1. If \(a\)\(n\), and \(k\) are integers, \(b=a+nk\), and \(n\) and \(k\) are both positive, then \(a\) and \(b\) are congruent modulo \(\)\(n\) and modulo \(k\).
  2. The definition regards a property of a pair of integers with respect to a third integer.
  3. \(1\equiv3\equiv5\equiv7\) (mod 2). \(0\equiv2\equiv4\equiv6\) (mod 2). \(a\equiv b\) (mod 1) for any two integers \(a\) and \(b\)\(1\not\equiv 2\) (mod 2). \(3\not\equiv 6\) (mod 2).