposure to similar strains. To model the number of strains, we signify a strain i = {x1, x2, . . . ,66

xn} as a set of n loci, each of which can take on a finite number of alleles. For instance, a pathogen67

with two loci (a and b) and two alleles at each loci has a total of four potential strains: {a1, b1},68

{a1, b2}, {a2, b1}, {a2, b2}. For cross-reactive immunity, we use a parameter γ which indicates the69

degree of reduced susceptibility a host has to strains that are similar to (i.e. strains that share70

at least one allele with one another) past exposures. Importantly, in this framework, the number71

of strains is fixed and finite. While strains may go extinct over time, there is no process for the72

generation of new strains or to re-introduce strains that had previously gone extinct (but see (16)).73

The model consists of sets of three nested equations (one set for each strain i): y, z, and w. See (17)74

for a more comprehensive discussion of the model framework, including a graphical representation.75

yi represents the proportion of the population currently infectious with strain i. zi represents the76

proportion of the population that has been exposed to strain i. These individuals harbor complete77

immunity to future infections with strain i and include those currently infected, i.e. yi, those that78

have recovered but were previously infectious, and those that were exposed, but protected from79
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becoming infectious due to partial cross-protective immunity. Finally, wi represents the proportion80

of the population which has been exposed to any strain j which has at least one allele in common81

with strain i (including strain i itself), i.e. j ∩ i 6= Ø. These individuals have at least partial82

immunity to strain i. N.b. these equations are nested such that any individual in yi is also in zi and83

any individual in zi is also in wi, and yi ≤ zi ≤ wi ∀ strain i. In traditional Susceptible-Infected84

(SI), Susceptible-Infected-Recovered (SIR), etc. single-strain mathematical frameworks: the y class85

is analogous to the I class, while w and z are composed of combinations of I and R classes. The86

susceptible population is not modelled explicitly in this framework.87

Explicitly, these three equations (for a given strain i) are:88

dyi
dt

= β ((1− wi) + (1− γ)(wi − zi)) yi − σyi − µyi
dzi
dt

= β(1− zi)yi − µzi
dwi

dt
= β(1− wi)

∑
j3j∩i 6=Ø

yj − µwi

(1)

As above, we denote strains as subscripts and, in the equation for wi, we sum over all strains j which89

share at least one allele with the focal strain i. β, σ, and μ are the infection, recovery, and death90

rates, respectively. γ (as mentioned above) is an indicator of the level of cross-reactive immunity91

gained by prior exposure to alleles in the target strain. Note that while we depict only one value per92

demographic parameter (i.e. all strains are functionally equivalent) for clarity of notation, these93

values could also be written to vary by strain (e.g. βi).94

Immunity in this framework is non-waning: exposure to a strain yields consistent protection from95

future infection over the lifespan of the individual. Moreover, this protection is trichotomous: an96

individual can either have no protection from a given strain (it has not seen any of the alleles97

before), complete protection (it has seen this exact combination of alleles before), or a set point98

in-between according to the parameter γ (it has seen at least one, but not all alleles before). Put99

another way, we do not distinguish between loci, assuming that sharing an allele at one locus is100

functionally identical to sharing an allele at any other locus, or indeed all other loci except one.101
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2.2 Extensions to more than one population102

Following (18), we model movement between populations using a dispersal matrix Δ = A - E,103

where A is the weighted adjacency matrix containing elements Akl indicating the proportion of104

population k (row) moving to population l (column) per unit time and E is a diagonal matrix105

representing emigration, where each entry Ekk =
∑n

k=1 Akl where n is the number of populations.106

Thus, the whole system can be depicted by a set of three equations per strain i per population k:107

dyi,l
dt

= β ((1− wi,k) + (1− γ)(wi,k − zi,k)) yi,k − σyi,k − µyi,k +
∑
k

∆klyi,k

dzi,l
dt

= β(1− zi,k)yi,k − µzi,k +
∑
k

∆klzi,k

dwi,l

dt
= β(1− wi,k)

∑
j3j∩i 6=Ø

yj,k − µwi,k +
∑
k

∆klwi,k

(2)

Where ΔT signifies the transpose of Δ, and each equation from Section 2.1 is now additionally108

indexed according to population and has an additional term to account for migration between109

populations. While in principle the elements ofΔ can take any value [0, 1], signifying a (continuous)110

movement of between 0 and 100% of individuals, for simplicity we use a constant value δ for the111

strength of each movement, i.e. for each non-zero off-diagonal element of Δ. Sensitivity to this112

value is explored in the supporting information (Fig S2).113

This framework can be applied to a metapopulation of arbitrary size and complexity, with the114

number of equations being linearly related to the number of populations. The dynamics of each115

population are governed by a set of three equations per pathogen strain, and these equations116

are interlinked within populations by partial, cross-reactive immunity, and between populations117

through a movement network. The total number of differential equations for any given system will118

be three times the number of strains multiplied by the number of populations in the metapopulation.119

2.3 Simulation Procedure120

All simulations were carried out in Julia version 1.3.0 (19), with graphics produced using the ggplot2

package (20) in R version 3.6.1 (21). For simplicity of presentation, we fix the values of all variables
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other than β (the infection rate) and Δ (the network of movement information) to be identical for

all populations in the metapopulation. To demonstrate the variety of dynamics obtainable in this

modeling framework, we vary

R̃0 =
β

σ + µ+ Ekk
,

where Ekk = -Δkk, as noted above, signifies the total outgoing movement from the population of121

interest. We add a ˜ over R0 to denote that this is an approximation of the true reproductive122

number, the precise form of which would additionally take into account the inflow of infectious123

individuals from other populations. We additionally vary Δ according to the number and inter-124

connectedness of the populations. For the figures of the main text, we utilize a strain structure of125

two loci, each with two alleles. Sensitivity to these parameter choices is explored in the supporting126

information (Fig S3).127

2.3.1 Populations with identical parametrizations128

To assess the effect of migration on population dynamics, we first consider the simplest case of a129

set of populations sharing the same disease parametrization: β such that R̃0 = 2, σ = 8, μ = 0.1,130

and γ = 0.66. We use a movement network described by a chain of populations, i.e. A→B→C→D131

or132

∆ =



−δ δ 0 0

0 −δ δ 0

0 0 −δ δ

0 0 0 0


,

where δ = 0.05, and ask how the dynamics of populations further down the chain (i.e. B, C, D)133

differ from those of the origin population (i.e. A), recalling that, without migration, all populations134

would have identical dynamics.135

2.3.2 Populations with varying parametrizations136

We next consider the case where parameters differ between connected populations, we restrict our137

consideration to a system of two populations, identical in all respects other than the parameter β,138
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which is set to either induce a steady state of coexisting strains (β such that R̃0 = 5 in population139

A) or cyclically coexisting strains (β such that R̃0 = 2 in population B). We then display three140

potential patterns of connection: no migration (left column), A→B (middle column), and B→A141

(right column). Specifically, we set142

∆ =

0 0

0 0

 ,∆ =

−δ δ

0 0

 , and ,∆ =

0 0

δ −δ

 ,
respectively, again with δ = 0.05, σ = 8, μ = 0.1, and γ = 0.66.143

To address the case of multiple origin populations feeding into a single destination population, we144

consider a system of three populations: A→C←B, or145

∆ =


−δ 0 δ

0 −δ δ

0 0 −δ

 ,

where populations A and C have β corresponding to an R̃0 = 5, but population B has β correspond-146

ing to an R̃0 = 2; all other parameters as above.147

2.3.3 Larger network structure148

Finally, we characterize the role of global network structure through considering the impact of149

degree distribution on a few summary statistics of system-wide disease burden: the mean proportion150

of infectious individuals (area under the currently infectious (i.e. y) curve), the mean level of strain-151

specific immunity (average z value), and the mean time between epidemic peaks (i.e. between local152

maxima in y) over the course of the final 33% of the simulation. We omit the initial period of the153

simulation to reduce the impact of transient dynamics.154

We perform 100 simulations for each of five generic network ensembles each with 25 populations155

and a connectedness of approximately 0.15. Specifically, we examine Erdős-Rényi (links randomly156

assigned between populations), stochastic block (a metapopulation consisting of two groups of po-157
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pulations which have high migration within the group, but low migration to populations in the other158

group), tree-like (where there are many chains of populations and no potential for cycles), Barabasi-159

Albert (a scale-free network in which there tends to be a few populations with very many links,160

and many populations with few links), and Watts-Strogatz (a small-world network structure which161

is produced by partially re-wiring a spatially connected grid of populations) network structures. To162

generate these networks, we utilize functions from the tidygraph R package (22), except in the case163

of the tree and Watts-Strogatz configuration for which we use custom algorithms. Note that we use164

a parameter of attachment of 4 for the Barabasi-Albert random graphs. This allows for comparable165

connectences to the other random graphs as well as distinguishing these randomizations from trees166

(as would result from a default parameter of attachment of 1). In all cases, each migration strength167

is set to a constant δ = 0.01, only the pattern of connections varies. Each population is assigned168

a random β value corresponding to a R̃0 between [1, 6]. These results are qualitatively similar if169

instead every population is assigned the same value of β.170

All code is made available on GitHub: https://git.io/JeqMc.171

3 Results172

In the following sections, we provide figures to demonstrate the effect of metapopulation structure on173

disease dynamics. In these figures, we plot a time series for each of three subsets of the population:174

those currently infected with a particular strain of the pathogen, those having (complete) specific175

immunity against the focal strain, and those who have at least partial cross-reactive immunity to176

the focal strain, due to past exposure to a similar strain (see Methods). Populations differ in their β177

(and thus R0) value. This can be considered, for example, as differences in population density, which178

affects the probability of disease transmission. We only depict one representative strain in each179

plot for visual clarity and parametrize the model such that all strains are functionally equivalent180

(i.e. they all have the same transmission and recovery rates within any given population).181
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3.1 Cyclical dynamics are dampened along chains in the metapopulation net-182

work183

We found that even when all populations share the same parametrizations and initial conditions,184

that populations further along network chains have reduced proportions of currently infectious185

individuals and dampened oscillatory dynamics compared to those they would exhibit in isolation186

(Fig 1). This is due to the movement of (partially) immune individuals between the populations,187

increasing the proportion of individuals with specific and cross-reactively immunity in populations188

further along the chain. While infectious individuals move at an equal rate, the proportion of the189

population that is currently infectious at any given time is much smaller than the proportion with190

immunity.191

3.2 Dynamics propagate through metapopulation networks192

We found that in the case of a simple chain of populations, the dynamics of destination populations193

can be overridden by the dynamics of origin populations (Fig 2). Interestingly, this is true both194

of cyclical dynamics overruling stable dynamics and vice versa, though the required amount of195

migration differs according to the origin and destination dynamics (see supporting information196

Fig S2). This migration can also allow for strain coexistence even in populations where the local197

parameters would suggest extinction of one or more strains.198

The issue of dynamics propagation gets more complicated when there are multiple, varying origin199

populations for a given destination population. We found that there is a hierarchy of dynamics in200

their propagation through the network: when there are origin populations with both cyclical and201

steady state dynamics, the destination population inherits the cyclical dynamics (Fig 3), albeit202

dampened from what they would have been without migration from a steady state population.203

This asymetrical inheritance is robust to imbalance in the relative contributions of the origins. Put204

another way, if just one of many origin populations (or a small proportion of the total movement)205

has cyclical dynamics, the destination population will also have cyclical dynamics.206
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Figure 1: Connecting multiple populations with the same parameters results in reduced pathogen
prevalence and dampened cycles in populations further down the chain. Here, populations are
connected such that A→ B → C → D. Each column indicates a population, while each row is one
of the three population classes laid out above and in the Methods, i.e. those currently infectious
with the given strain, those with (complete) specific immunity to the given strain, and those with
partial cross-protective immunity to the given strain. The mean level of immunity (both specific
(middle row) and cross-reactive (bottom row)) increases in each sequential population, while the
mean level of currently infectious individuals (top row) decreases. All populations have parameters
σ = 8, μ = 0.1, δ = 0.05, γ = 0.66 and a β chosen to make R̃0 = 2 for all populations. We use
a two-loci, two-allele strain structure, but show only one strain for clarity (but see supporting
information Fig S1).
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Figure 2: Destination populations tend to inherit origin population dynamics when linking popu-
lations with different model parametrizations. As in Fig 1, rows correspond to population classes,
but here, columns indicate network structure. While in isolation (left column), population A has
cyclical dynamics and population B has steady-state dynamics, when the two populations are linked
by migration, the destination population inherits the dynamics of the origin population (center and
right columns). This is true regardless of the direction of the movement (depending on the level of
migration; see supporting information Fig S2). Populations A and B have parameters σ = 8, μ =
0.1, δ = 0.05, and γ = 0.66 in common and β chosen to reflect R̃0 = 2 and 5, respectively. We use
a two-loci, two-allele strain structure, but show only one strain for clarity.
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Figure 3: When multiple origin populations differ in their dynamics, the destination population
inherits cycles over steady states. As in Fig 1, rows indicate population classes, and columns the
component populations. Here, we have populations A and B feeding into population C at the same
rate of δ = 0.05. Populations A and C are parametrized to produce steady state dynamics in the
absence of migration, with σ = 8, μ = 0.1, γ = 0.66, and β corresponding to a R̃0 = 2. Population B
shows cyclical dynamics with β corresponding to a R̃0 = 5 and all other parameters the same. Note
that, even though the parameters of population C would lead to a steady state in the absence of
migration, we see cyclical dynamics being inherited from population B. We use a two-loci, two-allele
strain structure, but show only one strain for clarity.

13



3.3 Degree distribution affects pathogen prevalence and immunity207

These simple patterns in the effects of origin population dynamics on those in the destination popu-208

lation have clear implications when pieced together into larger network structures. For instance, the209

propagation of immune individuals through the metapopulation suggests that populations further210

“up the chain” will tend to have higher on-average disease incidence and also greater variability.211

The inheritance of dynamical regimes combined with a hierarchy of dynamics in that inheritence212

suggests that chaos and cycles should be more common, especially in populations further “down213

the chain.” That is, except in cases where the ultimate origin populations are all disposed toward214

steady states, in which case the stabilizing effect could overrule downstream local parametrizations,215

leading to an overall stable system.216

In Fig 4, we report the effect of various network structures on three summary statistics of pathogen217

prevalence (and levels of immunity) using five common network ensembles. Depending on the218

system being explored, empirical network structures might have elements in common with one or219

more of these ensembles, for instance, many social networks are considered to be “small-world” in220

structure like Watts-Strogatz random graphs, while ecological networks are often commented on221

for their formation of “modules” or clusters of more densely interacting species as in stochastic222

block random graphs. Networks were parametrized to have approximately equal connectance and223

size in order to reduce uninformative variation (see Section 2.3.3). This is because metapopulation224

size and connectance have known effects on pathogen persistence, independent of further network225

structure (23; 24; 25).226

We found that the network configurations with higher variation in indegree (i.e. the number of227

other populations each population receives migration from) distributions (supporting information228

Fig S4), such as those found in the tree and Barabasi-Albert networks, tend to have higher levels229

of infection over time, despite similar levels of immunity as the other three network types. We230

saw similar patterns to those in infectious individuals when looking at time between epidemic231

peaks across network types. While fewer of the populations ended up with cyclical dynamics in the232

Barabasi-Abert graphs, the mean period of the cycles tended to be slightly higher and have higher233

14



variance, but this was not robust to alternative parametrizations (supporting information Fig S5).

Figure 4: The effect of network structure on pathogen prevalence and levels of immunity through
time. In the top row, we depict a representative network from each of the five ensembles. The sec-
ond row shows the distributions of each of three response variables for prevalence of the pathogen
and specific immunity over the course of the simulation, with the units for the horizontal axes given
by the panel headings. We depict one point for each randomized network structure and box-plots
indicating the median and inter-quartile range of each network-type’s distribution. Network gen-
erating algorithms were tuned to produce networks of the same size and approximate connectance
and model parameters were either the same for all populations and across simulations (σ = 8, μ =
0.05, δ = 0.01, and γ = 0.66) or randomized for each population in each simulation (initial densities
of infectious individuals [0, 1] and β value corresponding to a R̃0 within [1, 6] for each population).

234

4 Discussion235

Both metapopulation (26) and strain (16) structure have long been known to be important to236

disease dynamics and are increasingly being recognized as ubiquitous. Yet the combination of237

these two areas of theory has been underexplored. We show here that this lacuna can have real238
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consequences for our understanding of disease dynamics in empirical systems.239

In probing the relationship between origin and destination dynamics in simple metapopulations,240

we have demonstrated several patterns that expand our understanding of disease dynamics in241

these systems. By directly incorporating a movement network into our model framework, we have242

constructed a very general approach that lends itself to arbitrarily large and complex systems.243

This is noteworthy, as more and more natural systems are being thought of in terms of networks244

of interacting components (e.g. separate species in ecological communities (27) or host individuals245

exchanging parasites (28)). By adjusting the scale of our metapopulation, we can ask and answer246

different questions about the forces influencing disease dynamics.247

We found that the dynamics of prevalence and immunity among migrationally connected popu-248

lations are not independent, and that even very small rates of population movement can have249

profound effects on a population’s disease dynamics: from reducing pathogen prevalence to chang-250

ing the dynamical regime of destination populations entirely. Our findings regarding the reduction251

in cycle amplitude (Section 3.1) echo results in dispersal networks in ecology, where population252

dynamics were dampened following the introduction of migration (29).253

Contrary to prior focus in the literature on the role of migrating infectious individuals (30; 31;254

26), we found that the migration of immune individuals can be equally (or even more) important.255

This is noteworthy, as the few previous studies relating multi-strain diseases and metapopulation256

structure only allow pathogen transmission between populations, not the movement of individuals257

explicitly (3; 32)—an approach that is more mathematically tractable, but omits the potentially258

influential transmission of immune individuals.259

Finally, we show that larger network structure also has a part to play in disease dynamics, resulting260

in significant differences in pathogen prevalence across network types. Our results are in agreement261

with previous results suggesting increased epidemic size in scale-free network structures (such as262

those found in Barabasi-Albert random graphs) when the spreading rate is sufficiently slow (33;263

34) due to the high-degree nodes serving as “super-spreaders” (35; 25). Along these lines, there264

has been some previous research indicating that node degree (the number of other populations a265
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given population is connected to) is directly related to pathogen prevalence in that focal population266

((36), but see (37)), however a complete investigation into network structure at the node-level is267

beyond the scope of this work. A comprehensive investigation of the role of more complex network268

structures in disease dynamics, however, remains a topic for further investigation.269

In this work, we have utilized a relatively simple model for disease dynamics in an effort to maximize270

interpretability. Such simplification inevitably comes with a cost, and several of our assumptions271

can be critiqued as unrealistic. Perhaps foremost is the assumption of continuous movement. While272

continuous movement might be appropriate for very large populations with frequent, relatively273

small migrations between them, when any of these three components is not present, we would expect274

deviation from these predictions. Future work could explore the importance of discrete movement275

regimes on these patterns. Likewise, in this work we omit strain mutation and recombination (17)276

(yet the latter is included in the original framework of (16)). The generation of novel strains is277

likely important to the global persistence of diseases in humans (38) and animals (39). Finally,278

in representing movement by adding a proportion of the origin population to the destination, we279

introduce an assumption that the two populations in question are of approximately the same size.280

In a metapopulation where populations vary widely in size, the proportion leaving one population281

would not correspond to the proportion entering another.282

This work should not be seen as an attempt at comprehensive categorization of the role of meta-283

population structure on the dynamics of multi-strain diseases, but rather as an initial step in284

exploring the complex interplay between the population structure of hosts and strain structure of285

pathogens. Our results suggest there may be simple rules underlying this relationship, at least for286

a wide range of parameter values, but it remains to be seen where networks based on empirical287

data fall in these parameter regimes, as well as how such systems might deviate from theoretical288

expectations.289
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S1 Supporting Information375

Figure S1: Considering all the dynamics of all four strains from population A in Fig 1. Note
that lines are colored according to strain rather than population. Strains can be divided into two
discordant sets of non-overlapping alleles: {1, 1} and {2, 2}, and {1, 2} and {2, 1}. Each strain of
a discordant set behaves identically due to identical parametrization and no interaction between
strains that do not share at least one allele, but discordant sets interact with one another due to
partial cross-reactive immunity. Thus, when one set is abundant, the other is rare and vice versa.
We highlight the maximum value of each discordant set’s cycle with a vertical line in order to
facilitate comparisons between strains and sets.
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Figure S2: The effect of variable migration rate on transference of dynamical regime from origin
to destination in a simple metapopulation of two populations linked by unidirectional movement.
In the top panel are cases where the origin population has cyclical dynamics and the destination
has steady state dynamics when in isolation, while in the bottom panel the opposite is true. As
the movement rate (δ· horizontal axis) increases, there is a phase-transition at which point the
destination population’s dynamics (indicated by the vertical axis) switch to match those of the
origin. We fit a binomial spline to highlight this transition point. We see that even with very
small rates of migration, a stable population can be converted to a cyclical one (top panel). Yet,
it is more difficult to convert a cyclical population to one with steady state dynamics (bottom
panel). Three parametrizations are recorded here (color; see legend), with additional parameter μ
= 0.15 being the same for both populations. Finally, note that the two values of R̃0 listed in the
legend correspond to the two populations, with the larger value corresponding to the steady state
population and the smaller value the cyclical population (when in isolation) .
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Figure S3: Effect of parametrization on dynamic regime for a population in isolation. Here, columns
indicate values of γ and rows indicate values of σ. Depending on the combination of β, σ, μ, and γ,
a population can exhibit a range of dynamics including steady states for all strains (pink), cyclical
or chaotic dynamics for all strains (orange), or partial extinction of some strains (blue). Green cells
indicate a numerical failure in integration. All simulations here utilize a two-loci, two-allele strain
structure. See (16) for a similar figure for alternative parameterizations.
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Figure S4: Summary statistics for the degree distributions of each randomized network used for
Fig 4 in the main text. Networks were constructed to have the same size and approximate connec-
tance, but with the network structure (which populations are connected to which other popuations)
otherwise generated according to one of five algorithms: Erdős-Rényi, Barabasi-Albert, and Watts-
Strogatz, stochastic block, and tree (see Section 2.3.3 of the main text). Some algorithms allowed
perfect matching of connectance (Erdős-Rényi, Barabasi-Albert, and Watts-Strogatz), while others
necessitated some minor variation (stochastic block and tree).
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Figure S5: Similar to the lower row of Fig 4, but with γ and σ equal to 0.55 and 32, respectively.
All other parameters are equal to or set randomly as in Fig 4. While the observed differences in
total infected are robust, note that here the mean time between epidemic peaks is approximately
equal across randomizations.
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