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Please find enclosed the manuscript “Multi-strain disease dynamics on metapopulation networks”
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article in response to the PLOS Cross-Journal Call for Papers on the Mathematical Modelling
of Infectious Disease Dynamics. In particular, we believe this work directly addresses “The role
of population movement on various scales in altering the spread of disease” as well as “Disease
modelling and forecasting in both local and global contexts.”
Strain structure is ubiquitous among the most widespread diseases in the world today, and has
been the subject of extensive epidemiological research over the past decades. Likewise, there
has been extensive research on networks of interconnected populations, termed metapopulations,
especially within the ecological literature. Surprisingly, however, there have been few attempts to
link these two areas of research, despite a need for better understanding and control of pathogen
spread.
Here, we use a mathematical model combining multi-strain disease dynamics and meta-population
network structure to show that there can be dramatic effects on the temporal dynamics of pathogen
prevalence when migration is allowed between populations. We explore several simple network
structures and evince some remarkably simple and consistent patterns relating the dynamics of
origin and destination populations. We additionally perform simulations to note the effect on larger
metapopulation networks. In summary, we find that, when populations are linked, the dynamics
of destination populations are significantly influenced by the dynamics of origin populations,
with migration having the potential to reduce disease prevalence or even change the dynamical
regime in the desitnation population. Generalizing to larger networks, we see a significant effect
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metapopulations and multi-strain disease dynamics. We believe the insights expounded on in
our work will instigate further research into the structures of real-world metapopulations, and, in
particular the role of network structures on endemic disease dynamics. This framework will prove
particularly useful to researchers of systems with high migration rates, such as in the context of
mobile species in fragmented landscapes or the movements of livestock between growing facilities,
but we believe the generality of our theoretical approach will prove broadly interesting to the
readership of PLOS Computational Biology.
Thank you for the attention dedicated to our work.
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Matthew J. Michalska-Smith, Kimberly VanderWaal,

Montserrat Torremorell, Cesar Corzo,
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Multi-strain disease dynamics on metapopulation networks
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Corzo1, and Meggan E Craft1

1Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
USA
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Abstract1

Many pathogens have clusters of variation in their genotypes that we refer to as strain structure. Importantly,2

host immunity to one strain is often neither independent from nor equivalent to immunity to related strains. This3

partial cross-reactive immunity allows repeated infection with (different strains of) the same pathogen and affects4

disease dynamics across a population, and can influence the effectiveness of intervention strategies. We combine two5

frameworks well-studied in their own right: multi-strain disease dynamics and metapopulation network structure. We6

simulate the dynamics of a multi-strain disease on a network of populations connected by movement, and characterize7

the effects of parametrization and network structures on these dynamics, finding that the movement of (partially)8

immune individuals tends to have a larger impact than the movement of infectious individuals, dampening infection9

dynamics in populations further along a chain. Additionally, dynamics propagate from one population to another,10

even if parameters vary between populations. In addition to providing novel insights into the role of host movement11

on disease dynamics, this work provides a framework for future predictive modelling of multi-strain diseases across12

generalized population structures.13
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1 Author Summary14

Many pathogens have variants that are similar enough that our immune systems recognize them15

as hostile, but different enough that we are not fully immune to them. This leads to partial im-16

munity against segments of the pathogen population that can have dramatic effects on epidemic17

size and duration. Also relevant to disease dynamics, many systems can be envisioned as networks18

of interconnected patches, e.g. cities in which there is some migration between cities, but most19

people remain within a single city. When these two frameworks (multi-strain disease dynamics and20

meta-population structure) are combined, some surprisingly simple patterns are evinced. First,21

the movement of immune individuals reduces pathogen prevalence in destination populations. In22

some cases, migration can even induce a change in the dynamics (e.g. steady prevalence through23

time vs. cycles of high and low prevalence), causing populations to look more similar, even when mi-24

gration rates are low. Finally, while the structure of metapopulation networks can affect prevalence25

through time, the precise properties governing these effects are not yet known. This study creates26

a framework for better understanding the interaction between two important factors influencing27

disease dynamics: the presence of multiple strains and complex metapopulation structure.28

2 Introduction29

Many of the most impactful infectious diseases that affect humans (influenza, malaria, human30

papillomavirus, etc.), livestock (porcine reproductive and respiratory syndrome, foot-and-mouth31

disease, etc.), and wildlife (anthrax, plague, etc.) have clusters in their population-genetic variability32

that we classify as strains. This variation in pathogen genotype is often associated with differences33

in phenotype, for example directly affecting the efficacy of host immune defences. While the human34

immune system is usually capable of preventing re-infection—i.e. infection with something to which35

it has been previously exposed—sufficient, divergent evolution among pathogen strains can reduce36

the ability of the host to recognize, and thus mount an immunological response to, subsequent37

exposures. In some cases, this change is not sufficient to completely avoid recognition by the host’s38
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immune system, yielding an immune response that is neither as strong as would be in the case39

of re-exposure to the same strain, nor as weak as in the case of exposure to a novel pathogen.40

This partial cross-reactive immunity can likewise lead to reduced transmissibility, affecting disease41

dynamics across the population.42

While the study of multi-strain diseases goes back decades (1; 2), the resulting modelling frame-43

work has not yet been generalized to a collection of sub-populations connected through host move-44

ment, i.e. a metapopulation (but see (3)). Initially introduced through the concepts of island45

biogeography (4), the network approach of metapopulations can be applied to a variety of systems,46

including human movement between cities, livestock transport between farms, and populations li-47

ving in fragmented natural habitats. In each case, there exist relatively high-density areas which are48

connected to one another through a network of individuals’ movement. A metapopulation frame-49

work allows the application of network analyses to characterize patterns of connection within the50

larger system, and can provide unique insights across scales.51

Historically, metapopulation studies have been been divided into two main camps: those that model52

within-population dynamics, and “cell occupancy” models in which only the presence or absence of53

a given species within a population is recorded (5), with the latter receiving much more theoretical54

attention. Importantly, this latter case rests on an assumption of temporal separation in which local55

dynamics occur on a timescale that can be treated as instantaneous relative to that of the between-56

population dynamics (6). When considering pathogens in systems with relatively high migration57

rates, however, this assumption rarely holds, and the presence-absence approach can significantly58

limit model accuracy (7; 8; 9).59

The presence of metapopulation structure has been repeatedly associated with increased stabili-60

ty (10; 11; 12). This is due in part to the ability of migration between asynchronous populations to61

rescue temporarily low density populations from extinction (13). This is particularly relevant when62

populations are undergoing cyclical or chaotic dynamics, where repeated instances of low density63

are generally considered to be at greater risk of extinction than a population maintaining steady64

state dynamics (14; 15).65
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Here, we build on the strain theory of host-pathogen systems proposed by (16), considering a scenario66

where a collection of populations undergoing local dynamics are furthermore interconnected through67

the movement of individuals between populations. We simulate disease dynamics on this system,68

characterizing the effects of parametrization and network structure on these dynamics. This work is69

divided into three sections: first, we explore a case of interconnected populations which have been70

parametrized to display identical dynamics in the absence of host migration. Second, we consider71

cases where parameters differ between populations. Finally, we explore the role of network structure72

on disease dynamics in larger networks of connected populations.73

3 Results74

In the following sections, we provide figures to demonstrate the effect of metapopulation structure on75

disease dynamics. In these figures, we plot a time series for each of three subsets of the population:76

those currently infected with a particular strain of the pathogen, those having (complete) specific77

immunity against the focal strain, and those who have at least partial cross-reactive immunity78

to the focal strain, due to past exposure to a similar strain (see Methods). We only depict one79

representative strain in each plot for visual clarity and parametrize the model such that all strains80

are functionally equivalent (i.e. they all have the same transmission and recovery rates).81

3.1 Cyclical dynamics are dampened along chains in the metapopulation net-82

work83

We find that even when all populations share the same parametrizations and initial conditions,84

that populations further along network chains have reduced proportions of currently infectious85

individuals and dampened oscillatory dynamics compared to those they would exhibit in isolation86

(Fig 1). This is due to the movement of (partially) immune individuals between the populations,87

increasing the proportion of individuals with specific and cross-reactively immunity in populations88

further along the chain. While infectious individuals move at an equal rate, the proportion of the89

population that is currently infectious at any given time is much smaller than the proportion with90
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immunity.

Figure 1: Connecting multiple populations with the same parameters results in reduced pathogen
prevalence and dampened cycles in populations further down the chain. Here, populations are
connected such that A→ B → C → D. Each column indicates a population, while each row is one
of the three population classes laid out above and in the Methods. The mean level of immunity
(both specific (middle row) and cross-reactive (bottom row)) increases in each sequential population,
while the mean level of currently infectious individuals (top row) decreases. All populations have
parameters β = 40, σ = 10, μ = 0.05, δ = 0.05, γ = 0.75. We use a two-loci, two-allele strain
structure, but show only one strain for clarity (but see supporting information Fig S1).

91

3.2 Dynamics propagate through metapopulation networks92

We find that in the case of a simple chain of populations, the dynamics of destination populations93

can be overridden by the dynamics of origin populations (Fig 2). Interestingly, this is true both94

of cyclical dynamics overruling stable dynamics and vice versa, though the required amount of95

migration differs according to the origin and destination dynamics (see supporting information96

Fig S2). This migration can also allow for strain coexistence even in populations where the local97

parameters would suggest extinction of one or more strains.98

The issue of dynamics propagation gets more complicated when there are multiple, varying origin99
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Figure 2: Destination populations tend to inherit origin population dynamics when linking popu-
lations with different model parametrizations. As in Fig 1, rows correspond to population classes,
but here, columns indicate network structure. While in isolation (left column), population A has
cyclical dynamics and population B has steady-state dynamics, when the two populations are linked
by migration, the destination population inherits the dynamics of the origin population (center and
right columns). This is true regardless of the direction of the movement (depending on the level of
migration; see supporting information Fig S2). Populations A and B have parameters β = 40, σ =
10, μ = 0.05, δ = 0.05 in common and γ = 0.75, 0.25, respectively. We use a two-loci, two-allele
strain structure, but show only one strain for clarity.

populations for a given destination population. We find that there is a hierarchy of dynamics in their100

propagation through the network: when there are origin populations with both cyclical and steady101

state dynamics, the destination population inherits the cyclical dynamics, robustly to imbalance in102

the relative contributions of the origins. Put another way, if just one of many origin populations (or103

a small proportion of the total movement) has cyclical dynamics, the destination population will104

also have cyclical dynamics.105

3.3 Degree distribution affects pathogen prevalence and immunity106

These simple patterns in the effects of origin population dynamics on those in the destination pop-107

ulation have clear implications when pieced together into larger network structures. For instance,108
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Figure 3: When multiple origin populations differ in their dynamics, the destination population
inherits cycles over steady states. As in Fig 1, rows indicate population classes, and columns the
component populations. Here, we have populations A and B feeding into population C at the same
rate of δ = 0.05. Populations A and C are parametrized to produce steady state dynamics in
the absence of migration, with β = 40, σ = 10, μ = 0.05, γ = 0.25. Population B shows cyclical
dynamics with γ = 0.75 and all other parameters the same. Note that, even though the parameters
of population C would lead to a steady state in the absence of migration, we see cyclical dynamics
being inherited from population B. We use a two-loci, two-allele strain structure, but show only
one strain for clarity.

the propagation of immune individuals through the metapopulation suggests that populations fur-109

ther “up the chain” will tend to have higher on-average disease burden and also greater variability.110

The inheritance of dynamical regimes combined with a hierarchy of dynamics in that inheritence111

suggests that chaos and cycles should be more common, especially in populations further “down112

the chain.” That is, except in cases where the ultimate origin populations are all disposed toward113

steady states, in which case the stabilizing effect could overrule downstream local parametrizations,114

leading to an overall stable system.115

In Fig 4, we report the effect of various network structures on three summary statistics of pathogen116

prevalence (and levels of immunity) using five common network ensembles. Depending on the117

system being explored, empirical network structures might have elements in common with one or118
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more of these ensembles, for instance, many social networks are considered to be “small-world”119

in structure like Barabasi-Albert random graphs, while ecological networks are often commented120

on for their formation of “modules” or clusters of more densely interacting species as in stochastic121

block random graphs. Networks were parametrized to have approximately equal connectance and122

size in order to reduce uninformative variation (see Section 5.3.3). This is because metapopulation123

size and connectance have known effects on pathogen persistence, independent of further network124

structure (17; 18; 19).125

We find that the network configurations with higher variation in indegree (i.e. the number of other126

populations each population receives migration from) distributions (supporting information Fig S4),127

such as those found in the tree and Barabasi-Albert networks, tend to have higher levels of infec-128

tion over time, despite similar levels of immunity as the other three network types. We also see129

few significant differences in mean time between epidemic peaks across network types. For some130

parametrizations, such as those in Figure 4, we see slightly lower values for the aforementioned131

networks with high indegree variance, but this is not consistent across parametrizations (supporting132

information Fig S5).133

4 Discussion134

Both metapopulation (20) and strain (16) structure have long been known to be important to disease135

dynamics and are increasingly being recognized as ubiquitous. Yet the combination of these two136

areas of theory has been underexplored. We show here that this lacuna can have real consequences137

for our understanding of disease dynamics in empirical systems.138

In probing the relationship between origin and destination dynamics in simple metapopulations, we139

have demonstrated several patterns that expand our understanding of disease dynamics in these140

systems. By directly incorporating a movement network into our model framework, we have con-141

structed a very general approach that lends itself to arbitrarily large and complex systems. This142

is noteworthy, as more and more natural systems are being thought of in terms of networks of143

interacting components (e.g. separate species in ecological communities (21) or host individuals144
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Figure 4: The effect of network structure on pathogen prevalence and levels of immunity through
time. In the top row, we depict a representative network from each of the five ensembles. The second
row shows the distributions of each of three response variables for prevalence of the pathogen and
specific immunity over the course of the simulation. We depict one point for each randomized
network structure and box-plots indicating the median and inter-quartile range of of each network-
type’s distribution. Network generating algorithms were tuned to produce networks of the same
size and approximate connectance and model parameters were either the same for all simulations
(β=160, σ=40, μ=0.05, and δ=0.05) or randomized between each simulation (initial densities of
infectious and immune individuals [0, 1] and γ value [0.05, 0.95] in each population).

exchanging parasites (22)). By adjusting the scale of our metapopulation, we can ask and answer145

different questions about the forces influencing disease dynamics.146

We found that the dynamics of prevalence and immunity among migrationally connected populations147

are not independent, and that even very small rates of population movement can have profound148
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effects on a population’s disease dynamics: from reducing pathogen prevalence to changing the149

dynamical regime of destination populations entirely. Our findings regarding the reduction in cycle150

amplitude (Section 3.1) echo results in dispersal networks in ecology, where population dynamics151

were dampened following the introduction of migration (23).152

Contrary to prior focus in the literature on the role of migrating infectious individuals (24; 25;153

20), we found that the migration of immune individuals can be equally (or even more) important.154

This is noteworthy, as the few previous studies relating multi-strain diseases and metapopulation155

structure only allow pathogen transmission between populations, not the movement of individuals156

explicitly (3; 26)—an approach that is more mathematically tractable, but omits the potentially157

influential transmission of immune individuals.158

Finally, we show that larger network structure also has a part to play in disease dynamics, resulting159

in significant differences in pathogen prevalence across network types. Our results are in agreement160

with previous results suggesting increased epidemic size in scale-free network structures (such as161

those found in Barabasi-Albert random graphs) due to the high-degree nodes serving as “super-162

spreaders” (27; 19). Along these lines, there has been some previous research indicating that node163

degree (the number of other populations a given population is connected to) is directly related to164

pathogen prevalence in that focal population ((28), but see (29)), however a complete investigation165

into network structure at the node-level is beyond the scope of this work. A comprehensive inves-166

tigation of the role of more complex network structures in disease dynamics, however, remains a167

topic for further investigation.168

In this work, we have utilized a relatively simple model for disease dynamics in an effort to maximize169

interpretability. Such simplification inevitably comes with a cost, and several of our assumptions170

can be critiqued as unrealistic. Perhaps foremost is the assumption of continuous movement. While171

continuous movement might be appropriate for very large populations with frequent, relatively small172

migrations between them, when any of these three components is not present, we would expect173

deviation from these predictions. Future work could explore the importance of discrete movement174

regimes on these patterns. Likewise, in this work we omit strain mutation and recombination (30)175
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(yet the latter is included in the original framework of (16)). The generation of novel strains is likely176

important to the global persistence of diseases in humans (31) and animals (32).177

This work should not be seen as an attempt at comprehensive categorization of the role of meta-178

population structure on the dynamics of multi-strain diseases, but rather as an initial step in ex-179

ploring the complex interplay between the population structure of hosts and strain structure of180

pathogens. Our results suggest there may be simple rules underlying this relationship, at least for181

a wide range of parameter values, but it remains to be seen where networks based on empirical182

data fall in these parameter regimes, as well as how such systems might deviate from theoretical183

expectations.184

5 Methods185

5.1 Model framework for one population186

We work from a system of ordinary differential equations which delineate a population into classes187

based on current and past exposure to different strains of a pathogen. Pathogens with strain struc-188

ture can differ in both the number of strains and the level of cross-reactive immunity afforded by189

past exposure to similar strains. To model the number of strains, we signify a strain i = {x1, x2, . . . ,190

xn} as a set of n loci, each of which can take on a finite number of alleles. For instance, a pathogen191

with two loci (a and b) and two alleles at each loci has a total of four potential strains: {a1, b1},192

{a1, b2}, {a1, b1}, {a2, b2}. For cross-reactive immunity, we use a parameter γ which indicates the193

degree of reduced susceptibility a host has to strains that are similar to (i.e. strains that share194

at least one allele with one another) past exposures. Importantly, in this framework, the number195

of strains is fixed and finite. While strains may go extinct over time, there is no process for the196

generation of new strains or to re-introduce strains that had previously gone extinct (but see (16)).197

The model consists of sets of three nested equations (one set for each strain i): y, z, and w.198

See (30) for a graphical representation of the model framework. yi represents the proportion of199

the population currently infected with strain i (and thus capable of infecting others). Likewise,200
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zi represents the proportion of the population that has been exposed to strain i (including those201

currently infected, i.e. yi). These individuals harbor complete immunity to future infections with202

strain i. Finally, wi represents the proportion of the population which has been exposed to any203

strain j which has at least one allele in common with strain i (including strain i itself), i.e. j∩i 6= Ø.204

These individuals have at least partial immunity to strain i. N.b. these equations are nested such205

that any individual in yi is also in zi and any individual in zi is also in wi, and yi ≤ zi ≤ wi.206

In traditional Susceptible-Infected, Susceptible-Infected-Recovered, etc. single-strain mathematical207

frameworks: the y class is analogous to I, while w and z are composed of combinations of I and R208

classes. The susceptible population is not modelled explicitly in this framework.209

Explicitly, these three equations (for a given strain i) are:210

dyi
dt

= β ((1− wi) + (1− γ)(wi − zi)) yi − σyi − µyi
dzi
dt

= β(1− zi)yi − µzi
dwi

dt
= β(1− wi)

∑
j3j∩i 6=Ø

yj − µwi

(1)

As above, we denote strains as subscripts and, in the equation for wi, we sum over all strains j which211

share at least one allele with the focal strain i. β, σ, and μ are the infection, recovery, and death212

rates, respectively. γ (as mentioned above) is an indicator of the level of cross-reactive immunity213

gained by prior exposure to alleles in the target strain. Note that while we depict only one value per214

demographic parameter (i.e. all strains are functionally equivalent) for clarity of notation, these215

values could also be written to vary by strain (i.e. βi).216

Immunity in this framework is non-waning: exposure to a strain yields consistent protection from217

future infection over the lifespan of the individual. Moreover, this protection is trichotomous: an218

individual can either have no protection from a given strain (it has not seen any of the alleles219

before), complete protection (it has seen this exact combination of alleles before), or a set point220

in-between according to the parameter γ (it has seen at least one, but not all alleles before). Put221

another way, we do not distinguish between loci, assuming that sharing an allele at one locus is222
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functionally identical to sharing an allele at any other locus, or indeed all other loci except one.223

5.2 Extensions to more than one population224

Following (33), we model movement between populations using a dispersal matrix Δ = A - E,225

where A is the weighted adjacency matrix indicating the proportion of individuals moving from from226

population n (row) to population m (column) and E is a diagonal matrix representing emigration,227

where each entry Ekk =
∑n

k=1 Akl where n is the number of populations. Thus, the whole system228

can be depicted by a set of three equations per strain i per population k:229

dyi,k
dt

= β ((1− wi,k) + (1− γ)(wi,k − zi,k)) yi,k − σyi,k − µyi,k +
∑
l

∆klyj,l

dzi,k
dt

= β(1− zi,k)yi,k − µzi,k +
∑
l

∆klzj,l

dwi,k

dt
= β(1− wi,k)

∑
j3j∩i 6=Ø

yj,k − µwi,k +
∑
l

∆klwj,l

(2)

Where each equation from Section 5.1 is now additionally indexed according to population and has230

an additional term to account for migration between populations. While in principle the elements231

of Δ can take any value [0, 1], signifying a (continuous) movement of between 0 and 100% of232

individuals, for simplicity we use a constant value δ for the strength of each movement, i.e. for233

each non-zero off-diagonal element of of Δ. Sensitivity to this value is explored in the supporting234

information (Fig S2).235

This framework can be applied to a metapopulation of arbitrary size and complexity, with the236

number of equations being linearly related to the number of populations. The dynamics of each237

population are governed by a set of three equations per pathogen strain, and these equations238

are interlinked within populations by partial, cross-reactive immunity, and between populations239

through a movement network. The total number of differential equations for any given system will240

be three times the number of strains multiplied by the number of populations in the metapopulation.241

13



5.3 Simulation Procedure242

All simulations were carried out in Julia (34), with graphics produced using the ggplot2 package (35)243

in R version 3.6.1 (36). For simplicity of presentation, we fix the values of all variables other244

than γ (the degree of cross-reactive immunity) and Δ (the network of movement information) to245

be identical for all populations in the metapopulation. γ is varied to demonstrate the variety of246

dynamics obtainable in this modeling framework (as in (16)), while the Δ varies according to the247

number and interconnectedness of the populations. For the figures of the main text, we utilize a248

strain structure of two loci, each with two alleles. Sensitivity to these parameter choices is explored249

in the supporting information (Fig S3).250

5.3.1 Populations with identical parametrizations251

To assess the effect of migration on population dynamics, we first consider the simplest case of a252

set of populations sharing the same parametrization. We use a movement network described by a253

chain of populations, i.e. A→B→C→D or254

∆ =



−δ δ 0 0

0 −δ δ 0

0 0 −δ δ

0 0 0 0


,

where δ = 0.05, and ask how the dynamics of populations further down the chain (i.e. B, C, D)255

differ from those of the origin population (i.e. A), recalling that, without migration, all populations256

would have identical dynamics.257

5.3.2 Populations with varying parametrizations258

We next consider the case where parameters differ between connected populations, we restrict our259

consideration to a system of two populations, identical in all respects other than the parameter260

γ, which is set to either induce a steady state of coexisting strains (γ = 0.25 in population A) or261
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cyclically coexisting strains (γ = 0.75 in population B). We then display three potential patterns262

of connection: no migration (left column), A→ B (middle column), and B→A (right column).263

Specifically, we set264

∆ =

0 0

0 0

 ,∆ =

−δ δ

0 0

 , and ,∆ =

0 0

δ −δ

 ,
respectively, again with δ = 0.05.265

To address the case of multiple origin populations feeding into a single destination population, we266

consider a system of three populations: A→C←B, or267

∆ =


−δ 0 δ

0 −δ δ

0 0 −δ

 ,

where populations A and C have γ = 0.25, but population B has γ = 0.75; δ = 0.05 as above.268

5.3.3 Larger network structure269

Finally, we characterize the role of global network structure through considering the impact of270

degree distribution on a few summary statistics of overall disease burden: the total proportion271

infected (area under the currently infectious (i.e. y) curve), the mean level of strain-specific immu-272

nity (average z value), and the mean time between epidemic peaks (i.e. between local maxima in273

y) over the course of the final 75% of the simulation. We omit the initial period of the simulation274

to reduce the impact of transient dynamics.275

We perform 100 simulations for each of five generic network ensembles each with 25 populations276

and a connectedness of approximately 0.15. Specifically, we examine Erdős-Rényi (links randomly277

assigned between populations), stochastic block (a metapopulation consisting of two groups of po-278

pulations which have high migration within the group, but low migration to populations in the other279

group), tree-like (where there are many chains of populations and no potential for cycles), Barabasi-280
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Albert (a scale-free network in which there tends to be a few populations with very many links,281

and many populations with few links), and Watts-Strogatz (a small-world network structure which282

is produced by partially re-wiring a spatially connected grid of populations) network structures.283

To generate these networks, we utilize functions from the tidygraph R package (37), except in the284

case of the tree and Watts-Strogatz configuration for which we use custom algorithms. In all cases,285

each migration strength is set to a constant δ = 0.05, only the pattern of connections varies. Each286

population is assigned a random γ value within [0.05, 0.95]. These results are qualitatively similar287

if instead every population is assigned the same value of γ.288

All code is made available on GitHub: https://git.io/JeqMc.289

6 Acknowledgements290
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Figure S1: Considering all the dynamics of all four strains from population A in figure 1. Note
that lines are colored according to strain rather than population. Strains can be divided into two
discordant sets of non-overlapping alleles: {1, 1} and {2, 2}, and {1, 2} and {2, 1}. Each strain of
a discordant set behaves identically due to identical parametrization and no interaction between
strains that do not share at least one allele, but discordant sets interact with one another due to
partial cross-reactive immunity. Thus, when one set is abundant, the other is rare and vice versa.
We highlight the maximum value of each discordant set’s cycle with a vertical in order to facilitate
comparisons between strains and sets.
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Figure S2: The effect of variable migration rate on transference of dynamical regime from origin to
destination in a simple metapopulation of two populations linked by unidirectional movement. Here,
each column indicates the value of σ and each row indicates the value of R0 (these parameters are
the same for both populations). We plot whether or not the destination dynamics are the “same” or
“different” (vertical axis) for each movement rate (δ· horizontal axis). We jitter the points slightly
for increased visibility and fit a binomial spline to indicate the trend with increasing migration
rate. In most cases, a γ value of 0.25 signifies a steady state (in the absence of migration) and
a value of 0.75 signifies cyclical dynamics. We see that even with very small rates of migration,
a stable population can be converted to a cyclical one (blue points overwhelmingly indicating
same dynamics between origin and destination). Yet, it is more difficult to convert a cyclical
population to one with steady state dynamics (orange points predominantly indicate a difference
between origin and destination dynamics. Remarkably, the transition appears to be sharp in most
cases: given a sufficient migration rate, destination dynamics will always be converted to match
those of the origin. Note that the specific dynamics of the origin and destination depend upon the
parametrization as well as movement rate, so in some cases, such as the panels in the lower left,
the origin and destination would have the same dynamics even without movement. In other cases,
such as the top row, there are many instances of strain extinction, which is rarely transmitted from
origin to destination, though even if extinction dynamics are removed, these parametrizations lead
to fewer cases of “successful” transmission of dynamics from origin to destination. We highlight
the main-text parametrization of σ=10, R0=4, δ=0.05.
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Figure S3: Effect of parametrization on dynamic regime for a population in isolation. Here, columns
indicate values of R0 (β/σ· main text utilizes a value of 4) and rows indicate values of μ (main text
uses a value of 0.05). Depending on the combination of β, σ, and γ, a population can exhibit a
range of dynamics including steady states for all strains (red), cyclical or chaotic dynamics for all
strains (blue), or partial extinction of some strains (orange). Missing values are due to numerical
failure in integration. All simulations here utilize a two-loci, two-allele strain structure. See (16)
for a similar figure for alternative strain structures.
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Figure S4: Summary statistics for the degree distributions of each randomized network used for
figure 4 in the main text. Networks were constructed to have the same size and approximate
connectance, but with the network structure (which populations are connected to which other
popuations) otherwise generated according to one of five algorithms: Erdős-Rényi, Barabasi-Albert,
and Watts-Strogatz, stochastic block, and tree (see Section 5.3.3 of the main text). Some algorithms
allowed perfect matching of connectance (Erdős-Rényi, Barabasi-Albert, and Watts-Strogatz), while
others necessitated some minor variation (stochastic block and tree).

Figure S5: Similar to the lower row of figure 4, but with β and σ equal to 80 and 20, respectively.
All other parameters are equal to or set randomly as in figure 4. While the observed differences in
total infected are robust, note that here the mean time between epidemic peaks is approximately
equal across randomizations.
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