Smart home pros and cons
One of the most touted benefits of home automation is providing peace of mind to homeowners, allowing them to monitor their homes remotely, countering dangers such as a forgotten coffee maker left on or a front door left unlocked.
Domotics are also beneficial for the elderly, providing monitoring that can help seniors to remain at home comfortably and safely, rather than moving to a nursing home or requiring 24/7 home care.
Unsurprisingly, smart homes can accommodate user preferences. For example, as soon as you arrive home, your garage door will open, the lights will go on, the fireplace will roar and your favorite tunes will start playing on your smart speakers.
Home automation also helps consumers improve efficiency. Instead of leaving the air conditioning on all day, a smart home system can learn your behaviors and make sure the house is cooled down by the time you arrive home from work. The same goes for appliances. And with a smart irrigation system, your lawn will only be watered when needed and with the exact amount of water necessary. With home automation, energy, water and other resources are used more efficiently, which helps save both natural resources and money for the consumer.
However, home automation systems have struggled to become mainstream, in part due to their technical nature. A drawback of smart homes is their perceived complexity; some people have difficulty with technology or will give up on it with the first annoyance. Smart home manufacturers and alliances are working on reducing complexity and improving the user experience to make it enjoyable and beneficial for users of all types and technical levels.
For home automation systems to be truly effective, devices must be interoperable regardless of who manufactured them, using the same protocol or, at least, complementary ones. As it is such a nascent market, there is no gold standard for home automation yet. However, standard alliances are partnering with manufacturers and protocols to ensure interoperability and a seamless user experience.
Another major issue is smart home security. A 2016 NTT Data Corp. report found that 80% of U.S. consumers are concerned about the security of their smart home data. If hackers are able to infiltrate a smart device, they could potentially turn off the lights and alarms and unlock the doors, leaving a home defenseless to a break-in. Further, hackers could potentially access the homeowner's network, leading to worse attacks or data exfiltration. In October 2016, the Mirai IoT botnet was able to bring down parts of the internet in a series of distributed denial-of-service (DDoS) attacks using badly secured cameras, DVRs and routers as entry points.
In addition to security, many smart home opponents worry about data privacy. The NTT Data report found 73% of consumers are concerned about the privacy of the data shared by their smart home devices. While smart home device and platform manufacturers may collect consumer data to better tailor their products or offer new and improved services to customers, trust and transparency are critical to manufacturers building trust with the users of their smart products.
How smart homes work/smart home implementation
Newly built homes are often constructed with smart home infrastructure in place. Older homes, on the other hand, can be retrofitted with smart technologies. While many smart home systems still run on X10 or Insteon, Bluetooth and Wi-Fi have grown in popularity.
Zigbee and Z-Wave are two of the most common home automation communications protocols in use today. Both mesh network technologies, they use short-range, low-power radio signals to connect smart home systems. Though both target the same smart home applications, Z-Wave has a range of 30 meters to Zigbee's 10 meters, with Zigbee often perceived as the more complex of the two. Zigbee chips are available from multiple companies, while Z-Wave chips are only available from Sigma Designs.
A smart home is not disparate smart devices and appliances, but ones that work together to create a remotely controllable network. All devices are controlled by a master home automation controller, often called a smart home hub. The smart home hub is a hardware device that acts as the central point of the smart home system and is able to sense, process data and communicate wirelessly. It combines all of the disparate apps into a single smart home app that can be controlled remotely by homeowners. Examples of smart home hubs include Amazon Echo, Google Home, Insteon Hub Pro, Samsung SmartThings and Wink Hub, among others.
Some smart home systems can be created from scratch, for example, using a Raspberry Pi or other prototyping board. Others can be purchased as a bundled smart home kit -- also known as a smart home platform -- that contains the pieces needed to start a home automation project.
In simple smart home scenarios, events can be timed or triggered. Timed events are based on a clock, for example, lowering the blinds at 6:00 p.m., while triggered events depend on actions in the automated system; for example, when the owner's smartphone approaches the door, the smart lock unlocks and the smart lights go on.
Machine learning and artificial intelligence (AI) are becoming increasingly popular in smart home systems, allowing home automation applications to adapt to their environments. For example, voice-activated systems, such as Amazon Echo or Google Home, contain virtual assistants that learn and personalize the smart home to the residents' preferences and patterns.
Smart buildings
While every smart home is a smart building, not every smart building is a smart home. Enterprise, commercial, industrial and residential buildings of all shapes and sizes -- including offices, skyscrapers, apartment buildings, and multi-tenant offices and residences -- are deploying IoT technologies to improve building efficiency, reduce energy costs and environmental impact, and ensure security, as well as improve occupant satisfaction.
Many of the same smart technologies used in the smart home are deployed in smart buildings, including lighting, energy, heating and air conditioning, and security and building access systems.
For example, a smart building can reduce energy costs using sensors that detect how many occupants are in a room. The temperature can automatically adjust, putting cool air on if sensors detect a full conference room, or turning the heat down if everyone in the office has gone home for the day.
Smart buildings can also connect to the smart grid. Here, smart building components and the electric grid can "talk" and "listen" to each other. With this technology, energy distribution can be managed efficiently, maintenance can be handled proactively and power outages can be responded to more quickly.
Beyond these benefits, smart building can provide building owners and managers the benefit of predictive maintenance. Janitors, for example, can refill restroom supplies when usage sensors monitor the soap or paper towel dispensers are low. Or maintenance and failures can be predicted on building refrigeration, elevators and lighting systems.