
Homework 6

Mitchell Gant1

1Georgia Institute of Technology

April 26, 2019

Problem 1

(a)

Figure 1: S3

(b) number of processors in Sn = number of distint permutations of first n positive integers = n!

(c) Algorithm for finding path from one processor in nth order star network to another:

1

Step 1: Compare the ith integer in the source rank with the ith integer in the destination rank ,where
i ∈ Z, [2, n]. Append the source rank to a list of processors through which you would have to ’hop’ to get to
the destination.

Step 2: During the comparison, if the ith integer in the destination and the source processor do not match
we switch the integer in the 1st position with that of the ith position in the source processor. If the source and
destination processors’ ith element was the same then we check to see if the source and destination processor
have the same rank and if so we stop running the algorithm. If not, we set i equal to ((i+ 1)mod(n)) and if
i = 1 we set i to 2 to keep it within its range.

Step 3: We repeat steps 1 and 2 for a maximum of n iterations.

(d) Using the algorithm above after making one iteration or one hop, it would take (2n − 1) subsequent
iterations or hops to come back to the source processor. Given this information we can conclude that the
diameter of Sn = O(2n−1+1

2) = O(n).

Problem 2

If Pi and Pj are processors in a d dimensional hypercube then both processors’ ranks’ are composed of d
bits. We can create unique parallel paths from Pi to Pj by flipping a unique bit in Pi at every iteration until
Pi is the binary equivalent of Pj . The result is d unique parallel paths with d as the upperbound given that
d is the maximum number of separate connections to one processor in the d-dimensional hypercube. We can
also think about this in terms of Pi and Pj which differ in h bits. If we instantiate h different paths each
starting with Pi and flip a different bit in which Pi and Pj differ for each path to get the next step in the
path for h iterations, we will notice that no two nodes are hopped to amongs the h different paths until the
final hop in which all paths converge to Pj . This leads to h unique parallel paths each with a length of h. If
you think about the remaining d− h bits which do not differ in the ranks of Pi and Pj , these could signify
paths that must be first routed away by flipping one of the d − h bits in which Pi and Pj are the same to
a different value and then routing the path back by flipping the bit back. Flipping the bit at the beginning
and end of the path ensures that the path’s remain unique and flipping the bit twice leads to an extra 2
steps in the path. This makes the path h + 2 hops long. The result is a total of d parrallel paths.

Problem 3

Problem 4

This algorithm is incorrect as it will not work when Q is a polynomial with degree greater than the degree of
P and the algorithm also breaks down when any of the coefficients in Q are zero. The result of the algorithm
will also only be the quotient in polynomial division but will not include the remainder.

Problem 5

If we look at the result of the matrix vector multiplication of a vector and a Toeplitz matrix we will see
that the result is very similar to that of a polynomial multiplication where one polynomial has the values
in the vector as coefficients and the other has the unique values of the Toeplitz matrix as coefficients in

the polynomial. The Toeplitz matrix can be mapped to a polynomial of the form T (x) =

m∑
i=0

tix
i; where

m = 2n − 2 and the vector can be mapped to a polynomial of the form A(x) =

n−1∑
i=0

aix
i. When looking

2

at the resultant vector R(x), each element with index j in the vector can be mapped to the polynomial
n−1∑
j=0

ajtj−i+n−1, which would be the same as the computing the coefficients of xj+n−1 after calculating

T (x) ∗A(x) using FFT.

3

