References
{\rtf
Affouard, A., Goëau,
H., Bonnet, P., Lombardo, J.-C. & Joly, A. (2017). Pl@ntNet app in the
era of deep learning. In: ICLR 2017 - Workshop Track - 5th International
Conference on Learning Representations. Toulon, France, pp. 1–6.
Allen, C.D., Macalady,
A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al.
(2010). A global overview of drought and heat-induced tree mortality
reveals emerging climate change risks for forests. Forest Ecology and
Management, 259, 660–684.
Alo, C.A. & Wang, G.
(2008). Potential future changes of the terrestrial ecosystem based on
climate projections by eight general circulation models. Journal of
Geophysical Research: Biogeosciences, 113.
Ammer, C., Fichtner,
A., Fischer, A., Gossner, M.M., Meyer, P., Seidl, R., et al. (2018). Key
ecological research questions for Central European forests. Basic and
Applied Ecology, 32, 3–25.
Andela, N., Morton,
D.C., Giglio, L., Chen, Y., Werf, G.R. van der, Kasibhatla, P.S., et al.
(2017). A human-driven decline in global burned area. Science, 356,
1356–1362.
Araújo, M.B.,
Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F., Early, R., et
al. (2019). Standards for distribution models in biodiversity
assessments. Science Advances, 5, eaat4858.
Araújo, M.B. & New,
M. (2007). Ensemble forecasting of species distributions. Trends in
Ecology & Evolution, 22, 42–47.
Araújo, M.B. &
Pearson, R.G. (2005). Equilibrium of species’ distributions with
climate. Ecography, 28, 693–695.
Bahn, V. & McGill,
B.J. (2007). Can niche-based distribution models outperform spatial
interpolation? Global Ecology and Biogeography, 16, 733–742.
Ball, J.T., Woodrow,
I.E. & Berry, J.A. (1987). A model predicting stomatal conductance and
its contribution to the control of photosynthesis under different
environmental conditions. In: Progress in photosynthesis research (ed.
Biggins, J.). Springer Netherlands, pp. 221–224.
Barry, S. & Elith, J.
(2006). Error and uncertainty in habitat models. Journal of Applied
Ecology, 43, 413–423.
Bartlett, M.K.,
Scoffoni, C. & Sack, L. (2012). The determinants of leaf turgor loss
point and prediction of drought tolerance of species and biomes: a
global meta-analysis. Ecology Letters, 15, 393–405.
Bellassen, V., Le
Maire, G., Dhôte, J.F., Ciais, P. & Viovy, N. (2010). Modelling forest
management within a global vegetation model—Part 1: model structure
and general behaviour. Ecological Modelling, 221, 2458–2474.
Bertrand, R., Perez,
V. & Gégout, J.-C. (2012). Disregarding the edaphic dimension in
species distribution models leads to the omission of crucial spatial
information under climate change: the case of Quercus pubescens in
France. Glob Change Biol, 18, 2648–2660.
Berzaghi, F., Longo,
M., Ciais, P., Blake, S., Bretagnolle, F., Vieira, S., et al. (2019).
Carbon stocks in central African forests enhanced by elephant
disturbance. Nature Geoscience, 1.
Berzaghi, F.,
Verbeeck, H., Nielsen, M.R., Doughty, C.E., Bretagnolle, F., Marchetti,
M., et al. (2018). Assessing the role of megafauna in tropical forest
ecosystems and biogeochemical cycles – the potential of vegetation
models. Ecography, 41, 1934–1954.
von Bloh, W., Rost,
S., Gerten, D. & Lucht, W. (2010). Efficient parallelization of a
dynamic global vegetation model with river routing. Environmental
Modelling & Software, 25, 685–690.
Bloh, W. von,
Schaphoff, S., Müller, C., Rolinski, S., Waha, K. & Zaehle, S. (2018).
Implementing the nitrogen cycle into the dynamic global vegetation,
hydrology, and crop growth model LPJmL (version 5.0). Geoscientific
Model Development, 11, 2789–2812.
Bohn, F.J., Frank, K.
& Huth, A. (2014). Of climate and its resulting tree growth: Simulating
the productivity of temperate forests. Ecological Modelling, 278,
9–17.
Bohn, F.J. & Huth, A.
(2017). The importance of forest structure to biodiversity–productivity
relationships. Royal Society Open Science, 4, 160521.
Bohn, F.J., May, F. &
Huth, A. (2018). Species composition and forest structure explain the
temperature sensitivity patterns of productivity in temperate forests.
Biogeosciences, 15, 1795–1813.
Bonan, G.B. (2008).
Forests and Climate Change: Forcings, Feedbacks, and the Climate
Benefits of Forests. Science, 320, 1444–1449.
Bonan, G.B., Williams,
M., Fisher, R.A. & Oleson, K.W. (2014). Modeling stomatal conductance
in the earth system: linking leaf water-use efficiency and water
transport along the soil–plant–atmosphere continuum. Geosci. Model
Dev., 7, 2193–2222.
Bondeau, A., Smith,
P.C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., et al. (2007).
Modelling the role of agriculture for the 20th century global
terrestrial carbon balance. Global Change Biology, 13, 679–706.
Booth, T.H., Nix,
H.A., Busby, J.R. & Hutchinson, M.F. (2014). bioclim: the first species
distribution modelling package, its early applications and relevance to
most current MaxEnt studies. Diversity and Distributions, 20, 1–9.
Bossel, H. & Krieger,
H. (1991). Simulation model of natural tropical forest dynamics.
Ecological Modelling, 59, 37–71.
Botella, C., Joly, A.,
Bonnet, P., Monestiez, P. & Munoz, F. (2018). Species distribution
modeling based on the automated identification of citizen observations.
Applications in Plant Sciences, 6, e1029.
Botkin, D.B., Janak,
J.F. & Wallis, J.R. (1972). Some Ecological Consequences of a Computer
Model of Forest Growth. Journal of Ecology, 60, 849–872.
Boysen, L.R., Lucht,
W., Gerten, D. & Heck, V. (2016). Impacts devalue the potential of
large-scale terrestrial CO2 removal through biomass
plantations. Environ. Res. Lett., 11, 095010.
Brede, B., Lau, A.,
Bartholomeus, H., Kooistra, L., Brede, B., Lau, A., et al. (2017).
Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with
Terrestrial LiDAR. Sensors, 17, 2371.
Brienen, R.J.W.,
Phillips, O.L., Feldpausch, T.R., Gloor, E., Baker, T.R., Lloyd, J., et
al. (2015). Long-term decline of the Amazon carbon sink. Nature, 519,
344–348.
Broennimann, O.,
Treier, U.A., Müller‐Schärer, H., Thuiller, W., Peterson, A.T. &
Guisan, A. (2007). Evidence of climatic niche shift during biological
invasion. Ecology Letters, 10, 701–709.
Brovkin, V., van
Bodegom, P.M., Kleinen, T., Wirth, C., Cornwell, W., Cornelissen,
J.H.C., et al. (2012). Plant-driven variation in decomposition rates
improves projections of global litter stock distribution.
Biogeosciences, 9, 565–576.
Bugmann, H. (2001). A
review of forest gap models. Climatic Change, 51, 259–305.
Bugmann, H. (2014).
Forests in a greenhouse atmosphere: predicting the unpredictable? In:
Forests and Global Change (eds. Coomes, D.A., Burslem, D.F.R.P. &
Simonson, W.D.). Cambridge, UK, pp. 195–238.
Bugmann, H. & Bigler,
C. (2011). Will the CO2 fertilization effect in forests
be offset by reduced tree longevity? Oecologia, 165, 533–544.
Bugmann, H. &
Fischlin, A. (1996). Simulating forest dynamics in a complex topography
using gridded climatic data. Climatic Change, 34, 201–211.
Bugmann, H. &
Pfister, C. (2000). Impacts of interannual climate variability on past
and future forest composition. Reg Environ Change, 1, 112–125.
Bugmann, H., Seidl,
R., Hartig, F., Bohn, F., Brůna, J., Cailleret, M., et al. (2019). Tree
mortality submodels drive simulated long-term forest dynamics: assessing
15 models from the stand to global scale. Ecosphere, 10, e02616.
Bugmann, H.K.M.
(1996). A Simplified Forest Model to Study Species Composition Along
Climate Gradients. Ecology, 77, 2055–2074.
Bugmann, H.K.M., Yan,
X., Sykes, M.T., Martin, P., Lindner, M., Desanker, P.V., et al. (1996).
A comparison of forest gap models: Model structure and behaviour.
Climatic Change, 34, 289–313.
Butchart, S.H.M.,
Walpole, M., Collen, B., Van Strien, A., Scharlemann, J.P.W., Almond,
R.E.A., et al. (2010). Global biodiversity: indicators of recent
declines. Science, 328, 1164–1168.
Bykova, O., Chuine,
I., Morin, X. & Higgins, S.I. (2012). Temperature dependence of the
reproduction niche and its relevance for plant species distributions. J.
Biogeogr., 39, 2191–2200.
Chauvet, M., Kunstler,
G., Roy, J. & Morin, X. (2017). Using a forest dynamics model to link
community assembly processes and traits structure. Functional Ecology,
31, 1452–1461.
Chave, J. (1999).
Study of structural, successional and spatial patterns in tropical rain
forests using TROLL, a spatially explicit forest model. Ecological
Modelling, 124, 233–254.
Chave, J. (2013). The
problem of pattern and scale in ecology: what have we learned in
20 years? Ecol Lett, 16, 4–16.
Chave, J., Andalo, C.,
Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., et al. (2005). Tree
allometry and improved estimation of carbon stocks and balance in
tropical forests. Oecologia, 145, 87–99.
Chave, J.,
Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti,
W.B.C., et al. (2014). Improved allometric models to estimate the
aboveground biomass of tropical trees. Glob Change Biol, 20,
3177–3190.
Cheaib, A., Badeau,
V., Boe, J., Chuine, I., Delire, C., Dufrêne, E., et al. (2012). Climate
change impacts on tree ranges: model intercomparison facilitates
understanding and quantification of uncertainty. Ecology Letters, 15,
533–544.
Choat, B., Jansen, S.,
Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., et al. (2012).
Global convergence in the vulnerability of forests to drought. Nature,
491, 752–755.
Chuine, I. &
Beaubien, E.G. (2001). Phenology is a major determinant of tree species
range. Ecology Letters, 4, 500–510.
Clements, F.E. (1916).
Plant Succession: An Analysis of the Development of Vegetation. Carnegie
Institution of Washington, Washington, D.C.
Collalti, A., Marconi,
S., Ibrom, A., Trotta, C., Anav, A., D’Andrea, E., et al. (2016).
Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy
covariance data for 10 European forest sites. Geoscientific Model
Development, 9, 479–504.
Collalti, A. &
Prentice, I.C. (2019). Is NPP proportional to GPP? Waring’s hypothesis
20 years on. Tree Physiol, 39, 1473–1483.
Collalti, A.,
Thornton, P.E., Cescatti, A., Rita, A., Borghetti, M., Nolè, A., et al.
(2019a). The sensitivity of the forest carbon budget shifts across
processes along with stand development and climate change. Ecological
Applications, 29, e01837.
Collalti, A.,
Tjoelker, M.G., Hoch, G., Mäkelä, A., Guidolotti, G., Heskel, M., et al.
(2019b). Plant respiration: Controlled by photosynthesis or biomass?
Global Change Biology, 0.
Collalti, A., Trotta,
C., Keenan, T.F., Ibrom, A., Bond‐Lamberty, B., Grote, R., et al.
(2018). Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon
Stocks in Managed Forests Under Warmer Climate. Journal of Advances in
Modeling Earth Systems, 10, 2427–2452.
Collatz, G.J., Ball,
J.T., Grivet, C. & Berry, J.A. (1991). Physiological and environmental
regulation of stomatal conductance, photosynthesis and transpiration: a
model that includes a laminar boundary layer. Agricultural and Forest
Meteorology, 54, 107–136.
Courbaud, B., Goreaud,
F., Dreyfus, Ph. & Bonnet, F.R. (2001). Evaluating thinning strategies
using a tree distance dependent growth model: some examples based on the
CAPSIS software “uneven-aged spruce forests” module. Forest Ecology
and Management, Structure of Mountain Forests-Assessment, Impacts,
Managements, Modelling, 145, 15–28.
Cox, P.M., Betts,
R.A., Collins, M., Harris, P.P., Huntingford, C. & Jones, C.D. (2004).
Amazonian forest dieback under climate-carbon cycle projections for the
21st century. Theoretical and Applied Climatology, 78, 137–156.
Craine, J.M.,
Engelbrecht, B.M.J., Lusk, C.H., McDowell, N.G. & Poorter, H. (2012).
Resource limitation, tolerance, and the future of ecological plant
classification. Frontiers in Plant Science, 3.
Cramer, W., Bondeau,
A., Woodward, F.I., Prentice, I.C., Betts, R.A., Brovkin, V., et al.
(2001). Global response of terrestrial ecosystem structure and function
to CO2 and climate change: results from six dynamic
global vegetation models. Glob. Change Biol., 7, 357–373.
Dantas de Paula, M.,
Groeneveld, J. & Huth, A. (2015). Tropical forest degradation and
recovery in fragmented landscapes — Simulating changes in tree
community, forest hydrology and carbon balance. Global Ecology and
Conservation, 3, 664–677.
Dantas de Paula, M.,
Taubert, F., Martins, V.F. & Huth, A. (2018). Defaunation impacts on
seed survival and its effect on the biomass of future tropical forests.
Oikos, 127, 1526–1538.
Davis, M.B. &
Zabinski, C. (1992). Changes in geographical range from greenhouse
warming: effetcs on biodiversity in forests. In: Global Warming and
Biological Diversity (eds. Peters, R.L. & Lovejoy, T.E.). Yale, pp.
297–309.
Dawson, T.P., Jackson,
S.T., House, J.I., Prentice, I.C. & Mace, G.M. (2011). Beyond
predictions: biodiversity conservation in a changing climate. Science,
332, 53–58.
De Kauwe, M.G.,
Medlyn, B.E., Zaehle, S., Walker, A.P., Dietze, M.C., Wang, Y.-P., et
al. (2014). Where does the carbon go? A model–data intercomparison of
vegetation carbon allocation and turnover processes at two temperate
forest free-air CO2 enrichment sites. New Phytol, 203,
883–899.
De Kauwe, M.G., Zhou,
S.-X., Medlyn, B.E., Pitman, A.J., Wang, Y.-P., Duursma, R.A., et al.
(2015). Do land surface models need to include differential plant
species responses to drought? Examining model predictions across a
mesic-xeric gradient in Europe. Biogeosciences, 12, 7503–7518.
DeAngelis, D.L. &
Mooij, W.M. (2005). Individual-Based Modeling of Ecological and
Evolutionary Processes. Annual Review of Ecology, Evolution, and
Systematics, 36, 147–168.
Delbart, N., Beaubien,
E., Kergoat, L. & Le Toan, T. (2015). Comparing land surface phenology
with leafing and flowering observations from the PlantWatch citizen
network. Remote Sensing of Environment, 160, 273–280.
Didion, M.,
Kupferschmid, A.D., Zingg, A., Fahse, L. & Bugmann, H. (2009). Gaining
local accuracy while not losing generality — extending the range of
gap model applications. Can. J. For. Res., 39, 1092–1107.
Dietrich, J.P.,
Bodirsky, B.L., Humpenöder, F., Weindl, I., Stevanović, M., Karstens,
K., et al. (2019). MAgPIE 4 – a modular open-source framework for
modeling global land systems. Geoscientific Model Development, 12,
1299–1317.
Dietze, M.C., Serbin,
S.P., Davidson, C., Desai, A.R., Feng, X., Kelly, R., et al. (2014). A
quantitative assessment of a terrestrial biosphere model’s data needs
across North American biomes. J. Geophys. Res. Biogeosci., 119,
2013JG002392.
Disney, M. (2018).
Terrestrial LiDAR: a three-dimensional revolution in how we look at
trees. New Phytologist, 0.
Donohue, I.,
Hillebrand, H., Montoya, J.M., Petchey, O.L., Pimm, S.L., Fowler, M.S.,
et al. (2016). Navigating the complexity of ecological stability.
Ecology Letters, 19, 1172–1185.
Donohue, I., Petchey,
O.L., Montoya, J.M., Jackson, A.L., McNally, L., Viana, M., et al.
(2013). On the dimensionality of ecological stability. Ecology Letters,
16, 421–429.
Dormann, C.F.,
Bobrowski, M., Dehling, D.M., Harris, D.J., Hartig, F., Lischke, H., et
al. (2018). Biotic interactions in species distribution modelling: 10
questions to guide interpretation and avoid false conclusions. Global
Ecology and Biogeography, 27, 1004–1016.
Dormann, C.F.,
McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., et
al. (2007). Methods to account for spatial autocorrelation in the
analysis of species distributional data: a review. Ecography, 30,
609–628.
Dormann, C.F.,
Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., et al.
(2012). Correlation and process in species distribution models: bridging
a dichotomy. Journal of Biogeography, 39, 2119–2131.
Dufour-Kowalski, S.,
Courbaud, B., Dreyfus, P., Meredieu, C. & Coligny, F. de. (2012).
Capsis: an open software framework and community for forest growth
modelling. Annals of Forest Science, 69, 221–233.
Dunford, R., Harrison,
P.A. & Rounsevell, M.D.A. (2015). Exploring scenario and model
uncertainty in cross-sectoral integrated assessment approaches to
climate change impacts. Climatic Change, 132, 417–432.
Duputié, A.,
Rutschmann, A., Ronce, O. & Chuine, I. (2015). Phenological plasticity
will not help all species adapt to climate change. Glob Change Biol, 21,
3062–3073.
Duursma, R.A., Medlyn,
B.E. & others. (2012). MAESPA: a model to study interactions between
water limitation, environmental drivers and vegetation function at tree
and stand levels, with an example application to
[CO₂]$\times$ drought interactions.
Elith, J. &
Leathwick, J.R. (2009). Species Distribution Models: Ecological
Explanation and Prediction Across Space and Time. Annual Review of
Ecology, Evolution, and Systematics, 40, 677–697.
Elkin, C., Gutiérrez,
A.G., Leuzinger, S., Manusch, C., Temperli, C., Rasche, L., et al.
(2013). A 2 °C warmer world is not safe for ecosystem services in the
European Alps. Global Change Biology, 19, 1827–1840.
Estes, L., Elsen,
P.R., Treuer, T., Ahmed, L., Caylor, K., Chang, J., et al. (2018). The
spatial and temporal domains of modern ecology. Nature Ecology &
Evolution, 1.
Evans, T.G., Diamond,
S.E. & Kelly, M.W. (2015). Mechanistic species distribution modelling
as a link between physiology and conservation. Conserv Physiol, 3.
Falge, E., Baldocchi,
D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., et al. (2002).
Seasonality of ecosystem respiration and gross primary production as
derived from FLUXNET measurements. Agricultural and Forest Meteorology,
FLUXNET 2000 Synthesis, 113, 53–74.
Falster, D.S.,
Brännström, \AAke, Westoby, M. & Dieckmann, U. (2017).
Multitrait successional forest dynamics enable diverse competitive
coexistence. Proceedings of the National Academy of Sciences, 114,
E2719–E2728.
Fedrigo, M., Stewart,
S.B., Roxburgh, S.H., Kasel, S., Bennett, L.T., Vickers, H., et al.
(2019). Predictive Ecosystem Mapping of South-Eastern Australian
Temperate Forests Using Lidar-Derived Structural Profiles and Species
Distribution Models. Remote Sensing, 11, 93.
Felton, A.J. & Smith,
M.D. (2017). Integrating plant ecological responses to climate extremes
from individual to ecosystem levels. Phil. Trans. R. Soc. B, 372,
20160142.
Fernandes, R.F.,
Scherrer, D. & Guisan, A. (2018). How much should one sample to
accurately predict the distribution of species assemblages? A virtual
community approach. Ecological Informatics, 48, 125–134.
Ferraz, A., Saatchi,
S., Mallet, C. & Meyer, V. (2016). Lidar detection of individual tree
size in tropical forests. Remote Sensing of Environment, 183, 318–333.
Ferrier, S. (2002).
Mapping spatial pattern in biodiversity for regional conservation
planning: where to from here? Syst Biol, 51, 331–363.
Ferrier, S. & Guisan,
A. (2006). Spatial modelling of biodiversity at the community level.
Journal of Applied Ecology, 43, 393–404.
Field, C.B., Barros,
V., Stocker, T.F. & Dahe, Q. (Eds.). (2012). Managing the risks of
extreme events and disasters to advance climate change adaption.
Cambridge University Press, New York, N.Y.
Fischer, F.J.,
Maréchaux, I. & Chave, J. (2019). Improving plant allometry by fusing
forest models and remote sensing. New Phytologist, 223, 1159–1165.
Fischer, R. (2013).
Modellierung der Dynamik afrikanischer Tropenwälder. Analyse des
Einflusses von Störungen auf tropische Wälder mit Hilfe des Waldmodells
FORMIND. Dissertation. Universität Osnabrück, Germany.
Fischer, R.,
Armstrong, A., Shugart, H.H. & Huth, A. (2014). Simulating the impacts
of reduced rainfall on carbon stocks and net ecosystem exchange in a
tropical forest. Environmental Modelling & Software, 52, 200–206.
Fischer, R., Bohn, F.,
Dantas de Paula, M., Dislich, C., Groeneveld, J., Gutiérrez, A.G., et
al. (2016). Lessons learned from applying a forest gap model to
understand ecosystem and carbon dynamics of complex tropical forests.
Ecological Modelling, Next generation ecological modelling, concepts,
and theory: structural realism, emergence, and predictions, 326,
124–133.
Fischer, R., Ensslin,
A., Rutten, G., Fischer, M., Costa, D.S., Kleyer, M., et al. (2015).
Simulating Carbon Stocks and Fluxes of an African Tropical Montane
Forest with an Individual-Based Forest Model. PLOS ONE, 10, e0123300.
Fischer, R., Rödig, E.
& Huth, A. (2018). Consequences of a Reduced Number of Plant Functional
Types for the Simulation of Forest Productivity. Forests, 9, 460.
Fisher, R.A., Koven,
C.D., Anderegg, W.R.L., Christoffersen, B.O., Dietze, M.C., Farrior,
C.E., et al. (2018). Vegetation demographics in Earth System Models: A
review of progress and priorities. Global Change Biology, 24, 35–54.
Fisher, R.A.,
Williams, M., Do Vale, R.L., Da Costa, A.L. & Meir, P. (2006). Evidence
from Amazonian forests is consistent with isohydric control of leaf
water potential. Plant, Cell & Environment, 29, 151–165.
Fontes, L., Bontemps,
J.D., Bugmann, H., Oijen, M. van, Gracia, C., Kramer, K., et al. (2010).
Models for supporting forest management in a changing environment.
Forest Systems, 19, 8–29.
Forkel, M., Andela,
N., Harrison, S.P., Lasslop, G., Marle, M. van, Chuvieco, E., et al.
(2019). Emergent relationships with respect to burned area in global
satellite observations and fire-enabled vegetation models.
Biogeosciences, 16, 57–76.
Fourcade, Y., Besnard,
A.G. & Secondi, J. (2018). Paintings predict the distribution of
species, or the challenge of selecting environmental predictors and
evaluation statistics. Global Ecology and Biogeography, 27, 245–256.
Franklin, J. (2010).
Moving beyond static species distribution models in support of
conservation biogeography. Diversity and Distributions, 16, 321–330.
Frieler, K., Lange,
S., Piontek, F., Reyer, C., Schewe, J., Warszawski, L., et al. (2017).
Assessing the impacts of 1.5 °C global warming – simulation protocol
of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b).
Geoscientific Model Development.
Friend, A.D., Lucht,
W., Rademacher, T.T., Keribin, R., Betts, R., Cadule, P., et al. (2014).
Carbon residence time dominates uncertainty in terrestrial vegetation
responses to future climate and atmospheric CO2. Proc.
Natl. Acad. Sci. U. S. A., 111, 3280–3285.
Fyllas, N.M., Bentley,
L.P., Shenkin, A., Asner, G.P., Atkin, O.K., Díaz, S., et al. (2017).
Solar radiation and functional traits explain the decline of forest
primary productivity along a tropical elevation gradient. Ecol Lett, 20,
730–740.
Galbraith, D., Levy,
P.E., Sitch, S., Huntingford, C., Cox, P., Williams, M., et al. (2010).
Multiple mechanisms of Amazonian forest biomass losses in three dynamic
global vegetation models under climate change. New Phytologist, 187,
647–665.
García-Valdés, R.,
Bugmann, H. & Morin, X. (2018). Climate change-driven extinctions of
tree species affect forest functioning more than random extinctions.
Diversity and Distributions, 24, 906–918.
Giraud, C., Calenge,
C., Coron, C. & Julliard, R. (2016). Capitalizing on opportunistic data
for monitoring relative abundances of species. Biometrics, 72,
649–658.
Gleason, H.A. (1926).
The Individualistic Concept of the Plant Association. Bulletin of the
Torrey Botanical Club, 53, 7–26.
Goetz, S. & Dubayah,
R. (2011). Advances in remote sensing technology and implications for
measuring and monitoring forest carbon stocks and change. Carbon
Management, 2, 231–244.
Goll, D.S., Vuichard,
N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., et al.
(2017). A representation of the phosphorus cycle for ORCHIDEE (revision
4520). Geoscientific Model Development, 10, 3745–3770.
Good, P., Jones, C.,
Lowe, J., Betts, R. & Gedney, N. (2013). Comparing tropical forest
projections from two generations of Hadley Centre Earth System models,
HadGEM2-ES and HadCM3LC. J. Clim., 26, 495–511.
Grisebach, A. (1872).
Die Vegetation der Erde nach ihrer klimatischen Anordnung: Ein Abriss
der vergleichenden Geographie der Pflanzen. Bd. I und II. Verlag von
Wilhelm Engelmann, Leipzig.
Groeneveld, J., Alves,
L.F., Bernacci, L.C., Catharino, E.L.M., Knogge, C., Metzger, J.P., et
al. (2009). The impact of fragmentation and density regulation on forest
succession in the Atlantic rain forest. Ecological Modelling, 220,
2450–2459.
Guisan, A. &
Thuiller, W. (2005). Predicting species distribution: offering more than
simple habitat models. Ecology Letters, 8, 993–1009.
Guisan, A., Thuiller,
W. & Zimmermann, N.E. (2017). Habitat Suitability and Distribution
Models: with Applications in R. Cambridge University Press.
Guisan, A., Tingley,
R., Baumgartner, J.B., Naujokaitis‐Lewis, I., Sutcliffe, P.R., Tulloch,
A.I.T., et al. (2013). Predicting species distributions for conservation
decisions. Ecology Letters, 16, 1424–1435.
Haas, E., Klatt, S.,
Fröhlich, A., Kraft, P., Werner, C., Kiese, R., et al. (2013).
LandscapeDNDC: a process model for simulation of
biosphere–atmosphere–hydrosphere exchange processes at site and
regional scale. Landscape Ecol, 28, 615–636.
Hantson, S., Arneth,
A., Harrison, S.P., Kelley, D.I., Prentice, I.C., Rabin, S.S., et al.
(2016). The status and challenge of global fire modelling.
Biogeosciences, 13, 3359–3375.
Hart, S.P., Schreiber,
S.J. & Levine, J.M. (2016). How variation between individuals affects
species coexistence. Ecology Letters, 19, 825–838.
Hartig, F., Calabrese,
J.M., Reineking, B., Wiegand, T. & Huth, A. (2011). Statistical
inference for stochastic simulation models – theory and application.
Ecology Letters, 14, 816–827.
Hartig, F., Dislich,
C., Wiegand, T. & Huth, A. (2014). Technical Note: Approximate Bayesian
parameterization of a process-based tropical forest model.
Biogeosciences, 11, 1261–1272.
Hartmann, H., Adams,
H.D., Hammond, W.M., Hoch, G., Landhäusser, S.M., Wiley, E., et al.
(2018a). Identifying differences in carbohydrate dynamics of seedlings
and mature trees to improve carbon allocation in models for trees and
forests. Environmental and Experimental Botany.
Hartmann, H., Moura,
C.F., Anderegg, W.R.L., Ruehr, N.K., Salmon, Y., Allen, C.D., et al.
(2018b). Research frontiers for improving our understanding of
drought-induced tree and forest mortality. New Phytologist, 218,
15–28.
Hickler, T., Prentice,
I.C., Smith, B., Sykes, M.T. & Zaehle, S. (2006). Implementing plant
hydraulic architecture within the LPJ Dynamic Global Vegetation Model.
Global Ecology and Biogeography, 15, 567–577.
Hickler, T., Vohland,
K., Feehan, J., Miller, P.A., Smith, B., Costa, L., et al. (2012).
Projecting the future distribution of European potential natural
vegetation zones with a generalized, tree species-based dynamic
vegetation model. Global Ecology and Biogeography, 21, 50–63.
Hiltner, U., Huth, A.,
Bräuning, A., Hérault, B. & Fischer, R. (2018). Simulation of
succession in a neotropical forest: High selective logging intensities
prolong the recovery times of ecosystem functions. Forest Ecology and
Management, 430, 517–525.
Holzwarth, F., Kahl,
A., Bauhus, J. & Wirth, C. (2013). Many ways to die – partitioning
tree mortality dynamics in a near-natural mixed deciduous forest.
Journal of Ecology, 101, 220–230.
Hubbell, S.P. (2001).
The unified neutral theory of biodiversity and biogeography. Princeton
University Press, Princeton.
Hülsmann, L., Bugmann,
H., Cailleret, M. & Brang, P. (2018). How to kill a tree: empirical
mortality models for 18 species and their performance in a dynamic
forest model. Ecological Applications, 28, 522–540.
Humboldt, A. von.
(1849). Aspects of nature, in different lands and different climates;
with scientific elucidations. Lea and Blanchard.
Humpenöder, F., Popp,
A., Bodirsky, B.L., Weindl, I., Biewald, A., Lotze-Campen, H., et al.
(2018). Large-scale bioenergy production: how to resolve sustainability
trade-offs? Environ. Res. Lett., 13, 024011.
Huntingford, C.,
Atkin, O.K., Torre, A.M. la, Mercado, L.M., Heskel, M.A., Harper, A.B.,
et al. (2017). Implications of improved representations of plant
respiration in a changing climate. Nature Communications, 8, 1602.
Huston, M., DeAngelis,
D. & Post, W. (1988). New Computer Models Unify Ecological Theory.
BioScience, 38, 682–691.
Hutchinson, G.E.
(1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative
Biology, 22, 415–427.
Huth, A. & Ditzer, T.
(2001). Long-term impacts of logging in a tropical rain forest — a
simulation study. Forest Ecology and Management, 142, 33–51.
Huth, A., Drechsler,
M. & Köhler, P. (2005). Using multicriteria decision analysis and a
forest growth model to assess impacts of tree harvesting in Dipterocarp
lowland rain forests. Forest Ecology and Management, Decision Support in
Multi Purpose Forestry, 207, 215–232.
IPBES. (2016). Summary
for policymakers of the methodological assessment of scenarios and
models of biodiversity and ecosystem services of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services.
Secretariat of the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem, Bonn, Germany.
Iversen, C.M.,
McCormack, M.L., Powell, A.S., Blackwood, C.B., Freschet, G.T., Kattge,
J., et al. (2017). A global Fine-Root Ecology Database to address
below-ground challenges in plant ecology. New Phytol, 215, 15–26.
Iverson, L.R.,
Schwartz, M.W. & Prasad, A.M. (2004). Potential colonization of newly
available tree-species habitat under climate change: An analysis for
five eastern US species. Landscape Ecol, 19, 787–799.
Ives, A.R. &
Carpenter, S.R. (2007). Stability and diversity of ecosystems. Science,
317, 58–62.
Jägermeyr, J., Gerten,
D., Heinke, J., Schaphoff, S., Kummu, M. & Lucht, W. (2015). Water
savings potentials of irrigation systems: global simulation of processes
and linkages. Hydrology and Earth System Sciences, 19, 3073–3091.
Jarvis, P.G. (Ed.).
(1998). European Forests and Global Change: The Likely Impacts of Rising
CO2 and Temperature. Cambridge University Press,
Cambridge, U.K. ; New York.
Jenkins, C.N., Pimm,
S.L. & Joppa, L.N. (2013). Global patterns of terrestrial vertebrate
diversity and conservation. PNAS, 110, E2602–E2610.
Joetzjer, E., Maignan,
F., Chave, J., Goll, D., Poulter, B., Barichivich, J., et al. (2018).
The importance of tree demography and root water uptake for modelling
the carbon and water cycles of Amazonia. Biogeosciences Discussions,
1–33.
Joetzjer, E., Pillet,
M., Ciais, P., Barbier, N., Chave, J., Schlund, M., et al. (2017).
Assimilating satellite-based canopy height within an ecosystem model to
estimate aboveground forest biomass. Geophysical Research Letters, 44,
6823–6832.
Johnson, M.O.,
Galbraith, D., Gloor, M., De Deurwaerder, H., Guimberteau, M., Rammig,
A., et al. (2016). Variation in stem mortality rates determines patterns
of above-ground biomass in Amazonian forests: implications for dynamic
global vegetation models. Glob Change Biol, 22, 3996–4013.
Journé, V., Barnagaud,
J.-Y., Bernard, C., Crochet, P.-A. & Morin, X. (2019). Correlative
climatic niche models predict real and virtual species distributions
equally well. Ecology, e02912.
Jucker, T., Bongalov,
B., Burslem, D.F.R.P., Nilus, R., Dalponte, M., Lewis, S.L., et al.
(2018). Topography shapes the structure, composition and function of
tropical forest landscapes. Ecology Letters, 21, 989–1000.
Jucker, T., Caspersen,
J., Chave, J., Antin, C., Barbier, N., Bongers, F., et al. (2017).
Allometric equations for integrating remote sensing imagery into forest
monitoring programmes. Glob Change Biol, 23, 177–190.
Jung, M., Reichstein,
M. & Bondeau, A. (2009). Towards global empirical upscaling of FLUXNET
eddy covariance observations: validation of a model tree ensemble
approach using a biosphere model. Biogeosciences, 6, 2001–2013.
Justice, C.O.,
Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N.,
et al. (2002). An overview of MODIS Land data processing and product
status. Remote Sensing of Environment, The Moderate Resolution Imaging
Spectroradiometer (MODIS): a new generation of Land Surface Monitoring,
83, 3–15.
Kattge, J., Díaz, S.,
Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., et al. (2011).
TRY – a global database of plant traits. Global Change Biology, 17,
2905–2935.
Keane, R.E., Austin,
M., Field, C., Huth, A., Lexer, M.J., Peters, D., et al. (2001). Tree
Mortality in Gap Models: Application to Climate Change. Climatic Change,
51, 509–540.
Kearney, M. & Porter,
W. (2009). Mechanistic niche modelling: combining physiological and
spatial data to predict species’ ranges. Ecology Letters, 12, 334–350.
Keenan, T., Niinemets,
Ü., Sabate, S., Gracia, C. & Peñuelas, J. (2009a). Process based
inventory of isoprenoid emissions from European forests: model
comparisons, current knowledge and uncertainties. Atmospheric Chemistry
and Physics, 9, 4053–4076.
Keenan, T., Niinemets,
Ü., Sabate, S., Gracia, C. & Peñuelas, J. (2009b). Seasonality of
monoterpene emission potentials in Quercus ilex and Pinus pinea:
Implications for regional VOC emissions modeling. Journal of Geophysical
Research: Atmospheres, 114.
Keenan, T., Sabaté, S.
& Gracia, C. (2008). Forest Eco-physiological Models and Carbon
Sequestration. In: Managing Forest Ecosystems: The Challenge of Climate
Change, Managing Forest Ecosystems (eds. Bravo, F., Jandl, R., LeMay, V.
& von Gadow, K.). Springer Netherlands, Dordrecht, pp. 83–102.
Keenan, T., Serra,
J.M., Lloret, F., Ninyerola, M. & Sabate, S. (2011). Predicting the
future of forests in the Mediterranean under climate change, with niche-
and process-based models: CO2 matters! Global Change
Biology, 17, 565–579.
Kercher, J.R. &
Axelrod, M.C. (1984). Analysis of silva: A model for forecasting the
effects of SO2 pollution and fire on western coniferous forests.
Ecological Modelling, Modelling Primary Production, 23, 165–184.
Kienast, F. (1987).
FORECE: A forest succession model for southern Central Europe ( No.
ORNL/TM-10575). Oak Ridge National Lab., TN (USA).
Kleidon, A. & Mooney,
H.A. (2000). A global distribution of biodiversity inferred from
climatic constraints: results from a process-based modelling study.
Global Change Biology, 6, 507–523.
Knapp, N., Fischer, R.
& Huth, A. (2018). Linking lidar and forest modeling to assess biomass
estimation across scales and disturbance states. Remote Sensing of
Environment, 205, 199–209.
Köhler, P. & Huth, A.
(1998). The effects of tree species grouping in tropical rainforest
modelling: simulations with the individual-based model Formind.
Ecological Modelling, 109, 301–321.
Kramer, K., Leinonen,
I., Bartelink, H.H., Berbigier, P., Borghetti, M., Bernhofer, C., et al.
(2002). Evaluation of six process-based forest growth models using
eddy-covariance measurements of CO2 and
H2O fluxes at six forest sites in Europe. Global Change
Biology, 8, 213–230.
Krinner, G., Viovy,
N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P.,
et al. (2005). A dynamic global vegetation model for studies of the
coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19,
GB1015.
Kunstler, G., Allen,
R.B., Coomes, D.A., Canham, C.D. & Wright, E.F. (2013). Sustainable
management, earthquake disturbances, and transient dynamics: modelling
timber harvesting impacts in mixed-species forests. Annals of Forest
Science, 70, 287–298.
Kunstler, G., Coomes,
D.A. & Canham, C.D. (2009). Size-dependence of growth and mortality
influence the shade tolerance of trees in a lowland temperate rain
forest. Journal of Ecology, 97, 685–695.
Kurzweil, R. (2005).
The Singularity Is Near: When Humans Transcend Biology. Penguin Books,
New York.
Lafond, V.,
Lagarrigues, G., Cordonnier, T. & Courbaud, B. (2014). Uneven-aged
management options to promote forest resilience for climate change
adaptation: effects of group selection and harvesting intensity. Annals
of Forest Science, 71, 173–186.
Langan, L., Higgins,
S.I. & Scheiter, S. (2017). Climate-biomes, pedo-biomes or pyro-biomes:
which world view explains the tropical forest–savanna boundary in South
America? Journal of Biogeography, 44, 2319–2330.
Langerwisch, F.,
Václavík, T., Bloh, W. von, Vetter, T. & Thonicke, K. (2017). Combined
effects of climate and land-use change on the provision of ecosystem
services in rice agro-ecosystems. Environ. Res. Lett., 13, 015003.
Lasslop, G., Thonicke,
K. & Kloster, S. (2014). SPITFIRE within the MPI Earth system model:
Model development and evaluation. Journal of Advances in Modeling Earth
Systems, 6, 740–755.
Leathwick, J.R. &
Austin, M.P. (2001). Competitive Interactions Between Tree Species in
New Zealand’s Old-Growth Indigenous Forests. Ecology, 82, 2560–2573.
LeBauer, D.S., Wang,
D., Richter, K.T., Davidson, C.C. & Dietze, M.C. (2013). Facilitating
feedbacks between field measurements and ecosystem models. Ecological
Monographs, 83, 133–154.
Leemans, R. &
Prentice, I.C. (1989). FORSKA - a general forest succession model.
Meddelanden fraan Vaextbiologiska Institutionen.
Lehmann, S. & Huth,
A. (2015). Fast calibration of a dynamic vegetation model with minimum
observation data. Ecological Modelling, 301, 98–105.
Lehsten, V.,
Mischurow, M., Lindström, E., Lehsten, D. & Lischke, H. (2019). LPJ-GM
1.0: simulating migration efficiently in a dynamic vegetation model.
Geoscientific Model Development, 12, 893–908.
Lenihan, J.M., Daly,
C., Bachelet, D. & Neilson, R.P. (1998). Simulating broad-scale fire
severity in a Dynamic Global Vegetation Model. Northwest Science, 72,
91–103.
Levin, S.A. (1992).
The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur
Award Lecture. Ecology, 73, 1943–1967.
Lischke, H. &
Löffler, T.J. (2006). Intra-specific density dependence is required to
maintain species diversity in spatio-temporal forest simulations with
reproduction. Ecological Modelling, 198, 341–361.
Lischke, H.,
Zimmermann, N.E., Bolliger, J., Rickebusch, S. & Löffler, T.J. (2006).
TreeMig: a forest-landscape model for simulating spatio-temporal
patterns from stand to landscape scale. Ecological Modelling, Pattern
and Processes of Dynamic Mosaic Landscapes – Modelling, Simulation,
and Implications, 199, 409–420.
Liu, J. & Ashton,
P.S. (1995). Individual-based simulation models for forest succession
and management. Forest Ecology and Management, 73, 157–175.
Loreau, M., Naeem, S.,
Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., et al. (2001).
Biodiversity and Ecosystem Functioning: Current Knowledge and Future
Challenges. Science, 294, 804–808.
Lovenduski, N.S. &
Bonan, G.B. (2017). Reducing uncertainty in projections of terrestrial
carbon uptake. Environ. Res. Lett., 12, 044020.
MacArthur, R. &
Levins, R. (1967). The Limiting Similarity, Convergence, and Divergence
of Coexisting Species. The American Naturalist, 101, 377–385.
Mäkelä, A., Landsberg,
J., Ek, A.R., Burk, T.E., Ter-Mikaelian, M., Ågren, G.I., et al. (2000).
Process-based models for forest ecosystem management: current state of
the art and challenges for practical implementation. Tree Physiol, 20,
289–298.
Malhi, Y., Doughty,
C.E., Goldsmith, G.R., Metcalfe, D.B., Girardin, C.A.J., Marthews, T.R.,
et al. (2015). The linkages between photosynthesis, productivity, growth
and biomass in lowland Amazonian forests. Glob Change Biol, 21,
2283–2295.
Maréchaux, I. &
Chave, J. (2017). An individual-based forest model to jointly simulate
carbon and tree diversity in Amazonia: description and applications.
Ecol Monogr, 87, 632–664.
Maris, V., Huneman,
P., Coreau, A., Kéfi, S., Pradel, R. & Devictor, V. (2018). Prediction
in ecology: promises, obstacles and clarifications. Oikos, 127,
171–183.
Maroschek, M., Rammer,
W. & Lexer, M.J. (2015). Using a novel assessment framework to evaluate
protective functions and timber production in Austrian mountain forests
under climate change. Reg Environ Change, 15, 1543–1555.
Marthews, T.R.,
Quesada, C.A., Galbraith, D.R., Malhi, Y., Mullins, C.E., Hodnett, M.G.,
et al. (2014). High-resolution hydraulic parameter maps for surface
soils in tropical South America. Geoscientific Model Development, 7,
711.
McGill, B.J., Enquist,
B.J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology
from functional traits. Trends in Ecology & Evolution, 21, 178–185.
McMahon, S.M.,
Harrison, S.P., Armbruster, W.S., Bartlein, P.J., Beale, C.M., Edwards,
M.E., et al. (2011). Improving assessment and modelling of climate
change impacts on global terrestrial biodiversity. Trends in Ecology &
Evolution, 26, 249–259.
Medlyn, B.E., De
Kauwe, M.G., Zaehle, S., Walker, A.P., Duursma, R.A., Luus, K., et al.
(2016). Using models to guide field experiments: a priori predictions
for the CO2 response of a nutrient- and water-limited
native Eucalypt woodland. Glob Change Biol, 22, 2834–2851.
Medlyn, B.E., Duursma,
R.A. & Zeppel, M.J.B. (2011). Forest productivity under climate change:
a checklist for evaluating model studies. WIREs Clim Change, 2,
332–355.
Medlyn, B.E., Pepper,
D.A., O’Grady, A.P. & Keith, H. (2007). Linking leaf and tree water use
with an individual-tree model. Tree Physiol, 27, 1687–1699.
Medvigy, D., Wang, G.,
Zhu, Q., Riley, W.J., Trierweiler, A.M., Waring, B.G., et al. (2019).
Observed variation in soil properties can drive large variation in
modelled forest functioning and composition during tropical forest
secondary succession. New Phytologist, 0.
Meier, E.S., Jr,
T.C.E., Kienast, F., Dobbertin, M. & Zimmermann, N.E. (2011).
Co-occurrence patterns of trees along macro-climatic gradients and their
potential influence on the present and future distribution of Fagus
sylvatica L. Journal of Biogeography, 38, 371–382.
Merganičová, K.,
Merganič, J., Lehtonen, A., Vacchiano, G., Zorana, M., Ostrogović, S.,
et al. (2019). Forest carbon allocation modelling under climate change.
Tree Physiology.
Mina, M., Bugmann, H.,
Cordonnier, T., Irauschek, F., Klopcic, M., Pardos, M., et al. (2017).
Future ecosystem services from European mountain forests under climate
change. Journal of Applied Ecology, 54, 389–401.
Mohren, G.M.J.,
Kramer, K. & Sabaté, S. (Eds.). (1997). Impacts of Global Change on
Tree Physiology and Forest Ecosystems: Proceedings of the International
Conference on Impacts of Global Change on Tree Physiology and Forest
Ecosystems, held 26–29 November 1996, Wageningen, The Netherlands.
Kluwer Academic Publishers, Dordrecht.
Moorcroft, P.R.,
Hurtt, G.C. & Pacala, S.W. (2001). A method for scaling vegetation
dynamics: the ecosystem demography model (ed). Ecological Monographs,
71, 557–586.
Morales, P., Sykes,
M.T., Prentice, I.C., Smith, P., Smith, B., Bugmann, H., et al. (2005).
Comparing and evaluating process-based ecosystem model predictions of
carbon and water fluxes in major European forest biomes. Global Change
Biology, 11, 2211–2233.
Mori, A.S. (2017).
Biodiversity and ecosystem services in forests: management and
restoration founded on ecological theory. J Appl Ecol, 54, 7–11.
Morin, X., Fahse, L.,
Jactel, H., Scherer-Lorenzen, M., García-Valdés, R. & Bugmann, H.
(2018). Long-term response of forest productivity to climate change is
mostly driven by change in tree species composition. Scientific Reports,
8, 5627.
Morin, X., Fahse, L.,
de Mazancourt, C., Scherer-Lorenzen, M. & Bugmann, H. (2014). Temporal
stability in forest productivity increases with tree diversity due to
asynchrony in species dynamics. Ecol Lett, 17, 1526–1535.
Morin, X., Fahse, L.,
Scherer-Lorenzen, M. & Bugmann, H. (2011). Tree species richness
promotes productivity in temperate forests through strong
complementarity between species. Ecology Letters, 14, 1211–1219.
Morin, X. &
Lechowicz, M.J. (2008). Contemporary perspectives on the niche that can
improve models of species range shifts under climate change. Biology
Letters, 4, 573–576.
Morin, X. & Thuiller,
W. (2009). Comparing niche-and process-based models to reduce prediction
uncertainty in species range shifts under climate change. Ecology, 90,
1301–1313.
Mouquet, N., Lagadeuc,
Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., et al. (2015).
REVIEW: Predictive ecology in a changing world. J Appl Ecol, 52,
1293–1310.
Nabuurs, G.-J.,
Delacote, P., Ellison, D., Hanewinkel, M., Hetemäki, L. & Lindner, M.
(2017). By 2050 the Mitigation Effects of EU Forests Could Nearly Double
through Climate Smart Forestry. Forests, 8, 484.
Naeem, S., Bunker,
D.E., Hector, A., Loreau, M. & Perrings, C. (2009). Biodiversity,
ecosystem functioning, and human wellbeing: an ecological and economic
perspective. Oxford University Press.
Nakashizuka, T.
(2001). Species coexistence in temperate, mixed deciduous forests.
Trends in Ecology & Evolution, 16, 205–210.
Neilson, R.P.,
Pitelka, L.F., Solomon, A.M., Nathan, R., Midgley, G.F., Fragoso,
J.M.V., et al. (2005). Forecasting Regional to Global Plant Migration in
Response to Climate Change. BioScience, 55, 749–759.
Nemani, R.R., Keeling,
C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., et al.
(2003). Climate-Driven Increases in Global Terrestrial Net Primary
Production from 1982 to 1999. Science, 300, 1560–1563.
Nobis, M.P. &
Normand, S. (2014). KISSMig – a simple model for R to account for
limited migration in analyses of species distributions. Ecography, 37,
1282–1287.
Noce, S., Collalti, A.
& Santini, M. (2017). Likelihood of changes in forest species
suitability, distribution, and diversity under future climate: The case
of Southern Europe. Ecology and Evolution, 7, 9358–9375.
Norby, R.J., De Kauwe,
M.G., Domingues, T.F., Duursma, R.A., Ellsworth, D.S., Goll, D.S., et
al. (2016). Model–data synthesis for the next generation of forest
free-air CO2 enrichment (FACE) experiments. New Phytol,
209, 17–28.
van Oijen, M., Reyer,
C., Bohn, F.J., Cameron, D.R., Deckmyn, G., Flechsig, M., et al. (2013).
Bayesian calibration, comparison and averaging of six forest models,
using data from Scots pine stands across Europe. Forest Ecology and
Management, 289, 255–268.
van Oijen, M.,
Rougier, J. & Smith, R. (2005). Bayesian calibration of process-based
forest models: bridging the gap between models and data. Tree Physiol,
25, 915–927.
Overpeck, J.T., Rind,
D. & Goldberg, R. (1990). Climate-induced changes in forest disturbance
and vegetation. Nature, 343, 51–53.
Pacala, S.W., Canham,
C.D., Saponara, J., Jr., J.A.S., Kobe, R.K. & Ribbens, E. (1996).
Forest models defined by field measurements: estimation, error analysis
and dynamics. Ecological Monographs, 66, 1–43.
Pachzelt, A., Rammig,
A., Higgins, S. & Hickler, T. (2013). Coupling a physiological grazer
population model with a generalized model for vegetation dynamics.
Ecological Modelling, 263, 92–102.
Pan, Y., Birdsey,
R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., et al. (2011). A
Large and Persistent Carbon Sink in the World’s Forests. Science, 333,
988–993.
Park, J.Y.,
Muller-Landau, H.C., Lichstein, J.W., Rifai, S.W., Dandois, J.P. &
Bohlman, S.A. (2019). Quantifying Leaf Phenology of Individual Trees and
Species in a Tropical Forest Using Unmanned Aerial Vehicle (UAV) Images.
Remote Sensing, 11, 1534.
Pastor, J. & Post,
W.M. (1986). Influence of climate, soil moisture, and succession on
forest carbon and nitrogen cycles. Biogeochemistry, 2, 3–27.
Pastor, J. & Post,
W.M. (1988). Response of northern forests to CO 2 -induced climate
change. Nature, 334, 55–58.
Pausas, J.G. (1999).
Response of plant functional types to changes in the fire regime in
Mediterranean ecosystems: A simulation approach. Journal of Vegetation
Science, 10, 717–722.
Pavlick, R., Drewry,
D.T., Bohn, K., Reu, B. & Kleidon, A. (2013). The Jena
Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse
approach to representing terrestrial biogeography and biogeochemistry
based on plant functional trade-offs. Biogeosciences, 10, 4137–4177.
Pérez-Méndez, N.,
Jordano, P., García, C. & Valido, A. (2016). The signatures of
Anthropocene defaunation: cascading effects of the seed dispersal
collapse. Scientific Reports, 6, 24820.
di Porcia e Brugnera,
M., Meunier, F., Longo, M., Moorthy, S.M.K., Deurwaerder, H.D.,
Schnitzer, S.A., et al. (2019). Modeling the impact of liana infestation
on the demography and carbon cycle of tropical forests. Global Change
Biology, 0.
Porté, A. &
Bartelink, H.H. (2002). Modelling mixed forest growth: a review of
models for forest management. Ecological Modelling, 150, 141–188.
Powell, T.L.,
Galbraith, D.R., Christoffersen, B.O., Harper, A., Imbuzeiro, H.M.A.,
Rowland, L., et al. (2013). Confronting model predictions of carbon
fluxes with measurements of Amazon forests subjected to experimental
drought. New Phytologist, 200, 350–365.
Prentice, I.C.,
Bondeau, A., Cramer, W., Harrison, S.P., Hickler, T., Lucht, W., et al.
(2007). Dynamic Global Vegetation Modeling: Quantifying Terrestrial
Ecosystem Responses to Large-Scale Environmental Change. In: Terrestrial
ecosystems in a changing world, Global Change — The IGBP Series (eds.
Canadell, J.G., Pataki, D.E. & Pitelka, L.F.). Springer Berlin
Heidelberg, pp. 175–192.
Pretzsch, H., Biber,
P. & Ďurský, J. (2002). The single tree-based stand simulator SILVA:
construction, application and evaluation. Forest Ecology and Management,
National and Regional Climate Change Impact Assessments in the Forestry
Sector, 162, 3–21.
Pretzsch, H., Grote,
R., Reineking, B., Rötzer, T. & Seifert, S. (2008). Models for Forest
Ecosystem Management: A European Perspective. Ann Bot, 101, 1065–1087.
Pütz, S., Groeneveld,
J., Alves, L.F., Metzger, J.P. & Huth, A. (2011). Fragmentation drives
tropical forest fragments to early successional states: A modelling
study for Brazilian Atlantic forests. Ecological Modelling, 222,
1986–1997.
Pütz, S., Groeneveld,
J., Henle, K., Knogge, C., Martensen, A.C., Metz, M., et al. (2014).
Long-term carbon loss in fragmented Neotropical forests. Nat Commun, 5,
5037.
Quillet, A., Peng, C.
& Garneau, M. (2010). Toward dynamic global vegetation models for
simulating vegetation–climate interactions and feedbacks: recent
developments, limitations, and future challenges. Environ. Rev., 18,
333–353.
R Core Team. (2018).
R: a language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria.
Radchuk, V., Laender,
F.D., Cabral, J.S., Boulangeat, I., Crawford, M., Bohn, F., et al.
(2019). The dimensionality of stability depends on disturbance type.
Ecology Letters, 22, 674–684.
Ram, K. (2013). Git
can facilitate greater reproducibility and increased transparency in
science. Source Code for Biology and Medicine, 8, 7.
Ramage, M.H.,
Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D.U.,
et al. (2017). The wood from the trees: The use of timber in
construction. Renewable and Sustainable Energy Reviews, 68, 333–359.
Rammer, W. & Seidl,
R. (2019). A scalable model of vegetation transitions using deep neural
networks. Methods in Ecology and Evolution, 10, 879–890.
Rasche, L., Fahse, L.,
Zingg, A. & Bugmann, H. (2011). Getting a virtual forester fit for the
challenge of climatic change. Journal of Applied Ecology, 48,
1174–1186.
Reed, S.C., Yang, X.
& Thornton, P.E. (2015). Incorporating phosphorus cycling into global
modeling efforts: a worthwhile, tractable endeavor. New Phytol, 208,
324–329.
Reichstein, M., Bahn,
M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I., et al.
(2013). Climate extremes and the carbon cycle. Nature, 500, 287–295.
Reichstein, M.,
Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et
al. (2019). Deep learning and process understanding for data-driven
Earth system science. Nature, 566, 195.
Réjou-Méchain, M.,
Barbier, N., Couteron, P., Ploton, P., Vincent, G., Herold, M., et al.
(2019). Upscaling Forest Biomass from Field to Satellite Measurements:
Sources of Errors and Ways to Reduce Them. Surv Geophys, 40, 881–911.
Restrepo-Coupe, N.,
Levine, N.M., Christoffersen, B.O., Albert, L.P., Wu, J., Costa, M.H.,
et al. (2017). Do dynamic global vegetation models capture the
seasonality of carbon fluxes in the Amazon basin? A data-model
intercomparison. Glob Change Biol, 23, 191–208.
Reyer, C. (2015).
Forest Productivity Under Environmental Change—a Review of Stand-Scale
Modeling Studies. Curr Forestry Rep, 1, 53–68.
Reyer, C.P.O.,
Bugmann, H., Nabuurs, G.-J. & Hanewinkel, M. (2015). Models for
adaptive forest management. Reg Environ Change, 15, 1483–1487.
Richter, S., Kipfer,
T., Wohlgemuth, T., Calderón Guerrero, C., Ghazoul, J. & Moser, B.
(2012). Phenotypic plasticity facilitates resistance to climate change
in a highly variable environment. Oecologia, 169, 269–279.
Rödig, E., Cuntz, M.,
Heinke, J., Rammig, A. & Huth, A. (2017). Spatial heterogeneity of
biomass and forest structure of the Amazon rain forest: Linking remote
sensing, forest modelling and field inventory. Global Ecology and
Biogeography, 26, 1292–1302.
Rödig, E., Cuntz, M.,
Rammig, A., Fischer, R., Taubert, F. & Huth, A. (2018). The importance
of forest structure for carbon fluxes of the Amazon rainforest. Environ.
Res. Lett., 13, 054013.
Rogers, A., Medlyn,
B.E., Dukes, J.S., Bonan, G., von Caemmerer, S., Dietze, M.C., et al.
(2017). A roadmap for improving the representation of photosynthesis in
Earth system models. New Phytol, 213, 22–42.
Rogers, B.M., Soja,
A.J., Goulden, M.L. & Randerson, J.T. (2015). Influence of tree species
on continental differences in boreal fires and climate feedbacks. Nature
Geoscience, 8, 228–234.
Rolinski, S., Müller,
C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B.L., et al. (2018).
Modeling vegetation and carbon dynamics of managed grasslands at the
global scale with LPJmL 3.6. Geoscientific Model Development, 11,
429–451.
Roşca, S.,
Suomalainen, J., Bartholomeus, H. & Herold, M. (2018). Comparing
terrestrial laser scanning and unmanned aerial vehicle structure from
motion to assess top of canopy structure in tropical forests. Interface
Focus, 8, 20170038.
Rüger, N., Condit, R.,
Dent, D.H., DeWalt, S.J., Hubbell, S.P., Lichstein, J.W., et al. (2019).
Demographic tradeoffs predict tropical forest dynamics. bioRxiv,
808865.
Running, S.W., Nemani,
R.R., Heinsch, F.A., Zhao, M., Reeves, M. & Hashimoto, H. (2004). A
Continuous Satellite-Derived Measure of Global Terrestrial Primary
Production. BioScience, 54, 547–560.
Rykiel Jr., E.J.
(1996). Testing ecological models: the meaning of validation. Ecological
Modelling, 90, 229–244.
Saatchi, S.S., Harris,
N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., et al. (2011).
Benchmark map of forest carbon stocks in tropical regions across three
continents. PNAS, 108, 9899–9904.
Sabaté, S., Gracia,
C.A. & Sánchez, A. (2002). Likely effects of climate change on growth
of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and
Fagus sylvatica forests in the Mediterranean region. Forest Ecology and
Management, National and Regional Climate Change Impact Assessments in
the Forestry Sector, 162, 23–37.
Sakschewski, B., von
Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke, J., et al.
(2016). Resilience of Amazon forests emerges from plant trait diversity.
Nature Climate Change, 6, 1032–1036.
Sakschewski, B., von
Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., et al. (2015).
Leaf and stem economics spectra drive diversity of functional plant
traits in a dynamic global vegetation model. Glob Change Biol, 21,
2711–2725.
van der Sande, M.T.,
Poorter, L., Balvanera, P., Kooistra, L., Thonicke, K., Boit, A., et al.
(2017). The integration of empirical, remote sensing and modelling
approaches enhances insight in the role of biodiversity in climate
change mitigation by tropical forests. Current Opinion in Environmental
Sustainability, 26, 69–76.
Sato, H., Itoh, A. &
Kohyama, T. (2007). SEIB-DGVM: a new dynamic global vegetation model
using a spatially explicit individual-based approach. Ecol. Model., 200,
279–307.
Savage, M., Sawhill,
B. & Askenazi, M. (2000). Community dynamics: what happens when we
rerun the tape? Journal of Theoretical Biology, 205, 515–526.
Schaphoff, S., von
Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., et al.
(2018). LPJmL4 – a dynamic global vegetation model with managed land –
Part 1: Model description. Geoscientific Model Development, 11,
1343–1375.
Scheiter, S., Langan,
L. & Higgins, S.I. (2013). Next-generation dynamic global vegetation
models: learning from community ecology. New Phytol, 198, 957–969.
Scherer-Lorenzen, M.
(2014). The functional role of biodiversity in the context of global
change. In: Forests and Global Change (eds. Coomes, D.A., Burslem,
D.F.R.P. & Simonson, W.D.). Cambridge, UK, pp. 195–238.
Scherstjanoi, M.,
Kaplan, J.O., Poulter, B. & Lischke, H. (2014). Challenges in
developing a computationally efficient plant physiological
height-class-structured forest model. Ecological Complexity, 19,
96–110.
Schmitt, S.,
Maréchaux, I., Chave, J., Fischer, F.J., Piponiot, C., Traissac, S., et
al. (2019). Functional diversity improves tropical forest resilience:
insights from a long-term virtual experiment. Journal of Ecology.
Schnitzer, S.A. &
Carson, W.P. (2016). Would Ecology Fail the Repeatability Test?
BioScience, 66, 98–99.
Seagle, S.W. & Liang,
S.-Y. (2001). Application of a forest gap model for prediction of
browsing effects on riparian forest succession. Ecological Modelling,
144, 213–229.
Seidl, R., Albrich,
K., Thom, D. & Rammer, W. (2018). Harnessing landscape heterogeneity
for managing future disturbance risks in forest ecosystems. Journal of
Environmental Management, 209, 46–56.
Seidl, R., Fernandes,
P.M., Fonseca, T.F., Gillet, F., Jönsson, A.M., Merganičová, K., et al.
(2011). Modelling natural disturbances in forest ecosystems: a review.
Ecological Modelling, 222, 903–924.
Seidl, R., Rammer, W.
& Blennow, K. (2014a). Simulating wind disturbance impacts on forest
landscapes: Tree-level heterogeneity matters. Environmental Modelling &
Software, 51, 1–11.
Seidl, R., Rammer, W.,
Scheller, R.M. & Spies, T.A. (2012). An individual-based process model
to simulate landscape-scale forest ecosystem dynamics. Ecological
Modelling, 231, 87–100.
Seidl, R., Schelhaas,
M.-J., Rammer, W. & Verkerk, P.J. (2014b). Increasing forest
disturbances in Europe and their impact on carbon storage. Nature
Climate Change, 4, 806–810.
Seidl, R., Thom, D.,
Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., et al.
(2017). Forest disturbances under climate change. Nature Climate Change,
7, 395–402.
Serra‐Diaz, J.M.,
Keenan, T.F., Ninyerola, M., Sabaté, S., Gracia, C. & Lloret, F.
(2013). Geographical patterns of congruence and incongruence between
correlative species distribution models and a process-based
ecophysiological growth model. Journal of Biogeography, 40, 1928–1938.
Shifley, S.R., He,
H.S., Lischke, H., Wang, W.J., Jin, W., Gustafson, E.J., et al. (2017).
The past and future of modeling forest dynamics: from growth and yield
curves to forest landscape models. Landscape Ecol, 32, 1307–1325.
Shugart, H.H. (1984).
A theory of forest dynamics. Springer, New York.
Shugart, H.H., Asner,
G.P., Fischer, R., Huth, A., Knapp, N., Le Toan, T., et al. (2015).
Computer and remote-sensing infrastructure to enhance large-scale
testing of individual-based forest models. Frontiers in Ecology and the
Environment, 13, 503–511.
Shugart, H.H. &
Noble, I.R. (1981). A computer model of succession and fire response of
the high-altitude Eucalyptus forest of the Brindabella Range, Australian
Capital Territory. Australian Journal of Ecology, 6, 149–164.
Shugart, H.H., Wang,
B., Fischer, R., Ma, J., Fang, J., Yan, X., et al. (2018). Gap models
and their individual-based relatives in the assessment of the
consequences of global change. Environ. Res. Lett., 13, 033001.
Shugart, H.H.J. &
West, D.C. (1977). Development of an Appalachian deciduous forest
succession model and its application to assessment of the impact of the
chestnut blight. Journal of Environmental Management, 5, 161–179.
Sitch, S.,
Huntingford, C., Gedney, N., Levy, P.E., Lomas, M., Piao, S.L., et al.
(2008). Evaluation of the terrestrial carbon cycle, future plant
geography and climate-carbon cycle feedbacks using five Dynamic Global
Vegetation Models (DGVMs). Global Change Biology, 14, 2015–2039.
Sitch, S., Smith, B.,
Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., et al. (2003).
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon
cycling in the LPJ dynamic global vegetation model. Glob. Change Biol.,
9, 161–185.
Smith, B., Prentice,
I.C. & Sykes, M.T. (2001). Representation of vegetation dynamics in the
modelling of terrestrial ecosystems: comparing two contrasting
approaches within European climate space. Global Ecology and
Biogeography, 10, 621–637.
Smith, B., Wårlind,
D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., et al. (2014).
Implications of incorporating N cycling and N limitations on primary
production in an individual-based dynamic vegetation model.
Biogeosciences, 11, 2027–2054.
Smith, N.G. & Dukes,
J.S. (2013). Plant respiration and photosynthesis in global-scale
models: incorporating acclimation to temperature and
CO2. Glob Change Biol, 19, 45–63.
Smith, T. & Huston,
M. (1990). A theory of the spatial and temporal dynamics of plant
communities. In: Progress in theoretical vegetation science, Advances in
vegetation science (eds. Grabherr, G., Mucina, L., Dale, M.B. & Ter
Braak, C.J.F.). Springer Netherlands, Dordrecht, pp. 49–69.
Snell, R.S. (2014).
Simulating long-distance seed dispersal in a dynamic vegetation model.
Global Ecology and Biogeography, 23, 89–98.
Snell, R.S. &
Cowling, S.A. (2015). Consideration of dispersal processes and northern
refugia can improve our understanding of past plant migration rates in
North America. Journal of Biogeography, 42, 1677–1688.
Snell, R.S., Huth, A.,
Nabel, J.E.M.S., Bocedi, G., Travis, J.M.J., Gravel, D., et al. (2014).
Using dynamic vegetation models to simulate plant range shifts.
Ecography, 37, 1184–1197.
Soberón, J. (2007).
Grinnellian and Eltonian niches and geographic distributions of species.
Ecology Letters, 10, 1115–1123.
Sofaer, H.R.,
Jarnevich, C.S. & Flather, C.H. (2018). Misleading prioritizations from
modelling range shifts under climate change. Global Ecology and
Biogeography, 27, 658–666.
Solomon, A.M. (1986).
Transient response of forests to CO2-induced climate
change: simulation modeling experiments in eastern North America.
Oecologia, 68, 567–579.
Stephenson, N.L.
(1990). Climatic Control of Vegetation Distribution: The Role of the
Water Balance. The American Naturalist, 135, 649–670.
Sutherland, W.J.,
Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Benton, T.,
Cameron, D.D., et al. (2013). Identification of 100 fundamental
ecological questions. Journal of Ecology, 101, 58–67.
Svenning, J.-C. &
Skov, F. (2004). Limited filling of the potential range in European tree
species. Ecology Letters, 7, 565–573.
Takoudjou, S.M.,
Ploton, P., Sonké, B., Hackenberg, J., Griffon, S., Coligny, F. de, et
al. (2018). Using terrestrial laser scanning data to estimate large
tropical trees biomass and calibrate allometric models: A comparison
with traditional destructive approach. Methods in Ecology and Evolution,
9, 905–916.
Taubert, F., Frank, K.
& Huth, A. (2012). A review of grassland models in the biofuel context.
Ecological Modelling, 7th European Conference on Ecological Modelling
(ECEM), 245, 84–93.
Thom, D., Rammer, W.,
Dirnböck, T., Müller, J., Kobler, J., Katzensteiner, K., et al. (2017).
The impacts of climate change and disturbance on spatio-temporal
trajectories of biodiversity in a temperate forest landscape. Journal of
Applied Ecology, 54, 28–38.
Thonicke, K.,
Venevsky, S., Sitch, S. & Cramer, W. (2001). The role of fire
disturbance for global vegetation dynamics: coupling fire into a Dynamic
Global Vegetation Model. Global Ecology and Biogeography, 10, 661–677.
Thuiller, W. (2003).
BIOMOD – optimizing predictions of species distributions and projecting
potential future shifts under global change. Global Change Biology, 9,
1353–1362.
Thuiller, W. (2004).
Patterns and uncertainties of species’ range shifts under climate
change. Global Change Biology, 10, 2020–2027.
Thuiller, W., Albert,
C., Araújo, M.B., Berry, P.M., Cabeza, M., Guisan, A., et al. (2008).
Predicting global change impacts on plant species’ distributions: Future
challenges. Perspectives in Plant Ecology, Evolution and Systematics,
Space matters - Novel developments in plant ecology through spatial
modelling, 9, 137–152.
Thuiller, W.,
Richardson, D.M., Pyšek, P., Midgley, G.F., Hughes, G.O. & Rouget, M.
(2005). Niche-based modelling as a tool for predicting the risk of alien
plant invasions at a global scale. Global Change Biology, 11,
2234–2250.
Thuiller, W., Vayreda,
J., Pino, J., Sabate, S., Lavorel, S. & Gracia, C. (2003). Large-scale
environmental correlates of forest tree distributions in Catalonia (NE
Spain). Global Ecology and Biogeography, 12, 313–325.
United Nations.
(2014). New York Declaration on Forests. United Nations, New York.
Urban, D.L., Bonan,
G.B., Smith, T.M. & Shugart, H.H. (1991). Spatial applications of gap
models. Forest Ecology and Management, Modelling Forest Succession in
Europe, 42, 95–110.
Urban, M.C., Bocedi,
G., Hendry, A.P., Mihoub, J.-B., Pe’er, G., Singer, A., et al. (2016).
Improving the forecast for biodiversity under climate change. Science,
353, aad8466.
Vacchiano, G., Ascoli,
D., Berzaghi, F., Lucas-Borja, M.E., Caignard, T., Collalti, A., et al.
(2018). Reproducing reproduction: How to simulate mast seeding in forest
models. Ecological Modelling, 376, 40–53.
Václavík, T., Kupfer,
J.A. & Meentemeyer, R.K. (2012). Accounting for multi-scale spatial
autocorrelation improves performance of invasive species distribution
modelling (iSDM). Journal of Biogeography, 39, 42–55.
Václavík, T. &
Meentemeyer, R.K. (2019). Equilibrium or not? Modelling potential
distribution of invasive species in different stages of invasion.
Diversity and Distributions, 73–83.
Van Bodegom, P.M.,
Douma, J.C., Witte, J.P.M., Ordoñez, J.C., Bartholomeus, R.P. & Aerts,
R. (2012). Going beyond limitations of plant functional types when
predicting global ecosystem–atmosphere fluxes: exploring the merits of
traits-based approaches. Global Ecology and Biogeography, 21, 625–636.
Van Nes, E.H. &
Scheffer, M. (2005). A strategy to improve the contribution of complex
simulation models to ecological theory. Ecological Modelling, 185,
153–164.
Veloz, S.D., Williams,
J.W., Blois, J.L., He, F., Otto‐Bliesner, B. & Liu, Z. (2012).
No-analog climates and shifting realized niches during the late
quaternary: implications for 21st-century predictions by species
distribution models. Global Change Biology, 18, 1698–1713.
Verbeeck, H. &
Kearsley, E. (2016). The importance of including lianas in global
vegetation models. PNAS, 113, E4–E4.
Verheijen, L.M.,
Aerts, R., Brovkin, V., Cavender-Bares, J., Cornelissen, J.H.C., Kattge,
J., et al. (2015). Inclusion of ecologically based trait variation in
plant functional types reduces the projected land carbon sink in an
earth system model. Glob Change Biol, 21, 3074–3086.
Vira, B., Wildburger,
C. & Mansourian, S. (Eds.). (2015). Forests, trees and landscapes for
food security and nutrition a global assessment report. International
Union of Forest Research Organizations (IUFRO), Vienna.
Wäldchen, J., Rzanny,
M., Seeland, M. & Mäder, P. (2018). Automated plant species
identification—Trends and future directions. PLOS Computational
Biology, 14, e1005993.
Wang, B., Shuman, J.,
Shugart, H.H. & Lerdau, M.T. (2018). Biodiversity matters in feedbacks
between climate change and air quality: a study using an
individual-based model. Ecological Applications, 28, 1223–1231.
Wang, Y.P., Law, R.M.
& Pak, B. (2010). A global model of carbon, nitrogen and phosphorus
cycles for the terrestrial biosphere. Biogeosciences, 7, 2261–2282.
Watt, A.S. (1947).
Pattern and Process in the Plant Community. Journal of Ecology, 35,
1–22.
Woodward, F.I. &
Cramer, W. (1996). Plant functional types and climatic change:
Introduction. Journal of Vegetation Science, 7, 306–308.
Wright, J.S. (2002).
Plant diversity in tropical forests: a review of mechanisms of species
coexistence. Oecologia, 130, 1–14.
Xiaodong, Y. &
Shugart, H.H. (2005). FAREAST: a forest gap model to simulate dynamics
and patterns of eastern Eurasian forests. Journal of Biogeography, 32,
1641–1658.
Yousefpour, R.,
Augustynczik, A.L.D., Reyer, C.P.O., Lasch-Born, P., Suckow, F. &
Hanewinkel, M. (2018). Realizing Mitigation Efficiency of European
Commercial Forests by Climate Smart Forestry. Scientific Reports, 8,
345.
Yue, C., Ciais, P.,
Cadule, P., Thonicke, K., Archibald, S., Poulter, B., et al. (2014).
Modelling the role of fires in the terrestrial carbon balance by
incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part
1: simulating historical global burned area and fire regimes.
Geoscientific Model Development, 7, 2747–2767.
Yue, C., Ciais, P.,
Cadule, P., Thonicke, K. & van Leeuwen, T.T. (2015). Modelling the role
of fires in the terrestrial carbon balance by incorporating SPITFIRE
into the global vegetation model ORCHIDEE – Part 2: Carbon emissions
and the role of fires in the global carbon balance. Geoscientific Model
Development, 8, 1321–1338.
Zaehle, S., Sitch, S.,
Prentice, I.C., Liski, J., Cramer, W., Erhard, M., et al. (2006). The
importance of age-related decline in forest NPP for modelling regional
carbon balances. Ecological Applications, 16, 1555–1574.
Zolkos, S.G., Goetz,
S.J. & Dubayah, R. (2013). A meta-analysis of terrestrial aboveground
biomass estimation using lidar remote sensing. Remote Sensing of
Environment, 128, 289–298.
Zuidema, P.A., Baker,
P.J., Groenendijk, P., Schippers, P., van der Sleen, P., Vlam, M., et
al. (2013). Tropical forests and global change: filling knowledge gaps.
Trends in Plant Science, 18, 413–419.}