[bookmark: _GoBack]
A Cluster -Genetic Programming Approach for Detecting Tuberculosis
Adane Tarekegn a,
a Department of Mathematics “Andrea Peano”, University of Turin, Italy
adanenega.tarekegn@unito.it

 Abstract
Genetic programming (GP) is a machine learning model for discovering useful models in complex clinical data. It is more appropriate in a circumstance when the form of the solution model is unknown a priori. In this paper, GP is adopted to identify the presence of positive cases of tuberculosis from the real data set of patients. This technique is, generally, attractive for the classification and prediction of complex cases, since it does not presume any statistical assumption about data variables. Before a model is built using GP, The dataset is pre-processed using multiple correspondence analysis and clustering methods to define the target variables. Then GP is trained with the training datasets to construct a prediction tree and tested with a separate dataset. Finally, with 30 runs of GP, the predicting accuracy reached up to 89%.
Keyowrds: Cluster analysis; Genetic programming; Tuberculosis; Prediction
1. Introduction
Many statistical and machine learning methods have been used for modeling and prediction tasks in different fields, as described in (Brigham, 2010). These techniques include logistic regression, neural network, support vector machines, decision trees, naïve Bayes, etc. Despite the contribution of these techniques, there are still some issues that prevent them from becoming adopted in modeling practical problems. One of the main limitations of the traditional methods is that a specific model form must be assumed that demands strong theoretical knowledge. For example, in a regression problem, the task is often limited to ﬁnding a set of model coeﬃcients for the linear or polynomial functions that best describe the input variables. Moreover, prior knowledge about the statistical distribution of the data is essential in such models. Evolutionary algorithms can be used as a remedy for solving highly complex, nonlinear, and poorly understood problems (Smith, 2018). Genetic programming (GP) is one of the evolutionary algorithms that allows searching for a suitable model more differently and intelligently. It is a general methodology for the development of mathematical models rather than a specific technique for solving particular problems (Bannister, Halcox, Currie, Preece, & Spasić, 2018). In modeling or supervised learning, GP is preferable to other machine learning methods in circumstances where the form of the solution model is unknown a priori. It can be seen as a generalization of techniques such as linear or quadratic regression but does not need a priori specification of the model.
In this paper, genetic programming is proposed for modeling binary classification problems. In particular, GP is suitable for detecting the presence of positive cases of tuberculosis from the real data set of patients. Detection of tuberculosis cases is a challenging task due to the presence of nonlinear interactions between many variables. One main reason for using GP is to get the advantage of its global search mechanism in a considerable space of possible solutions. Many decision tree generation algorithms (e.g., CART and C4.5) perform a greedy local search to generate classification rules, while GP performs a more global search through the space of a large number of possible trees. As indicated in (Angeline, 1994), GP is a means of getting computers to solve problems without making explicit programming. It shows that the programmer does not specify the shape, size, or structural complexity of the solution in advance but instead, all these factors are automatically determined. Existing methods of machine learning, artificial intelligence, and neural networks accomplish this goal. GP is more convenient for classification or other prediction tasks comparing to other techniques.
The remaining part of the work is organized as follows: Section 2 describes the principles of genetic programming, section 3 contains related works on classification problem using genetic programming, and section 4 presents the proposed approach. Finally, section 5 describes the experimental settings and results.
2. Basic Principles of Genetic Programming
Genetic programming (GP) is defined as a domain-independent method that genetically breeds a population of computer programs to solve a problem (O’Reilly, 2012). GP is a search and optimization algorithm that iteratively transforms a population of computer programs into a new generation of programs using various genetic operators. As noted in (Nguyen, Zhang, Johnston, & Tan, 2019), the most commonly used operators are a crossover, mutation, and reproduction. The crossover operator recombines randomly chosen subtrees among the parents and creates a new program for the new population. The mutation operator replaces randomly chosen subtree by a randomly generated tree, while the reproduction operator replicates a selected individual to a new population.
 Genetic Programming finds the solution to the problem in the form of programs or functions. The programs can be represented as parse trees. Usually, parse trees are composed of internal nodes and leaf nodes. Internal nodes are called primitive functions, and leaf nodes are called terminals. The terminals can be considered as inputs to the specific problem. They might include the independent variables and the set of constants. In general, genetic programming uses the following five steps to solve problems:
1) Generate an initial population of functions and terminals of the problem (computer programs). Each of the randomly generated computer programs is considered as candidate solutions to the problem.
2) Execute each program in the population and give it a fitness value according to how well it solves the problem.
3) Create a new population of computer programs.
a. Copy the best existing programs based on fitness value
b. Create new computer programs by mutation.
c. Create new computer programs by crossover
4) Steps 2 and 3 are repeated until a termination criterion is matched, which can be finding the best program or reaching the maximum number of generations.
5) The best computer program that is shown in any generation is designated as the result of genetic programming.

3. Classification Problem in GP
The classification problem is conceptualized as a way of placing an object into a set of categories, based on the object's properties. The genetic program classifier represents a mathematical expression that computes a single output value (a floating-point number) when evaluated on a particular input instance from the training or test sets. This ﬂoating-point number must then be mapped or translated to a set of class labels (Poli & Koza, 2014;Iba, Hasegawa, & Paul, 2009). Mathematically, the Classification problem can be represented in the following way. Consider data containing a set of samples, and each sample consists of feature values and the class values i. The objective is to find a mapping function that maps i into one of the n classes c1,...,cn :

Where denotes the feature vector space and C the set of classes.
Assume that the set of feature values and the set of classes are real numbers, evaluating the function f on a set of input vectors () will produce an output (i.e target value) which is a real number. But does not necessarily have to be exactly one certain class value, i.e., we might get . The exact mapping of feature vectors and their respective target values to class values is done using sets of thresholds t1,...,tn-1 placed between the class values C1,...,Cn:
 i+1
Based on a set of thresholds T we can classify a sample for which the target value y has been calculated as belonging to class ‘ct’ using the mapping function (Affenzeller, Wagner, Winkler, & Beham, 2009):

 c-1n
 ti+1Ci+1
 Thresholds are chosen so that the sum of class-wise ratios of misclassiﬁcations for all given classes is minimized on the training data. The sum of ratios of correctly classiﬁed samples is dependent on the set of thresholds. The thresholds that are optimal for the training samples are also applied to the test samples.
4. Related Works
GP has been successful in automatically evolving variable-length computer programs to solve classification problems. Muhammad et al. (2010) used genetic programming for the detection of diabetes. From their result, GP showed quite good performance in the diagnosis of diabetes disease. The effectiveness of GP in classification tasks was widely examined in (Hu et al., 2015; Afzal & Torkar, 2011). The authors discussed the great ﬂexibility of GP allows it to be applied not only to the construction of classiﬁers but also pre-processing and post-processing tasks aimed at enhancing the quality of classiﬁcation have been addressed employing GP. In (Rao Raghuraj, Lakshminarayanan, & Tun, 2007), the authors proposed GP models for the classification of data from biological systems and compared the results with a wide range of statistical approaches. They demonstrated that the results from GP outperform the existing classifiers in separating unknown biological systems into different classes. A study in (Wang, Juan, Lin, Yeh, & Chiang, 2017) adopted a genetic programming model to predict the cervical spine conditions of patients and to construct the prediction tree by training data set. After ten runs of GP, a suitable solution was achieved with a prediction accuracy of up to 90%. Apart from the successful achievements of GP in solving different problems, the research findings from different kinds of literature agreed with one main drawback of GP, which is its high training time. Compared to other machine learning techniques, GP can be slow when dealing with training huge amounts of data.
This paper is aimed at detecting tuberculosis cases using genetic programming. Identifying positive cases of tuberculosis is often complicated and time-consuming due to the significant number of vague variables involved. The symptoms of patients are usually unclear, and the similarities in symptoms of some tuberculosis diseases are difficult to distinguish based on decision boundaries or discriminating rules. This creates many difficulties in reaching the right decision or diagnosis. This paper presents genetic programming, which is a data-driven evolutionary modeling approach, to be a potential tool for designing a variable dependency model and exploiting them for further class discrimination.

5. Research Methods
5.1. Research Framework
In this research, we divided the tasks into two phases. The first is the data preparation and clustering analysis phase. In the beginning, we performed data pre-processing which includes data cleaning, integration, and feature selection. Then multiple correspondences and clustering analyses are done to identify homogenous groups of cases in the dataset. The second phase is the learning and evaluation phase. The learning phase is designed to evolve the GP classification model for the tuberculosis dataset. This phase includes train GP with the training dataset and test GP with a separate test dataset. Finally, the fitness of the evolved model is measured with an appropriate metric.
[image:]Fig 5.1. Research Framework

5.2. Data collection and Preparation
The data used for this experiment is taken from a hospital in Ethiopia for analysis and prediction. The data is anonymized patients’ real data and contains 4241 instances and 22 categorical attributes recorded for administrative purposes. All the needed data pre-processing steps such as data cleaning and encoding are performed for the experiment, and only 13 relevant attributes are selected for this experiment. These 13 candidate attributes included symptoms and laboratory results of tuberculosis for each patient.

5.3. Clustering Approach
The study aims to detect patterns in the patients' data and to classify individuals at risk of tuberculosis (TB) correctly. However, since the data doesn’t contain any identified number of groups, it was not feasible to apply classification algorithms directly on the dataset. Therefore, clustering analysis was first considered as a pre-processing step for classifying patients into different groups. We identified subgroups TB patients that have similar characteristics using the following three steps:
1. Multiple Correspondence Analysis (MCA), a data analysis method designed for nominal categorical data, was used to detect and represent underlying structures in the data set. It is an extension of correspondence analysis (Greenacre, 2015) for multivariate datasets which projects a given dataset in a lower-dimensional subspace producing two major effects: It reduces the dimensionality of the dataset, and it projects the observations on continuous space. In our study, the transformed dataset contains two numerical dimensions derived from 13 categorical variables. Then, the resulting data has joined the continuous variables which were ready for the process of clustering analysis.
2. Min –Max Normalization: It is common practice to normalize the data before clustering in case that the range of features values varies widely, and the relationship between each feature is unknown. Many studies in the literature argued that large variations within the range of feature values could affect the quality of clusters (Visalakshi & Thangavel, 2009 ; Schenatto et al., 2017). In our case, after the data is transformed into low-dimensional representation using MCA, the newly created artificial features were rescaled to constrain dataset values to a standard range. The min-max normalization method was used, where each feature was rescaled to the [0, 1] interval. The values were transformed based on the formula shown below (Elbattah & Molloy, 2017):

3. Hierarchical Density based Spatial Clustering of Applications with Noise (HDBSCAN): From the geometric space created in MCA, TB patients were grouped into clusters using HDBSCAN. HDBSCAN algorithm extends DBSCAN by converting it into a hierarchical clustering algorithm and then using a technique to extract a flat clustering based on the stability of clusters (McInnes & Healy, 2017). It is especially good at ﬁnding oddly shaped clusters or more dense regions of a dataset that are surrounded by other lower density regions, in which the partitioning clustering methods such as k-means might have a difficulty of doing it. Figure 4.2 depicts the results of clustering using HDBSCAN via MCA.
 [image:]
 Figure 5.2. Two-dimensional visualization of clustering results using HDBSCAN

6. Experiments settings and Performance measures
After having identified the target variable through the process of clustering analysis, the dataset is randomly split into training and testing. The proportions are 75% and 25% for the training and testing respectively. The training set is used to train the model and includes both input data and the corresponding expected output. The testing set, on the other hand, includes only input data, not the corresponding expected output. The testing data is used to assess how well the algorithm was trained and to estimate model properties.

6.1. GP Parameter setup
GP experiments were performed by determining the suitable parameters for our dataset. For each experiment 30 runs have been performed with the same initial conﬁguration but with different random seeds. The selection mechanism has been the tournament selection and the maximum tree depth set to the default value. GP requires that further control parameters be speciﬁed. The common parameter setting used for this experiment are listed in Table 5.1
 Table 5.1. GP Control Parameter Settings
	Parameter
	Value

	Population size
	1000

	Maximum number of generations
	100

	Crossover probability
	0.9

	Mutation probability
	0.15

	Selection method
	Tournament selection

	Termination Condition
	Max generation

	Tree initialization
	Ramped half and half

	Genetic operators
	Crossover, Mutation

	Elites
	1

6.2. GP performance measures
In GP, fitness function defines a measure to calculate the accuracy of a solution by comparing the predicted class labels with the actual class labels. In the two-class classification problem, the outcome of classification performance can be represented by a confusion matrix, as shown in figure 5.2. Then the following performance metrics are obtained from the confusion matrix:

 Table 5.2. Outcomes of a two-class classification problem
	
	Predicted Positive Class
	Predicted Negative Class

	Actual Positive Class
	True Positive (TP)
	False Negative (FN

	Actual Negative Class
	False Positive (FP)
	True Negative (TN)

The major limitation of accuracy and other measures is that they represent the performance of a solution when it is evaluated using a single class threshold. In contrast, the area under the ROC curve (or AUC) measures the classification performance at multiple class thresholds. The AUC measures the overall quality of a classifier when the threshold parameter biasing the final classification decision is varied [3][5].
[image:]
Where N is the number of thresholds, and TPi / FPi represents the performance of the solution at class threshold i. The equation sums the area of the individual trapezoids fitted under the ROC points. The AUC corresponds to the probability that a minority class example is correctly predicted across different class thresholds (Hajian-Tilaki, 2013). The AUC is a particularly useful and common measure of performance in classification tasks with unbalanced data as it represents how well a learned classifier approximates the trade-off between the minority and the majority classes across multiple classification thresholds.

6.3. Experimental Results
In the GP process, the first task is to evaluate the quality of a solution candidate. This quality is called the fitness of a solution candidate. In GP based classifier, there are multiple possible ways to compute the quality of a model. In his paper, the mean squared error function (MSE) function is considered, which calculates the average value of the squared residuals of the estimated values and original values. The population dynamics across generations are also evaluated based on this mean squared error.
With the results stored from 30 runs of GP, we calculated the average fitness of the best solution per generation. We can interpret the situation as the smaller the MSE, the better the estimator (i.e. more accurate the estimation). Figure 5 shows the graph of fitness versus 100 generations.

[image:]
 Fig.5. Evolution of 5 randomly selected runs of GP
As shown in the graphs, the learning pattern of the GP can be observed. If we look to the right of figure 5, the evolution shows a rapid increase in fitness in the first generations, which then becomes steadier after about 100 generations.
For a fair comparison of GP with other machine learning methods, we used the Wilcoxon signed-rank test. From the results, we understood that for alpha =0.01 significance level, GP showed competitive results in performance compared to support vector machine, neural networks, and random forest. Finally, the results of GP on the training together with other machine learning methods are shown in Table 5.3 and Table 5.4 in terms of accuracy, sensitivity, specificity, and precision.
 Table 5.3: Results of GP and other classifiers on training data
	Classifier
	Accuracy
	Sensitivity
	Specificity
	Precision

	Support vector machine
	89.62
	74.69
	96.27
	89.51

	Random forest
	93.80
	87.34
	96.68
	89.51

	Artificial neural network
	89.84
	74.93
	96.59
	89.01

	GP (Max)
	91.09
	77.19
	96.98
	90.00

	GP(Median)
	89.94
	76.59
	96.02
	89.58

 Table 5.4: Results of GP and other classifiers on test data
	Classifier
	Accuracy
	Sensitivity
	Specificity
	Precision

	Support vector machine
	89.82
	76.94
	95.73
	90.03

	Random forest
	86.52
	75.14
	91.17
	88.93

	Artificial neural network
	89.91
	76.94
	95.87
	90.05

	GP(Max)
	89.99
	73.92
	96.99
	89.92

	GP(Median)
	89.12
	72.84
	96.23
	88.82

7. Conclusion
Genetic programming (GP) is an evolutionary model that evolves computer programs to solve problems. In this study, GP is used as a potential tool for developing a prediction model for the tuberculosis dataset. The performance of the model obtained by GP is evaluated using sensitivity, specificity, and accuracy. From the results obtained, it is evident that GP algorithms perform well in separating the positive cases from the negative cases of the TB disease. The overall classification accuracy for both training and testing are comparable with the well-accepted existing machine learning techniques like artificial neural network and support vector machines with considerable additional advantages. However, the computationally intensive nature of genetic programming makes it difficult to apply to real-world problems with large amounts of datasets. So, further research is recommended to accelerate the time-consuming fitness evaluation step.

Acknowledgments
The authors would like to thank Dr.Minichil Ayalew for his support and technical expertise with the data collection and understanding. The authors would also like to thank the reviewers for their helpful comments.
Availability of data: Authors are not authorised to share individual patient data publicly since it contains confidential personal information. However, the whole data set may be available on demand from the corresponding author for only research purpose.
 Sources of funding: No funding was received for this study.
 Conflict of Interest: The authors declare that they have no competing interests

References
Affenzeller, M., Wagner, S., Winkler, S., & Beham, A. (2009). Genetic Algorithms and Genetic Programming. In Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. https://doi.org/10.1201/9781420011326
Afzal, W., & Torkar, R. (2011). On the application of genetic programming for software engineering predictive modeling: A systematic review. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2011.03.041
Angeline, P. J. (1994). Genetic programming: On the programming of computers by means of natural selection,. Biosystems, 33(1), 69–73. https://doi.org/10.1016/0303-2647(94)90062-0
Bannister, C. A., Halcox, J. P., Currie, C. J., Preece, A., & Spasić, I. (2018). A genetic programming approach to development of clinical prediction models: A case study in symptomatic cardiovascular disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0202685
Brigham, K. L. (2010). Predictive health: The imminent revolution in health care. Journal of the American Geriatrics Society. https://doi.org/10.1111/j.1532-5415.2010.03107.x
Elbattah, M., & Molloy, O. (2017). Clustering-aided approach for predicting patient outcomes with application to elderly healthcare in Ireland. AAAI Workshop - Technical Report.
Greenacre, M. (2015). Correspondence Analysis. In International Encyclopedia of the Social & Behavioral Sciences (pp. 1–5). https://doi.org/10.1016/B978-0-08-097086-8.42005-2
Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian Journal of Internal Medicine.
Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E. W. T., & Liu, M. (2015). Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review. Applied Soft Computing, 36, 534–551. https://doi.org/10.1016/j.asoc.2015.07.008
Iba, H., Hasegawa, Y., & Paul, T. K. (2009). Applied Genetic Programming and Machine Learning. In Applied Genetic Programming and Machine Learning. https://doi.org/10.1201/9781439803707
McInnes, L., & Healy, J. (2017). Accelerated Hierarchical Density Based Clustering. 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 33–42. https://doi.org/10.1109/ICDMW.2017.12
Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2019). Genetic Programming for Job Shop Scheduling. In Studies in Computational Intelligence (pp. 143–167). https://doi.org/10.1007/978-3-319-91341-4_8
O’Reilly, U.-M. (2012). Genetic programming. Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference Companion - GECCO Companion ’12, 693. https://doi.org/10.1145/2330784.2330912
Poli, R., & Koza, J. (2014). Genetic programming. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Second Edition. https://doi.org/10.1007/978-1-4614-6940-7_6
Rao Raghuraj, K., Lakshminarayanan, S., & Tun, K. (2007). Genetic programming models for classification of data from biological systems. 2007 IEEE Congress on Evolutionary Computation, CEC 2007. https://doi.org/10.1109/CEC.2007.4425013
Schenatto, K., de Souza, E. G., Bazzi, C. L., Gavioli, A., Betzek, N. M., & Beneduzzi, H. M. (2017). Normalization of data for delineating management zones. Computers and Electronics in Agriculture, 143, 238–248. https://doi.org/10.1016/j.compag.2017.10.017
Smith, S. L. (2018). Medical applications of evolutionary computation. GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion. https://doi.org/10.1145/3205651.3207873
Visalakshi, N. K., & Thangavel, K. (2009). Impact of normalization in distributed K-means clustering. International Journal of Soft Computing.
Wang, C.-S., Juan, C.-J., Lin, T.-Y., Yeh, C.-C., & Chiang, S.-Y. (2017). Prediction Model of Cervical Spine Disease Established by Genetic Programming. Proceedings of the 4th Multidisciplinary International Social Networks Conference on ZZZ - MISNC ’17, 1–6. https://doi.org/10.1145/3092090.3092097

image1.png

image2.png

image3.png

image4.png

