References
Ajdari, A. (2000). Pumping liquids using asymmetric electrode arrays.Physical Review E, 61 (1), R45.
Alipanah, M., & Ramiar, A. (2017). High efficiency micromixing
technique using periodic induced charge electroosmotic flow: A numerical
study. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 524 , 53-65.
Antfolk, M., Kim, S. H., Koizumi, S., Fujii, T., & Laurell, T. (2017).
Label-free single-cell separation and imaging of cancer cells using an
integrated microfluidic system. Scientific reports, 7 , 46507.
Azarmanesh, M., Dejam, M., Azizian, P., Yesiloz, G., Mohamad, A. A., &
Sanati-Nezhad, A. (2019). Passive microinjection within high-throughput
microfluidics for controlled actuation of droplets and cells.Scientific reports, 9 (1), 6723.
Azimi, S., Nazari, M., & Daghighi, Y. (2017). Developing a fast and
tunable micro-mixer using induced vortices around a conductive flexible
link. Physics of Fluids, 29 (3), 032004.
Azizian, P., Azarmanesh, M., Dejam, M., Mohammadi, M., Shamsi, M.,
Sanati-Nezhad, A., & Mohamad, A. A. (2019). Electrohydrodynamic
formation of single and double emulsions for low interfacial tension
multiphase systems within microfluidics. Chemical Engineering
Science, 195 , 201-207. doi:10.1016/j.ces.2018.11.050
Barani, A., Paktinat, H., Janmaleki, M., Mohammadi, A., Mosaddegh, P.,
Fadaei-Tehrani, A., & Sanati-Nezhad, A. (2016). Microfluidic integrated
acoustic waving for manipulation of cells and molecules.Biosensors and Bioelectronics, 85 , 714-725.
Bazant, M. Z. (2011). Induced-charge electrokinetic phenomenaElectrokinetics and Electrohydrodynamics in Microsystems (pp.
221-297): Springer.
Bazant, M. Z. (2015). Electrokinetics meets electrohydrodynamics.Journal of Fluid Mechanics, 782 , 1-4.
Bazant, M. Z., Kilic, M. S., Storey, B. D., & Ajdari, A. (2009).
Towards an understanding of induced-charge electrokinetics at large
applied voltages in concentrated solutions. Advances in colloid
and interface science, 152 (1-2), 48-88.
Bazant, M. Z., & Squires, T. M. (2004). Induced-charge electrokinetic
phenomena: theory and microfluidic applications. Physical review
letters, 92 (6), 066101.
Bazant, M. Z., & Squires, T. M. (2010). Induced-charge electrokinetic
phenomena. Current Opinion in Colloid & Interface Science,
15 (3), 203-213.
Bazazi, P., Sanati-Nezhad, A., & Hejazi, S. (2018). Wetting dynamics in
two-liquid systems: Effect of the surrounding phase viscosity.Physical Review E, 97 (6), 063104.
Bhagat, A. A. S., Bow, H., Hou, H. W., Tan, S. J., Han, J., & Lim, C.
T. (2010). Microfluidics for cell separation. Medical &
biological engineering & computing, 48 (10), 999-1014.
Bhaumik, S. K., Roy, R., Chakraborty, S., & DasGupta, S. (2014).
Low-voltage electrohydrodynamic micropumping of emulsions. Sensors
and Actuators B: Chemical, 193 , 288-293. doi:10.1016/j.snb.2013.11.082
Bown, M., & Meinhart, C. (2006). AC electroosmotic flow in a DNA
concentrator. Microfluidics and nanofluidics, 2 (6), 513-523.
Boymelgreen, A. M., & Miloh, T. (2012). Induced‐charge electrophoresis
of uncharged dielectric spherical J anus particles.Electrophoresis, 33 (5), 870-879.
Brown, A., Smith, C., & Rennie, A. (2000). Pumping of water with ac
electric fields applied to asymmetric pairs of microelectrodes.Physical Review E, 63 (1), 016305.
Capretto, L., Cheng, W., Hill, M., & Zhang, X. (2011). Micromixing
within microfluidic devices. Top Curr Chem, 304 , 27-68.
doi:10.1007/128_2011_150
Chen, J.-L., Shih, W.-H., & Hsieh, W.-H. (2013). AC electro-osmotic
micromixer using a face-to-face, asymmetric pair of planar electrodes.Sensors and Actuators B: Chemical, 188 , 11-21.
Chen, X., Ren, Y., Liu, W., Feng, X., Jia, Y., Tao, Y., & Jiang, H.
(2017). A simplified microfluidic device for particle separation with
two consecutive steps: Induced charge electro-osmotic prefocusing and
dielectrophoretic separation. Analytical chemistry, 89 (17),
9583-9592.
Chen, X., Song, Y., Li, D., & Hu, G. (2015). Deformation and
interaction of droplet pairs in a microchannel under ac electric fields.Physical Review Applied, 4 (2), 024005.
Cho, M., Chung, S., Kim, Y. T., Jung, J. H., & Seo, T. S. (2015). A
fully integrated microdevice for biobarcode assay based biological agent
detection. Lab on a Chip, 15 (13), 2744-2748.
Collins, D. J., Morahan, B., Garcia-Bustos, J., Doerig, C., Plebanski,
M., & Neild, A. (2015). Two-dimensional single-cell patterning with one
cell per well driven by surface acoustic waves. Nature
communications, 6 , 8686.
Daghighi, Y., Gao, Y., & Li, D. (2011). 3D numerical study of
induced-charge electrokinetic motion of heterogeneous particle in a
microchannel. Electrochimica Acta, 56 (11), 4254-4262.
doi:10.1016/j.electacta.2011.01.083
Daghighi, Y., & Li, D. (2011). Micro-valve using induced-charge
electrokinetic motion of Janus particle. Lab on a Chip, 11 (17),
2929. doi:10.1039/c1lc20229d
Daghighi, Y., & Li, D. (2013). Numerical study of a novel
induced-charge electrokinetic micro-mixer. Analytica Chimica Acta,
763 , 28-37. doi:10.1016/j.aca.2012.12.010
Daghighi, Y., Sinn, I., Kopelman, R., & Li, D. (2013). Experimental
validation of induced-charge electrokinetic motion of electrically
conducting particles. Electrochimica Acta, 87 , 270-276.
doi:10.1016/j.electacta.2012.09.021
Debesset, S., Hayden, C., Dalton, C., Eijkel, J. C., & Manz, A. (2004).
An AC electroosmotic micropump for circular chromatographic
applications. Lab on a Chip, 4 (4), 396-400.
Dehghan Manshadi, M. K., Khojasteh, D., Mohammadi, M., & Kamali, R.
(2016). Electroosmotic micropump for lab‐on‐a‐chip biomedical
applications. International Journal of Numerical Modelling:
Electronic Networks, Devices and Fields, 29 (5), 845-858.
Du, K., Liu, W., Ren, Y., Jiang, T., Song, J., Wu, Q., & Tao, Y.
(2018). A High-Throughput Electrokinetic Micromixer via AC Field-Effect
Nonlinear Electroosmosis Control in 3D Electrode Configurations.Micromachines, 9 (9), 432.
Flittner, R., & Přibyl, M. (2017). Computational fluid dynamics model
of rhythmic motion of charged droplets between parallel electrodes.Journal of Fluid Mechanics, 822 , 31-53.
Gangwal, S., Cayre, O. J., Bazant, M. Z., & Velev, O. D. (2008).
Induced-charge electrophoresis of metallodielectric particles.Physical review letters, 100 (5), 058302.
Gao, X., & Li, Y. X. (2018). Ultra-fast AC electro-osmotic micropump
with arrays of asymmetric ring electrode pairs in 3D cylindrical
microchannel. Journal of Applied Physics, 123 (16), 164301.
Gómez-Pastora, J., Karampelas, I., Bringas, E., Furlani, E. P., &
Ortiz, I. (2017). Computational Analysis of a Two-Phase Continuous-Flow
Magnetophoretic Microsystem for Particle Separation from Biological
Fluids Computer Aided Chemical Engineering (Vol. 40, pp.
1183-1188): Elsevier.
Guo, F., Ji, X.-H., Liu, K., He, R.-X., Zhao, L.-B., Guo, Z.-X., . . .
Zhao, X.-Z. (2010). Droplet electric separator microfluidic device for
cell sorting. Applied Physics Letters, 96 (19), 193701.
Haghighi, F., Talebpour, Z., & Nezhad, A. S. (2018). Towards fully
integrated liquid chromatography on a chip: Evolution and evaluation.TrAC Trends in Analytical Chemistry, 105 , 302-337.
Hammarström, B. r., Nilson, B., Laurell, T., Nilsson, J., & Ekström, S.
(2014). Acoustic trapping for bacteria identification in positive blood
cultures with MALDI-TOF MS. Analytical chemistry, 86 (21),
10560-10567.
Harnett, C. K., Templeton, J., Dunphy-Guzman, K. A., Senousy, Y. M., &
Kanouff, M. P. (2008). Model based design of a microfluidic mixer driven
by induced charge electroosmosis. Lab on a Chip, 8 (4), 565-572.
Harrison, H., Lu, X., Patel, S., Thomas, C., Todd, A., Johnson, M., . .
. Wang, J. (2015). Electrokinetic preconcentration of particles and
cells in microfluidic reservoirs. Analyst, 140 (8), 2869-2875.
Hassanpour‐Tamrin, S., Taheri, H., Mahdi Hasani‐Sadrabadi, M., Hamed
Shams Mousavi, S., Dashtimoghadam, E., Tondar, M., . . . Jacob, K. I.
(2017). Nanoscale optoregulation of neural stem cell differentiation by
intracellular alteration of redox balance. Advanced Functional
Materials, 27 (38), 1701420.
Hilber, W., Weiss, B., Saeed, A., Holly, R., & Jakoby, B. (2009).
Density-dependent particle separation in microchannels using 3D
AC-driven electro-osmotic pumps. Sensors and Actuators A:
Physical, 156 (1), 115-120.
Hu, Q., Guo, J., Cao, Z., & Jiang, H. (2018). Asymmetrical Induced
Charge Electroosmotic Flow on a Herringbone Floating Electrode and Its
Application in a Micromixer. Micromachines, 9 (8), 391.
Hu, Q., Ren, Y., Liu, W., Chen, X., Tao, Y., & Jiang, H. (2017). Fluid
flow and mixing induced by ac continuous electrowetting of liquid metal
droplet. Micromachines, 8 (4), 119.
Huang, C.-C., Bazant, M. Z., & Thorsen, T. (2010). Ultrafast
high-pressure AC electro-osmotic pumps for portable biomedical
microfluidics. Lab on a Chip, 10 (1), 80-85.
Huang, K.-R., Hong, Z.-H., & Chang, J.-S. (2014). Microfluidic mixing
on application of traveling wave electroosmosis. European Journal
of Mechanics-B/Fluids, 48 , 153-164.
Islam, N., & Reyna, J. (2012). Bi‐directional flow induced by an AC
electroosmotic micropump with DC voltage bias. Electrophoresis,
33 (7), 1191-1197.
Jain, M., Yeung, A., & Nandakumar, K. (2009). Induced charge electro
osmotic mixer: Obstacle shape optimization. Biomicrofluidics,
3 (2), 022413.
Jain, M., Yeung, A., & Nandakumar, K. (2010). Analysis of
Electrokinetic Mixing Techniques Using Comparative Mixing Index.Micromachines, 1 (2), 36-47. doi:10.3390/mi1020036
Jain, M., Yeung, A., & Nandakumar, K. (2010). Induced charge
electro-osmotic concentration gradient generator.Biomicrofluidics, 4 (1), 014110.
Jia, X., Wang, W., Han, Q., Wang, Z., Jia, Y., & Hu, Z. (2016).
Micromixer based preparation of functionalized liposomes and targeting
drug delivery. ACS medicinal chemistry letters, 7 (4), 429-434.
Jia, Y., Ren, Y., Hou, L., Liu, W., Deng, X., & Jiang, H. (2017).
Sequential Coalescence Enabled Two‐Step Microreactions in Triple‐Core
Double‐Emulsion Droplets Triggered by an Electric Field. Small,
13 (46), 1702188.
Jia, Y., Ren, Y., Hou, L., Liu, W., Jiang, T., Deng, X., . . . Jiang, H.
(2018). Electrically controlled rapid release of actives encapsulated in
double-emulsion droplets. Lab on a Chip, 18 (7), 1121-1129.
Jia, Y., Ren, Y., & Jiang, H. (2015). Continuous-flow focusing of
microparticles using induced-charge electroosmosis in a microfluidic
device with 3D AgPDMS electrodes. RSC Advances, 5 (82),
66602-66610. doi:10.1039/c5ra14854e
Jung, Y.-M., Oh, H.-C., & Kang, I. S. (2008). Electrical charging of a
conducting water droplet in a dielectric fluid on the electrode surface.Journal of colloid and interface science, 322 (2), 617-623.
Kamali, R., & Manshadi, M. K. D. (2016). Numerical simulation of the
leaky dielectric microdroplet generation in electric fields.International Journal of Modern Physics C, 27 (01), 1650012.
Kamali, R., Manshadi, M. K. D., & Mansoorifar, A. (2016). Numerical
analysis of non Newtonian fluid flow in a low voltage cascade
electroosmotic micropump. Microsystem Technologies, 22 (12),
2901-2907.
Kazemi, S., Nourian, V., Nobari, M., & Movahed, S. (2017). Two
dimensional numerical study on mixing enhancement in micro-channel due
to induced charge electrophoresis. Chemical Engineering and
Processing: Process Intensification, 120 , 241-250.
Khetani, S., Mohammadi, M., & Nezhad, A. S. (2018). Filter‐based
isolation, enrichment, and characterization of circulating tumor cells.Biotechnology and bioengineering, 115 (10), 2504-2529.
Kilic, M. S., & Bazant, M. Z. (2011). Induced‐charge electrophoresis
near a wall. Electrophoresis, 32 (5), 614-628.
Kim, B. J., Yoon, S. Y., Sung, H. J., & Smith, C. G. (2007).
Simultaneous mixing and pumping using asymmetric microelectrodes.Journal of Applied Physics, 102 (7), 074513.
Kim, D., Luo, J., Arriaga, E. A., & Ros, A. (2018). Deterministic
Ratchet for Sub-micrometer (Bio) particle Separation. Analytical
chemistry, 90 (7), 4370-4379.
Kim, S.-J., Wang, F., Burns, M. A., & Kurabayashi, K. (2009).
Temperature-programmed natural convection for micromixing and
biochemical reaction in a single microfluidic chamber. Analytical
chemistry, 81 (11), 4510-4516.
Kim, S., Han, S.-I., Park, M.-J., Jeon, C.-W., Joo, Y.-D., Choi, I.-H.,
& Han, K.-H. (2013). Circulating tumor cell microseparator based on
lateral magnetophoresis and immunomagnetic nanobeads. Analytical
chemistry, 85 (5), 2779-2786.
Kinahan, D. J., Mangwanya, F., Garvey, R., Chung, D. W. Y., Lipinski,
A., Julius, L. A. N., . . . Ducrée, J. (2016). Automation of Silica
Bead-based Nucleic Acid Extraction on a Centrifugal Lab-on-a-Disc
Platform. Journal of Physics: Conference Series, 757 .
doi:10.1088/1742-6596/757/1/012013
Kung, Y. C., Huang, K. W., Chong, W., & Chiou, P. Y. (2016). Tunnel
Dielectrophoresis for Tunable, Single‐Stream Cell Focusing in
Physiological Buffers in High‐Speed Microfluidic Flows. Small,
12 (32), 4343-4348.
Kuo, C.-T., & Liu, C.-H. (2008). A novel microfluidic driver via AC
electrokinetics. Lab on a Chip, 8 (5), 725-733.
Lee, C.-Y., Chang, C.-L., Wang, Y.-N., & Fu, L.-M. (2011). Microfluidic
mixing: a review. International journal of molecular sciences,
12 (5), 3263-3287.
Lee, C.-Y., Wang, W.-T., Liu, C.-C., & Fu, L.-M. (2016). Passive mixers
in microfluidic systems: A review. Chemical Engineering Journal,
288 , 146-160.
Lenshof, A., Magnusson, C., & Laurell, T. (2012). Acoustofluidics 8:
applications of acoustophoresis in continuous flow microsystems.Lab on a Chip, 12 (7), 1210-1223.
Li, M., & Li, D. (2016a). Redistribution of mobile surface charges of
an oil droplet in water in applied electric field. Advances in
colloid and interface science, 236 , 142-151.
Li, M., & Li, D. (2016b). Vortices around Janus droplets under
externally applied electrical field. Microfluidics and
nanofluidics, 20 (5), 79.
Li, M., & Li, D. (2017). Separation of Janus droplets and oil droplets
in microchannels by wall-induced dielectrophoresis. Journal of
Chromatography A, 1501 , 151-160.
Li, M., & Li, D. (2018). Microvalve using electrokinetic motion of
electrically induced Janus droplet. Analytica chimica acta, 1021 ,
85-94.
Lian, M., & Wu, J. (2009). Ultrafast micropumping by biased alternating
current electrokinetics. Applied Physics Letters, 94 (6), 064101.
Lin, Y., Skjetne, P., & Carlson, A. (2012). A phase field model for
multiphase electro-hydrodynamic flow. International Journal of
Multiphase Flow, 45 , 1-11.
Liu, R. H., Lenigk, R., & Grodzinski, P. A. (2003). Acoustic micromixer
for enhancement of DNA biochip systems. Journal of
Micro/Nanolithography, MEMS, and MOEMS, 2 (3), 178-185.
Liu, W., Ren, Y., Tao, Y., Chen, X., Yao, B., Hui, M., & Bai, L.
(2017). Control of two-phase flow in microfluidics using out-of-phase
electroconvective streaming. Physics of Fluids, 29 (11), 112002.
Liu, W., Shao, J., Ren, Y., Liu, J., Tao, Y., Jiang, H., & Ding, Y.
(2016). On utilizing alternating current-flow field effect transistor
for flexibly manipulating particles in microfluidics and nanofluidics.Biomicrofluidics, 10 (3), 034105.
Loucaides, N., Ramos, A., & Georghiou, G. E. (2007). Novel systems for
configurable AC electroosmotic pumping. Microfluidics and
nanofluidics, 3 (6), 709-714.
Manshadi, M. K., Saadat, M., Mohammadi, M., Shamsi, M., Dejam, M.,
Kamali, R., & Sanati-Nezhad, A. (2018). Delivery of magnetic
micro/nanoparticles and magnetic-based drug/cargo into arterial flow for
targeted therapy. Drug delivery, 25 (1), 1963-1973.
Manshadi, M. K. D., Khojasteh, D., Mansoorifar, A., & Kamali, R.
(2016). Efficiency enhancement of ICEK micromixer by a rectangular
obstacle. Paper presented at the 3rd annual international conference on
new research achievements in chemistry and chemical engineering.
Ferdowsi University of Mashhad, Tehran Google Scholar.
Manshadi, M. K. D., Nikookar, H., Saadat, M., & Kamali, R. (2019).
Numerical analysis of non-uniform electric field effects on induced
charge electrokinetics flow with application in micromixers.Journal of Micromechanics and Microengineering .
Mirzajani, H., Cheng, C., Wu, J., Ivanoff, C. S., Aghdam, E. N., &
Ghavifekr, H. B. (2016). Design and characterization of a passive,
disposable wireless AC-electroosmotic lab-on-a-film for particle and
fluid manipulation. Sensors and Actuators B: Chemical, 235 ,
330-342.
Mohammadi, M., Kinahan, D. J., & Ducrée, J. (2016). Lumped-Element
Modeling for Rapid Design and Simulation of Digital Centrifugal
Microfluidic Systems Lab-on-a-Chip Fabrication and Application .
Mohammadi, M., Madadi, H., Casals-Terré, J., & Sellarès, J. (2015).
Hydrodynamic and direct-current insulator-based dielectrophoresis
(H-DC-iDEP) microfluidic blood plasma separation. Analytical and
bioanalytical chemistry, 407 (16), 4733-4744.
Morgan, H., Green, N. G., Ramos, A., & García-Sánchez, P. (2007).
Control of two-phase flow in a microfluidic system using ac electric
fields. Applied Physics Letters, 91 (25), 254107.
Mori, Y., & Young, Y.-N. (2018). From electrodiffusion theory to the
electrohydrodynamics of leaky dielectrics through the weak electrolyte
limit. Journal of Fluid Mechanics, 855 , 67-130.
Nobari, M., Movahed, S., Nourian, V., & Kazemi, S. (2016). A numerical
investigation of a novel micro-pump based on the induced charged
electrokinetic phenomenon in the presence of a conducting circular
obstacle. Journal of Electrostatics, 83 , 97-107.
Olesen, L. H., Bruus, H., & Ajdari, A. (2006). ac electrokinetic
micropumps: The effect of geometrical confinement, Faradaic current
injection, and nonlinear surface capacitance. Physical Review E,
73 (5), 056313.
Park, B.-O., & Song, S. (2012). Effects of multiple electrode pairs on
the performance of a micromixer using dc-biased ac electro-osmosis.Journal of Micromechanics and Microengineering, 22 (11), 115034.
Paustian, J. S., Pascall, A. J., Wilson, N. M., & Squires, T. M.
(2014). Induced charge electroosmosis micropumps using arrays of Janus
micropillars. Lab on a Chip, 14 (17), 3300-3312.
Piñón, M. V., Benítez, B. C., Pramanick, B., Perez-Gonzalez, V. H.,
Madou, M. J., Martinez-Chapa, S. O., & Hwang, H. (2017). Direct
current-induced breakdown to enhance reproducibility and performance of
carbon-based interdigitated electrode arrays for AC electroosmotic
micropumps. Sensors and Actuators A: Physical, 262 , 10-17.
Ramos, A., García-Sánchez, P., & Morgan, H. (2016). AC electrokinetics
of conducting microparticles: A review. Current Opinion in Colloid
& Interface Science, 24 , 79-90. doi:10.1016/j.cocis.2016.06.018
Ramos, A., Garcia, P., Gonzalez, A., Castellanos, A., Morgan, H., &
Green, N. G. (2005). AC electrokinetic pumping of liquids using
arrays of microelectrodes. Paper presented at the Bioengineered and
Bioinspired Systems II.
Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G., & Morgan, H.
(2003). Pumping of liquids with ac voltages applied to asymmetric pairs
of microelectrodes. Physical Review E, 67 (5), 056302.
Ramos, A., Morgan, H., Green, N. G., & Castellanos, A. (1999). AC
electric-field-induced fluid flow in microelectrodes. Journal of
colloid and interface science, 217 (2).
Rashidi, S., Bafekr, H., Valipour, M. S., & Esfahani, J. A. (2018). A
review on the application, simulation, and experiment of the
electrokinetic mixers. Chemical Engineering and Processing-Process
Intensification, 126 , 108-122.
Ren, Y., Liu, J., Liu, W., Lang, Q., Tao, Y., Hu, Q., . . . Jiang, H.
(2016). Scaled particle focusing in a microfluidic device with
asymmetric electrodes utilizing induced-charge electroosmosis. Lab
on a Chip, 16 (15), 2803-2812.
Ren, Y., Liu, W., Jia, Y., Tao, Y., Shao, J., Ding, Y., & Jiang, H.
(2015). Induced-charge electroosmotic trapping of particles. Lab
on a Chip, 15 (10), 2181-2191.
Ren, Y., Liu, W., Tao, Y., Hui, M., & Wu, Q. (2018). On
ac-field-induced nonlinear electroosmosis next to the sharp
corner-field-singularity of leaky dielectric blocks and its application
in on-chip micro-mixing. Micromachines, 9 (3), 102.
Ren, Y., Liu, X., Liu, W., Tao, Y., Jia, Y., Hou, L., . . . Jiang, H.
(2018). Flexible particle flow‐focusing in microchannel driven by
droplet‐directed induced‐charge electroosmosis. Electrophoresis,
39 (4), 597-607.
Rose, K. A., Meier, J. A., Dougherty, G. M., & Santiago, J. G. (2007).
Rotational electrophoresis of striped metallic microrods. Physical
Review E, 75 (1), 011503.
Rouabah, H. A., Park, B. Y., Zaouk, R. B., Morgan, H., Madou, M. J., &
Green, N. G. (2011). Design and fabrication of an ac-electro-osmosis
micropump with 3D high-aspect-ratio electrodes using only SU-8.Journal of Micromechanics and Microengineering, 21 (3), 035018.
Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and
future role of microfluidics in biomedical research. Nature,
507 (7491), 181-189.
Saintillan, D. (2008). Nonlinear interactions in electrophoresis of
ideally polarizable particles. Physics of Fluids, 20 (6), 067104.
Saintillan, D., Darve, E., & Shaqfeh, E. S. (2006). Hydrodynamic
interactions in the induced-charge electrophoresis of colloidal rod
dispersions. Journal of Fluid Mechanics, 563 , 223-259.
Saintillan, D., Shaqfeh, E. S., & Darve, E. (2006). Stabilization of a
suspension of sedimenting rods by induced-charge electrophoresis.Physics of Fluids, 18 (12), 121701.
Samiei, E., Tabrizian, M., & Hoorfar, M. (2016). A review of digital
microfluidics as portable platforms for lab-on a-chip applications.Lab on a chip, 16 (13), 2376-2396.
Sasaki, N., Kitamori, T., & Kim, H.-B. (2006). AC electroosmotic
micromixer for chemical processing in a microchannel. Lab on a
Chip, 6 (4), 550-554.
Sasaki, N., Kitamori, T., & Kim, H.-B. (2010). Experimental and
theoretical characterization of an AC electroosmotic micromixer.Analytical Sciences, 26 (7), 815-819.
Senousy, Y., & Harnett, C. (2010). Fast three dimensional ac
electro-osmotic pumps with nonphotolithographic electrode patterning.Biomicrofluidics, 4 (3), 036501.
Shamloo, A., Madadelahi, M., & Abdorahimzadeh, S. (2017).
Three-dimensional numerical simulation of a novel electroosmotic
micromixer. Chemical Engineering and Processing: Process
Intensification, 119 , 25-33. doi:10.1016/j.cep.2017.05.005
Shamsi, M., Mohammadi, A., Manshadi, M. K., & Sanati-Nezhad, A. (2019).
Mathematical and computational modeling of nano-engineered drug delivery
systems. Journal of Controlled Release .
Shoji, S., & Kawai, K. (2011). Flow control methods and devices in
micrometer scale channels Microfluidics (pp. 1-25): Springer.
Song, Y., Wang, C., Li, M., Pan, X., & Li, D. (2016). Focusing
particles by induced charge electrokinetic flow in a microchannel.Electrophoresis, 37 (4), 666-675.
Squires, T. M. (2009). Induced-charge electrokinetics: fundamental
challenges and opportunities. Lab on a Chip, 9 (17), 2477.
doi:10.1039/b906909g
Squires, T. M., & Bazant, M. Z. (2004). Induced-charge electro-osmosis.Journal of Fluid Mechanics, 509 , 217-252.
Squires, T. M., & Bazant, M. Z. (2006). Breaking symmetries in
induced-charge electro-osmosis and electrophoresis. Journal of
Fluid Mechanics, 560 , 65-101.
Studer, V., Pepin, A., Chen, Y., & Ajdari, A. (2002). Fabrication of
microfluidic devices for AC electrokinetic fluid pumping.Microelectronic Engineering, 61 , 915-920.
Studer, V., Pépin, A., Chen, Y., & Ajdari, A. (2004). An integrated AC
electrokinetic pump in a microfluidic loop for fast and tunable flow
control. Analyst, 129 (10), 944-949.
Sugioka, H. (2010). High-speed rotary microvalves in water using
hydrodynamic force due to induced-charge electrophoresis. Physical
Review E, 81 (3), 036301.
Tang, M., Wang, G., Kong, S.-K., & Ho, H.-P. (2016). A Review of
Biomedical Centrifugal Microfluidic Platforms. Micromachines,
7 (2). doi:10.3390/mi7020026
Tao, Y., Ren, Y., Liu, W., Wu, Y., Jia, Y., Lang, Q., & Jiang, H.
(2016). Enhanced particle trapping performance of induced charge
electroosmosis. Electrophoresis, 37 (10), 1326-1336.
Tatlιsoz, M. M., & Canpolat, Ç. (2018). Pulsatile flow micromixing
coupled with ICEO for non-Newtonian fluids. Chemical Engineering
and Processing-Process Intensification, 131 , 12-19.
Tawfik, M. E., & Diez, F. J. (2017). Maximizing fluid delivered by
bubble‐free electroosmotic pump with optimum pulse voltage waveform.Electrophoresis, 38 (5), 563-571.
Taylor, G. I. (1966). Studies in electrohydrodynamics. I. The
circulation produced in a drop by an electric field. Proc. R. Soc.
Lond. A, 291 (1425), 159-166.
Tikka, A. C., Faulkner, M., & Al-Sarawi, S. F. (2011). Secure wireless
actuation of an implanted microvalve for drug delivery applications.Smart Materials and Structures, 20 (10), 105011.
Urbanski, J. P., Thorsen, T., Levitan, J. A., & Bazant, M. Z. (2006).
Fast ac electro-osmotic micropumps with nonplanar electrodes.Applied Physics Letters, 89 (14), 143508.
Vigolo, D., Rusconi, R., Stone, H. A., & Piazza, R. (2010).
Thermophoresis: microfluidics characterization and separation.Soft matter, 6 (15), 3489-3493.
Wang, C., Li, M., Song, Y., Pan, X., & Li, D. (2018). Electrokinetic
motion of a spherical micro particle at an oil− water interface in
microchannel. Electrophoresis, 39 (5-6), 807-815.
Wang, C., Song, Y., Pan, X., & Li, D. (2016). A novel microfluidic
valve controlledby induced charge electro-osmotic flow. Journal of
Micromechanics and Microengineering, 26 (7), 075002.
doi:10.1088/0960-1317/26/7/075002
Wang, C., Song, Y., Pan, X., & Li, D. (2018a). Electrokinetic motion of
a submerged oil droplet near an air–water interface. Chemical
Engineering Science, 192 , 264-272.
Wang, C., Song, Y., Pan, X., & Li, D. (2018b). Electrokinetic Motion of
an Oil Droplet Attached to a Water–Air Interface from Below. The
Journal of Physical Chemistry B, 122 (5), 1738-1746.
Wang, X., Zandi, M., Ho, C.-C., Kaval, N., & Papautsky, I. (2015).
Single stream inertial focusing in a straight microchannel. Lab on
a Chip, 15 (8), 1812-1821.
Wu, J. (2008). Ac electro-osmotic micropump by asymmetric electrode
polarization. Journal of Applied Physics, 103 (2), 024907.
Wu, J., He, Z., Chen, Q., & Lin, J.-M. (2016). Biochemical analysis on
microfluidic chips. TrAC Trends in Analytical Chemistry, 80 ,
213-231.
Wu, X., Ramiah Rajasekaran, P., & Martin, C. R. (2016). An alternating
current electroosmotic pump based on conical nanopore membranes.ACS nano, 10 (4), 4637-4643.
Wu, Y., Ren, Y., Tao, Y., Hou, L., Hu, Q., & Jiang, H. (2017). A novel
micromixer based on the alternating current-flow field effect
transistor. Lab on a Chip, 17 (1), 186-197.
Wu, Y., Ren, Y., Tao, Y., Hou, L., & Jiang, H. (2016). Large-scale
single particle and cell trapping based on rotating electric field
induced-charge electroosmosis. Analytical chemistry, 88 (23),
11791-11798.
Wu, Z., Gao, Y., & Li, D. (2009). Electrophoretic motion of ideally
polarizable particles in a microchannel. Electrophoresis, 30 (5),
773-781.
Wu, Z., & Li, D. (2008a). Micromixing using induced-charge
electrokinetic flow. Electrochimica Acta, 53 (19), 5827-5835.
doi:10.1016/j.electacta.2008.03.039
Wu, Z., & Li, D. (2008b). Mixing and flow regulating by induced-charge
electrokinetic flow in a microchannel with a pair of conducting triangle
hurdles. Microfluidics and nanofluidics, 5 (1), 65-76.
Wu, Z., & Li, D. (2009). Induced-charge electrophoretic motion of
ideally polarizable particles. Electrochimica Acta, 54 (15),
3960-3967. doi:10.1016/j.electacta.2009.02.016
Wuzhang, J., Song, Y., Sun, R., Pan, X., & Li, D. (2015).
Electrophoretic mobility of oil droplets in electrolyte and surfactant
solutions. Electrophoresis, 36 (19), 2489-2497.
Yalcin, S. E., Sharma, A., Qian, S., Joo, S. W., & Baysal, O. (2011).
On-demand particle enrichment in a microfluidic channel by a locally
controlled floating electrode. Sensors and Actuators B: Chemical,
153 (1), 277-283.
Yang, H., Jiang, H., Ramos, A., & García-Sánchez, P. (2009). AC
electrokinetic pumping on symmetric electrode arrays.Microfluidics and nanofluidics, 7 (6), 767.
Yang Ng, W., Ramos, A., Cheong Lam, Y., & Rodriguez, I. (2012).
Numerical study of dc-biased ac-electrokinetic flow over symmetrical
electrodes. Biomicrofluidics, 6 (1), 012817.
Yariv, E. (2005). Induced-charge electrophoresis of nonspherical
particles. Physics of Fluids, 17 (5), 051702.
Yariv, E. (2008). Slender-body approximations for electro-phoresis and
electro-rotation of polarizable particles. Journal of Fluid
Mechanics, 613 , 85-94.
Yoon, M. S., Kim, B. J., & Sung, H. J. (2008). Pumping and mixing in a
microchannel using AC asymmetric electrode arrays. International
Journal of Heat and Fluid Flow, 29 (1), 269-280.
doi:10.1016/j.ijheatfluidflow.2007.10.002
Yoshida, K., Sato, T., Eom, S. I., Kim, J.-w., & Yokota, S. (2017). A
study on an AC electroosmotic micropump using a square pole–Slit
electrode array. Sensors and Actuators A: Physical, 265 , 152-160.
Zeng, J., Chen, C., Vedantam, P., Tzeng, T.-R., & Xuan, X. (2013).
Magnetic concentration of particles and cells in ferrofluid flow through
a straight microchannel using attracting magnets. Microfluidics
and nanofluidics, 15 (1), 49-55.
Zhang, F., & Li, D. (2014). A novel particle separation method based on
induced‐charge electro‐osmotic flow and polarizability of dielectric
particles. Electrophoresis, 35 (20), 2922-2929.
Zhang, F., & Li, D. (2015). Separation of dielectric Janus particles
based on polarizability-dependent induced-charge electroosmotic flow.Journal of colloid and interface science, 448 , 297-305.
Zhang, K., Mi, X., & Sheng, B. (2013). Design of T-shaped
micropump based on induced charge electroosmotic. Paper presented at
the Abstract and Applied Analysis.
Zhang, K., Ren, Y., Hou, L., Feng, X., Chen, X., & Jiang, H. (2018). An
efficient micromixer actuated by induced-charge electroosmosis using
asymmetrical floating electrodes. Microfluidics and nanofluidics,
22 (11), 130.
Zhang, K., Tian, F.-Z., & Yu, M.-Z. (2012). Induced-charge
electroosmosis around conducting and Janus cylinder in microchip.Thermal Science, 16 (5), 1502-1505.
Zhao, C. (2012). Induced-charge nonlinear electrokinetic phenomena
and applications in micro/nano fluidics.
Zhao, C., & Yang, C. (2012). Advances in electrokinetics and their
applications in micro/nano fluidics. Microfluidics and
nanofluidics, 13 (2), 179-203.
Zhao, C., & Yang, C. (2013). Electrokinetics of non-Newtonian fluids: a
review. Adv Colloid Interface Sci, 201-202 , 94-108.
doi:10.1016/j.cis.2013.09.001
Zhao, C., & Yang, C. (2018). Continuous-flow trapping and localized
enrichment of micro-and nano-particles using induced-charge
electrokinetics. Soft matter, 14 (6), 1056-1066.
Zhao, H., & Bau, H. H. (2007). On the effect of induced electro-osmosis
on a cylindrical particle next to a surface. Langmuir, 23 (7),
4053-4063.
Zhao, K., & Li, D. (2018). Manipulation and separation of oil droplets
by using asymmetric nano-orifice induced DC dielectrophoretic method.Journal of colloid and interface science, 512 , 389-397.
Zhou, C., Zhang, H., Li, Z., & Wang, W. (2016). Chemistry pumps: a
review of chemically powered micropumps. Lab on a Chip, 16 (10),
1797-1811.