References

{\rtf 
Affouard, A., Goëau, H., Bonnet, P., Lombardo, J.-C. & Joly, A. (2017). Pl@ntNet app in the era of deep learning. In: ICLR 2017 - Workshop Track - 5th International Conference on Learning Representations. Toulon, France, pp. 1–6.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.
Alo, C.A. & Wang, G. (2008). Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. Journal of Geophysical Research: Biogeosciences, 113.
Ammer, C., Fichtner, A., Fischer, A., Gossner, M.M., Meyer, P., Seidl, R., et al. (2018). Key ecological research questions for Central European forests. Basic and Applied Ecology, 32, 3–25.
Andela, N., Morton, D.C., Giglio, L., Chen, Y., Werf, G.R. van der, Kasibhatla, P.S., et al. (2017). A human-driven decline in global burned area. Science, 356, 1356–1362.
Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F., Early, R., et al. (2019). Standards for distribution models in biodiversity assessments. Science Advances, 5, eaat4858.
Araújo, M.B. & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42–47.
Araújo, M.B. & Pearson, R.G. (2005). Equilibrium of species’ distributions with climate. Ecography, 28, 693–695.
Bahn, V. & McGill, B.J. (2007). Can niche-based distribution models outperform spatial interpolation? Global Ecology and Biogeography, 16, 733–742.
Ball, J.T., Woodrow, I.E. & Berry, J.A. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research (ed. Biggins, J.). Springer Netherlands, pp. 221–224.
Barry, S. & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology, 43, 413–423.
Bartlett, M.K., Scoffoni, C. & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15, 393–405.
Bellassen, V., Le Maire, G., Dhôte, J.F., Ciais, P. & Viovy, N. (2010). Modelling forest management within a global vegetation model—Part 1: model structure and general behaviour. Ecological Modelling, 221, 2458–2474.
Bertrand, R., Perez, V. & Gégout, J.-C. (2012). Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Glob Change Biol, 18, 2648–2660.
Berzaghi, F., Longo, M., Ciais, P., Blake, S., Bretagnolle, F., Vieira, S., et al. (2019). Carbon stocks in central African forests enhanced by elephant disturbance. Nature Geoscience, 1.
Berzaghi, F., Verbeeck, H., Nielsen, M.R., Doughty, C.E., Bretagnolle, F., Marchetti, M., et al. (2018). Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles – the potential of vegetation models. Ecography, 41, 1934–1954.
von Bloh, W., Rost, S., Gerten, D. & Lucht, W. (2010). Efficient parallelization of a dynamic global vegetation model with river routing. Environmental Modelling & Software, 25, 685–690.
Bloh, W. von, Schaphoff, S., Müller, C., Rolinski, S., Waha, K. & Zaehle, S. (2018). Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geoscientific Model Development, 11, 2789–2812.
Bohn, F.J., Frank, K. & Huth, A. (2014). Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecological Modelling, 278, 9–17.
Bohn, F.J. & Huth, A. (2017). The importance of forest structure to biodiversity–productivity relationships. Royal Society Open Science, 4, 160521.
Bohn, F.J., May, F. & Huth, A. (2018). Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests. Biogeosciences, 15, 1795–1813.
Bonan, G.B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320, 1444–1449.
Bonan, G.B., Williams, M., Fisher, R.A. & Oleson, K.W. (2014). Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geosci. Model Dev., 7, 2193–2222.
Bondeau, A., Smith, P.C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., et al. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13, 679–706.
Booth, T.H., Nix, H.A., Busby, J.R. & Hutchinson, M.F. (2014). bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions, 20, 1–9.
Bossel, H. & Krieger, H. (1991). Simulation model of natural tropical forest dynamics. Ecological Modelling, 59, 37–71.
Botella, C., Joly, A., Bonnet, P., Monestiez, P. & Munoz, F. (2018). Species distribution modeling based on the automated identification of citizen observations. Applications in Plant Sciences, 6, e1029.
Botkin, D.B., Janak, J.F. & Wallis, J.R. (1972). Some Ecological Consequences of a Computer Model of Forest Growth. Journal of Ecology, 60, 849–872.
Boysen, L.R., Lucht, W., Gerten, D. & Heck, V. (2016). Impacts devalue the potential of large-scale terrestrial CO2 removal through biomass plantations. Environ. Res. Lett., 11, 095010.
Brede, B., Lau, A., Bartholomeus, H., Kooistra, L., Brede, B., Lau, A., et al. (2017). Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. Sensors, 17, 2371.
Brienen, R.J.W., Phillips, O.L., Feldpausch, T.R., Gloor, E., Baker, T.R., Lloyd, J., et al. (2015). Long-term decline of the Amazon carbon sink. Nature, 519, 344–348.
Broennimann, O., Treier, U.A., Müller‐Schärer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709.
Brovkin, V., van Bodegom, P.M., Kleinen, T., Wirth, C., Cornwell, W., Cornelissen, J.H.C., et al. (2012). Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences, 9, 565–576.
Bugmann, H. (2001). A review of forest gap models. Climatic Change, 51, 259–305.
Bugmann, H. (2014). Forests in a greenhouse atmosphere: predicting the unpredictable? In: Forests and Global Change (eds. Coomes, D.A., Burslem, D.F.R.P. & Simonson, W.D.). Cambridge, UK, pp. 195–238.
Bugmann, H. & Bigler, C. (2011). Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Oecologia, 165, 533–544.
Bugmann, H. & Fischlin, A. (1996). Simulating forest dynamics in a complex topography using gridded climatic data. Climatic Change, 34, 201–211.
Bugmann, H. & Pfister, C. (2000). Impacts of interannual climate variability on past and future forest composition. Reg Environ Change, 1, 112–125.
Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Brůna, J., Cailleret, M., et al. (2019). Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere, 10, e02616.
Bugmann, H.K.M. (1996). A Simplified Forest Model to Study Species Composition Along Climate Gradients. Ecology, 77, 2055–2074.
Bugmann, H.K.M., Yan, X., Sykes, M.T., Martin, P., Lindner, M., Desanker, P.V., et al. (1996). A comparison of forest gap models: Model structure and behaviour. Climatic Change, 34, 289–313.
Butchart, S.H.M., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J.P.W., Almond, R.E.A., et al. (2010). Global biodiversity: indicators of recent declines. Science, 328, 1164–1168.
Bykova, O., Chuine, I., Morin, X. & Higgins, S.I. (2012). Temperature dependence of the reproduction niche and its relevance for plant species distributions. J. Biogeogr., 39, 2191–2200.
Chauvet, M., Kunstler, G., Roy, J. & Morin, X. (2017). Using a forest dynamics model to link community assembly processes and traits structure. Functional Ecology, 31, 1452–1461.
Chave, J. (1999). Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecological Modelling, 124, 233–254.
Chave, J. (2013). The problem of pattern and scale in ecology: what have we learned in 20 years? Ecol Lett, 16, 4–16.
Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., et al. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol, 20, 3177–3190.
Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrêne, E., et al. (2012). Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecology Letters, 15, 533–544.
Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752–755.
Chuine, I. & Beaubien, E.G. (2001). Phenology is a major determinant of tree species range. Ecology Letters, 4, 500–510.
Clements, F.E. (1916). Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institution of Washington, Washington, D.C.
Collalti, A., Marconi, S., Ibrom, A., Trotta, C., Anav, A., D’Andrea, E., et al. (2016). Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites. Geoscientific Model Development, 9, 479–504.
Collalti, A. & Prentice, I.C. (2019). Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiol, 39, 1473–1483.
Collalti, A., Thornton, P.E., Cescatti, A., Rita, A., Borghetti, M., Nolè, A., et al. (2019a). The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. Ecological Applications, 29, e01837.
Collalti, A., Tjoelker, M.G., Hoch, G., Mäkelä, A., Guidolotti, G., Heskel, M., et al. (2019b). Plant respiration: Controlled by photosynthesis or biomass? Global Change Biology, 0.
Collalti, A., Trotta, C., Keenan, T.F., Ibrom, A., Bond‐Lamberty, B., Grote, R., et al. (2018). Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate. Journal of Advances in Modeling Earth Systems, 10, 2427–2452.
Collatz, G.J., Ball, J.T., Grivet, C. & Berry, J.A. (1991). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107–136.
Courbaud, B., Goreaud, F., Dreyfus, Ph. & Bonnet, F.R. (2001). Evaluating thinning strategies using a tree distance dependent growth model: some examples based on the CAPSIS software “uneven-aged spruce forests” module. Forest Ecology and Management, Structure of Mountain Forests-Assessment, Impacts, Managements, Modelling, 145, 15–28.
Cox, P.M., Betts, R.A., Collins, M., Harris, P.P., Huntingford, C. & Jones, C.D. (2004). Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137–156.
Craine, J.M., Engelbrecht, B.M.J., Lusk, C.H., McDowell, N.G. & Poorter, H. (2012). Resource limitation, tolerance, and the future of ecological plant classification. Frontiers in Plant Science, 3.
Cramer, W., Bondeau, A., Woodward, F.I., Prentice, I.C., Betts, R.A., Brovkin, V., et al. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol., 7, 357–373.
Dantas de Paula, M., Groeneveld, J. & Huth, A. (2015). Tropical forest degradation and recovery in fragmented landscapes — Simulating changes in tree community, forest hydrology and carbon balance. Global Ecology and Conservation, 3, 664–677.
Dantas de Paula, M., Taubert, F., Martins, V.F. & Huth, A. (2018). Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos, 127, 1526–1538.
Davis, M.B. & Zabinski, C. (1992). Changes in geographical range from greenhouse warming: effetcs on biodiversity in forests. In: Global Warming and Biological Diversity (eds. Peters, R.L. & Lovejoy, T.E.). Yale, pp. 297–309.
Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. & Mace, G.M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science, 332, 53–58.
De Kauwe, M.G., Medlyn, B.E., Zaehle, S., Walker, A.P., Dietze, M.C., Wang, Y.-P., et al. (2014). Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol, 203, 883–899.
De Kauwe, M.G., Zhou, S.-X., Medlyn, B.E., Pitman, A.J., Wang, Y.-P., Duursma, R.A., et al. (2015). Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences, 12, 7503–7518.
DeAngelis, D.L. & Mooij, W.M. (2005). Individual-Based Modeling of Ecological and Evolutionary Processes. Annual Review of Ecology, Evolution, and Systematics, 36, 147–168.
Delbart, N., Beaubien, E., Kergoat, L. & Le Toan, T. (2015). Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network. Remote Sensing of Environment, 160, 273–280.
Didion, M., Kupferschmid, A.D., Zingg, A., Fahse, L. & Bugmann, H. (2009). Gaining local accuracy while not losing generality — extending the range of gap model applications. Can. J. For. Res., 39, 1092–1107.
Dietrich, J.P., Bodirsky, B.L., Humpenöder, F., Weindl, I., Stevanović, M., Karstens, K., et al. (2019). MAgPIE 4 – a modular open-source framework for modeling global land systems. Geoscientific Model Development, 12, 1299–1317.
Dietze, M.C., Serbin, S.P., Davidson, C., Desai, A.R., Feng, X., Kelly, R., et al. (2014). A quantitative assessment of a terrestrial biosphere model’s data needs across North American biomes. J. Geophys. Res. Biogeosci., 119, 2013JG002392.
Disney, M. (2018). Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. New Phytologist, 0.
Donohue, I., Hillebrand, H., Montoya, J.M., Petchey, O.L., Pimm, S.L., Fowler, M.S., et al. (2016). Navigating the complexity of ecological stability. Ecology Letters, 19, 1172–1185.
Donohue, I., Petchey, O.L., Montoya, J.M., Jackson, A.L., McNally, L., Viana, M., et al. (2013). On the dimensionality of ecological stability. Ecology Letters, 16, 421–429.
Dormann, C.F., Bobrowski, M., Dehling, D.M., Harris, D.J., Hartig, F., Lischke, H., et al. (2018). Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography, 27, 1004–1016.
Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., et al. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30, 609–628.
Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., et al. (2012). Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography, 39, 2119–2131.
Dufour-Kowalski, S., Courbaud, B., Dreyfus, P., Meredieu, C. & Coligny, F. de. (2012). Capsis: an open software framework and community for forest growth modelling. Annals of Forest Science, 69, 221–233.
Dunford, R., Harrison, P.A. & Rounsevell, M.D.A. (2015). Exploring scenario and model uncertainty in cross-sectoral integrated assessment approaches to climate change impacts. Climatic Change, 132, 417–432.
Duputié, A., Rutschmann, A., Ronce, O. & Chuine, I. (2015). Phenological plasticity will not help all species adapt to climate change. Glob Change Biol, 21, 3062–3073.
Duursma, R.A., Medlyn, B.E. & others. (2012). MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO₂]$\times$ drought interactions.
Elith, J. & Leathwick, J.R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.
Elkin, C., Gutiérrez, A.G., Leuzinger, S., Manusch, C., Temperli, C., Rasche, L., et al. (2013). A 2 °C warmer world is not safe for ecosystem services in the European Alps. Global Change Biology, 19, 1827–1840.
Estes, L., Elsen, P.R., Treuer, T., Ahmed, L., Caylor, K., Chang, J., et al. (2018). The spatial and temporal domains of modern ecology. Nature Ecology & Evolution, 1.
Evans, T.G., Diamond, S.E. & Kelly, M.W. (2015). Mechanistic species distribution modelling as a link between physiology and conservation. Conserv Physiol, 3.
Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., et al. (2002). Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, FLUXNET 2000 Synthesis, 113, 53–74.
Falster, D.S., Brännström, \AAke, Westoby, M. & Dieckmann, U. (2017). Multitrait successional forest dynamics enable diverse competitive coexistence. Proceedings of the National Academy of Sciences, 114, E2719–E2728.
Fedrigo, M., Stewart, S.B., Roxburgh, S.H., Kasel, S., Bennett, L.T., Vickers, H., et al. (2019). Predictive Ecosystem Mapping of South-Eastern Australian Temperate Forests Using Lidar-Derived Structural Profiles and Species Distribution Models. Remote Sensing, 11, 93.
Felton, A.J. & Smith, M.D. (2017). Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Phil. Trans. R. Soc. B, 372, 20160142.
Fernandes, R.F., Scherrer, D. & Guisan, A. (2018). How much should one sample to accurately predict the distribution of species assemblages? A virtual community approach. Ecological Informatics, 48, 125–134.
Ferraz, A., Saatchi, S., Mallet, C. & Meyer, V. (2016). Lidar detection of individual tree size in tropical forests. Remote Sensing of Environment, 183, 318–333.
Ferrier, S. (2002). Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol, 51, 331–363.
Ferrier, S. & Guisan, A. (2006). Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393–404.
Field, C.B., Barros, V., Stocker, T.F. & Dahe, Q. (Eds.). (2012). Managing the risks of extreme events and disasters to advance climate change adaption. Cambridge University Press, New York, N.Y.
Fischer, F.J., Maréchaux, I. & Chave, J. (2019). Improving plant allometry by fusing forest models and remote sensing. New Phytologist, 223, 1159–1165.
Fischer, R. (2013). Modellierung der Dynamik afrikanischer Tropenwälder. Analyse des Einflusses von Störungen auf tropische Wälder mit Hilfe des Waldmodells FORMIND. Dissertation. Universität Osnabrück, Germany.
Fischer, R., Armstrong, A., Shugart, H.H. & Huth, A. (2014). Simulating the impacts of reduced rainfall on carbon stocks and net ecosystem exchange in a tropical forest. Environmental Modelling & Software, 52, 200–206.
Fischer, R., Bohn, F., Dantas de Paula, M., Dislich, C., Groeneveld, J., Gutiérrez, A.G., et al. (2016). Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecological Modelling, Next generation ecological modelling, concepts, and theory: structural realism, emergence, and predictions, 326, 124–133.
Fischer, R., Ensslin, A., Rutten, G., Fischer, M., Costa, D.S., Kleyer, M., et al. (2015). Simulating Carbon Stocks and Fluxes of an African Tropical Montane Forest with an Individual-Based Forest Model. PLOS ONE, 10, e0123300.
Fischer, R., Rödig, E. & Huth, A. (2018). Consequences of a Reduced Number of Plant Functional Types for the Simulation of Forest Productivity. Forests, 9, 460.
Fisher, R.A., Koven, C.D., Anderegg, W.R.L., Christoffersen, B.O., Dietze, M.C., Farrior, C.E., et al. (2018). Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 24, 35–54.
Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L. & Meir, P. (2006). Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant, Cell & Environment, 29, 151–165.
Fontes, L., Bontemps, J.D., Bugmann, H., Oijen, M. van, Gracia, C., Kramer, K., et al. (2010). Models for supporting forest management in a changing environment. Forest Systems, 19, 8–29.
Forkel, M., Andela, N., Harrison, S.P., Lasslop, G., Marle, M. van, Chuvieco, E., et al. (2019). Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 16, 57–76.
Fourcade, Y., Besnard, A.G. & Secondi, J. (2018). Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography, 27, 245–256.
Franklin, J. (2010). Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions, 16, 321–330.
Frieler, K., Lange, S., Piontek, F., Reyer, C., Schewe, J., Warszawski, L., et al. (2017). Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development.
Friend, A.D., Lucht, W., Rademacher, T.T., Keribin, R., Betts, R., Cadule, P., et al. (2014). Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl. Acad. Sci. U. S. A., 111, 3280–3285.
Fyllas, N.M., Bentley, L.P., Shenkin, A., Asner, G.P., Atkin, O.K., Díaz, S., et al. (2017). Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol Lett, 20, 730–740.
Galbraith, D., Levy, P.E., Sitch, S., Huntingford, C., Cox, P., Williams, M., et al. (2010). Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 187, 647–665.
García-Valdés, R., Bugmann, H. & Morin, X. (2018). Climate change-driven extinctions of tree species affect forest functioning more than random extinctions. Diversity and Distributions, 24, 906–918.
Giraud, C., Calenge, C., Coron, C. & Julliard, R. (2016). Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics, 72, 649–658.
Gleason, H.A. (1926). The Individualistic Concept of the Plant Association. Bulletin of the Torrey Botanical Club, 53, 7–26.
Goetz, S. & Dubayah, R. (2011). Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Management, 2, 231–244.
Goll, D.S., Vuichard, N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., et al. (2017). A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geoscientific Model Development, 10, 3745–3770.
Good, P., Jones, C., Lowe, J., Betts, R. & Gedney, N. (2013). Comparing tropical forest projections from two generations of Hadley Centre Earth System models, HadGEM2-ES and HadCM3LC. J. Clim., 26, 495–511.
Grisebach, A. (1872). Die Vegetation der Erde nach ihrer klimatischen Anordnung: Ein Abriss der vergleichenden Geographie der Pflanzen. Bd. I und II. Verlag von Wilhelm Engelmann, Leipzig.
Groeneveld, J., Alves, L.F., Bernacci, L.C., Catharino, E.L.M., Knogge, C., Metzger, J.P., et al. (2009). The impact of fragmentation and density regulation on forest succession in the Atlantic rain forest. Ecological Modelling, 220, 2450–2459.
Guisan, A. & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.
Guisan, A., Thuiller, W. & Zimmermann, N.E. (2017). Habitat Suitability and Distribution Models: with Applications in R. Cambridge University Press.
Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis‐Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., et al. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424–1435.
Haas, E., Klatt, S., Fröhlich, A., Kraft, P., Werner, C., Kiese, R., et al. (2013). LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landscape Ecol, 28, 615–636.
Hantson, S., Arneth, A., Harrison, S.P., Kelley, D.I., Prentice, I.C., Rabin, S.S., et al. (2016). The status and challenge of global fire modelling. Biogeosciences, 13, 3359–3375.
Hart, S.P., Schreiber, S.J. & Levine, J.M. (2016). How variation between individuals affects species coexistence. Ecology Letters, 19, 825–838.
Hartig, F., Calabrese, J.M., Reineking, B., Wiegand, T. & Huth, A. (2011). Statistical inference for stochastic simulation models – theory and application. Ecology Letters, 14, 816–827.
Hartig, F., Dislich, C., Wiegand, T. & Huth, A. (2014). Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model. Biogeosciences, 11, 1261–1272.
Hartmann, H., Adams, H.D., Hammond, W.M., Hoch, G., Landhäusser, S.M., Wiley, E., et al. (2018a). Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests. Environmental and Experimental Botany.
Hartmann, H., Moura, C.F., Anderegg, W.R.L., Ruehr, N.K., Salmon, Y., Allen, C.D., et al. (2018b). Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 218, 15–28.
Hickler, T., Prentice, I.C., Smith, B., Sykes, M.T. & Zaehle, S. (2006). Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Global Ecology and Biogeography, 15, 567–577.
Hickler, T., Vohland, K., Feehan, J., Miller, P.A., Smith, B., Costa, L., et al. (2012). Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography, 21, 50–63.
Hiltner, U., Huth, A., Bräuning, A., Hérault, B. & Fischer, R. (2018). Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions. Forest Ecology and Management, 430, 517–525.
Holzwarth, F., Kahl, A., Bauhus, J. & Wirth, C. (2013). Many ways to die – partitioning tree mortality dynamics in a near-natural mixed deciduous forest. Journal of Ecology, 101, 220–230.
Hubbell, S.P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton.
Hülsmann, L., Bugmann, H., Cailleret, M. & Brang, P. (2018). How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecological Applications, 28, 522–540.
Humboldt, A. von. (1849). Aspects of nature, in different lands and different climates; with scientific elucidations. Lea and Blanchard.
Humpenöder, F., Popp, A., Bodirsky, B.L., Weindl, I., Biewald, A., Lotze-Campen, H., et al. (2018). Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett., 13, 024011.
Huntingford, C., Atkin, O.K., Torre, A.M. la, Mercado, L.M., Heskel, M.A., Harper, A.B., et al. (2017). Implications of improved representations of plant respiration in a changing climate. Nature Communications, 8, 1602.
Huston, M., DeAngelis, D. & Post, W. (1988). New Computer Models Unify Ecological Theory. BioScience, 38, 682–691.
Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.
Huth, A. & Ditzer, T. (2001). Long-term impacts of logging in a tropical rain forest — a simulation study. Forest Ecology and Management, 142, 33–51.
Huth, A., Drechsler, M. & Köhler, P. (2005). Using multicriteria decision analysis and a forest growth model to assess impacts of tree harvesting in Dipterocarp lowland rain forests. Forest Ecology and Management, Decision Support in Multi Purpose Forestry, 207, 215–232.
IPBES. (2016). Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and  ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem, Bonn, Germany.
Iversen, C.M., McCormack, M.L., Powell, A.S., Blackwood, C.B., Freschet, G.T., Kattge, J., et al. (2017). A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol, 215, 15–26.
Iverson, L.R., Schwartz, M.W. & Prasad, A.M. (2004). Potential colonization of newly available tree-species habitat under climate change: An analysis for five eastern US species. Landscape Ecol, 19, 787–799.
Ives, A.R. & Carpenter, S.R. (2007). Stability and diversity of ecosystems. Science, 317, 58–62.
Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M. & Lucht, W. (2015). Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrology and Earth System Sciences, 19, 3073–3091.
Jarvis, P.G. (Ed.). (1998). European Forests and Global Change: The Likely Impacts of Rising CO2 and Temperature. Cambridge University Press, Cambridge, U.K. ; New York.
Jenkins, C.N., Pimm, S.L. & Joppa, L.N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. PNAS, 110, E2602–E2610.
Joetzjer, E., Maignan, F., Chave, J., Goll, D., Poulter, B., Barichivich, J., et al. (2018). The importance of tree demography and root water uptake for modelling the carbon and water cycles of Amazonia. Biogeosciences Discussions, 1–33.
Joetzjer, E., Pillet, M., Ciais, P., Barbier, N., Chave, J., Schlund, M., et al. (2017). Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass. Geophysical Research Letters, 44, 6823–6832.
Johnson, M.O., Galbraith, D., Gloor, M., De Deurwaerder, H., Guimberteau, M., Rammig, A., et al. (2016). Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob Change Biol, 22, 3996–4013.
Journé, V., Barnagaud, J.-Y., Bernard, C., Crochet, P.-A. & Morin, X. (2019). Correlative climatic niche models predict real and virtual species distributions equally well. Ecology, e02912.
Jucker, T., Bongalov, B., Burslem, D.F.R.P., Nilus, R., Dalponte, M., Lewis, S.L., et al. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21, 989–1000.
Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F., et al. (2017). Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob Change Biol, 23, 177–190.
Jung, M., Reichstein, M. & Bondeau, A. (2009). Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001–2013.
Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., et al. (2002). An overview of MODIS Land data processing and product status. Remote Sensing of Environment, The Moderate Resolution Imaging Spectroradiometer (MODIS): a new generation of Land Surface Monitoring, 83, 3–15.
Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., et al. (2011). TRY – a global database of plant traits. Global Change Biology, 17, 2905–2935.
Keane, R.E., Austin, M., Field, C., Huth, A., Lexer, M.J., Peters, D., et al. (2001). Tree Mortality in Gap Models: Application to Climate Change. Climatic Change, 51, 509–540.
Kearney, M. & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12, 334–350.
Keenan, T., Niinemets, Ü., Sabate, S., Gracia, C. & Peñuelas, J. (2009a). Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmospheric Chemistry and Physics, 9, 4053–4076.
Keenan, T., Niinemets, Ü., Sabate, S., Gracia, C. & Peñuelas, J. (2009b). Seasonality of monoterpene emission potentials in Quercus ilex and Pinus pinea: Implications for regional VOC emissions modeling. Journal of Geophysical Research: Atmospheres, 114.
Keenan, T., Sabaté, S. & Gracia, C. (2008). Forest Eco-physiological Models and Carbon Sequestration. In: Managing Forest Ecosystems: The Challenge of Climate Change, Managing Forest Ecosystems (eds. Bravo, F., Jandl, R., LeMay, V. & von Gadow, K.). Springer Netherlands, Dordrecht, pp. 83–102.
Keenan, T., Serra, J.M., Lloret, F., Ninyerola, M. & Sabate, S. (2011). Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Global Change Biology, 17, 565–579.
Kercher, J.R. & Axelrod, M.C. (1984). Analysis of silva: A model for forecasting the effects of SO2 pollution and fire on western coniferous forests. Ecological Modelling, Modelling Primary Production, 23, 165–184.
Kienast, F. (1987). FORECE: A forest succession model for southern Central Europe ( No. ORNL/TM-10575). Oak Ridge National Lab., TN (USA).
Kleidon, A. & Mooney, H.A. (2000). A global distribution of biodiversity inferred from climatic constraints: results from a process-based modelling study. Global Change Biology, 6, 507–523.
Knapp, N., Fischer, R. & Huth, A. (2018). Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sensing of Environment, 205, 199–209.
Köhler, P. & Huth, A. (1998). The effects of tree species grouping in tropical rainforest modelling: simulations with the individual-based model Formind. Ecological Modelling, 109, 301–321.
Kramer, K., Leinonen, I., Bartelink, H.H., Berbigier, P., Borghetti, M., Bernhofer, C., et al. (2002). Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology, 8, 213–230.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., et al. (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19, GB1015.
Kunstler, G., Allen, R.B., Coomes, D.A., Canham, C.D. & Wright, E.F. (2013). Sustainable management, earthquake disturbances, and transient dynamics: modelling timber harvesting impacts in mixed-species forests. Annals of Forest Science, 70, 287–298.
Kunstler, G., Coomes, D.A. & Canham, C.D. (2009). Size-dependence of growth and mortality influence the shade tolerance of trees in a lowland temperate rain forest. Journal of Ecology, 97, 685–695.
Kurzweil, R. (2005). The Singularity Is Near: When Humans Transcend Biology. Penguin Books, New York.
Lafond, V., Lagarrigues, G., Cordonnier, T. & Courbaud, B. (2014). Uneven-aged management options to promote forest resilience for climate change adaptation: effects of group selection and harvesting intensity. Annals of Forest Science, 71, 173–186.
Langan, L., Higgins, S.I. & Scheiter, S. (2017). Climate-biomes, pedo-biomes or pyro-biomes: which world view explains the tropical forest–savanna boundary in South America? Journal of Biogeography, 44, 2319–2330.
Langerwisch, F., Václavík, T., Bloh, W. von, Vetter, T. & Thonicke, K. (2017). Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems. Environ. Res. Lett., 13, 015003.
Lasslop, G., Thonicke, K. & Kloster, S. (2014). SPITFIRE within the MPI Earth system model: Model development and evaluation. Journal of Advances in Modeling Earth Systems, 6, 740–755.
Leathwick, J.R. & Austin, M.P. (2001). Competitive Interactions Between Tree Species in New Zealand’s Old-Growth Indigenous Forests. Ecology, 82, 2560–2573.
LeBauer, D.S., Wang, D., Richter, K.T., Davidson, C.C. & Dietze, M.C. (2013). Facilitating feedbacks between field measurements and ecosystem models. Ecological Monographs, 83, 133–154.
Leemans, R. & Prentice, I.C. (1989). FORSKA - a general forest succession model. Meddelanden fraan Vaextbiologiska Institutionen.
Lehmann, S. & Huth, A. (2015). Fast calibration of a dynamic vegetation model with minimum observation data. Ecological Modelling, 301, 98–105.
Lehsten, V., Mischurow, M., Lindström, E., Lehsten, D. & Lischke, H. (2019). LPJ-GM 1.0: simulating migration efficiently in a dynamic vegetation model. Geoscientific Model Development, 12, 893–908.
Lenihan, J.M., Daly, C., Bachelet, D. & Neilson, R.P. (1998). Simulating broad-scale fire severity in a Dynamic Global Vegetation Model. Northwest Science, 72, 91–103.
Levin, S.A. (1992). The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology, 73, 1943–1967.
Lischke, H. & Löffler, T.J. (2006). Intra-specific density dependence is required to maintain species diversity in spatio-temporal forest simulations with reproduction. Ecological Modelling, 198, 341–361.
Lischke, H., Zimmermann, N.E., Bolliger, J., Rickebusch, S. & Löffler, T.J. (2006). TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecological Modelling, Pattern and Processes of Dynamic Mosaic Landscapes – Modelling, Simulation, and Implications, 199, 409–420.
Liu, J. & Ashton, P.S. (1995). Individual-based simulation models for forest succession and management. Forest Ecology and Management, 73, 157–175.
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., et al. (2001). Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science, 294, 804–808.
Lovenduski, N.S. & Bonan, G.B. (2017). Reducing uncertainty in projections of terrestrial carbon uptake. Environ. Res. Lett., 12, 044020.
MacArthur, R. & Levins, R. (1967). The Limiting Similarity, Convergence, and Divergence of Coexisting Species. The American Naturalist, 101, 377–385.
Mäkelä, A., Landsberg, J., Ek, A.R., Burk, T.E., Ter-Mikaelian, M., Ågren, G.I., et al. (2000). Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol, 20, 289–298.
Malhi, Y., Doughty, C.E., Goldsmith, G.R., Metcalfe, D.B., Girardin, C.A.J., Marthews, T.R., et al. (2015). The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Glob Change Biol, 21, 2283–2295.
Maréchaux, I. & Chave, J. (2017). An individual-based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. Ecol Monogr, 87, 632–664.
Maris, V., Huneman, P., Coreau, A., Kéfi, S., Pradel, R. & Devictor, V. (2018). Prediction in ecology: promises, obstacles and clarifications. Oikos, 127, 171–183.
Maroschek, M., Rammer, W. & Lexer, M.J. (2015). Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg Environ Change, 15, 1543–1555.
Marthews, T.R., Quesada, C.A., Galbraith, D.R., Malhi, Y., Mullins, C.E., Hodnett, M.G., et al. (2014). High-resolution hydraulic parameter maps for surface soils in tropical South America. Geoscientific Model Development, 7, 711.
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178–185.
McMahon, S.M., Harrison, S.P., Armbruster, W.S., Bartlein, P.J., Beale, C.M., Edwards, M.E., et al. (2011). Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecology & Evolution, 26, 249–259.
Medlyn, B.E., De Kauwe, M.G., Zaehle, S., Walker, A.P., Duursma, R.A., Luus, K., et al. (2016). Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland. Glob Change Biol, 22, 2834–2851.
Medlyn, B.E., Duursma, R.A. & Zeppel, M.J.B. (2011). Forest productivity under climate change: a checklist for evaluating model studies. WIREs Clim Change, 2, 332–355.
Medlyn, B.E., Pepper, D.A., O’Grady, A.P. & Keith, H. (2007). Linking leaf and tree water use with an individual-tree model. Tree Physiol, 27, 1687–1699.
Medvigy, D., Wang, G., Zhu, Q., Riley, W.J., Trierweiler, A.M., Waring, B.G., et al. (2019). Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytologist, 0.
Meier, E.S., Jr, T.C.E., Kienast, F., Dobbertin, M. & Zimmermann, N.E. (2011). Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. Journal of Biogeography, 38, 371–382.
Merganičová, K., Merganič, J., Lehtonen, A., Vacchiano, G., Zorana, M., Ostrogović, S., et al. (2019). Forest carbon allocation modelling under climate change. Tree Physiology.
Mina, M., Bugmann, H., Cordonnier, T., Irauschek, F., Klopcic, M., Pardos, M., et al. (2017). Future ecosystem services from European mountain forests under climate change. Journal of Applied Ecology, 54, 389–401.
Mohren, G.M.J., Kramer, K. & Sabaté, S. (Eds.). (1997). Impacts of Global Change on Tree Physiology and Forest Ecosystems: Proceedings of the International Conference on Impacts of Global Change on Tree Physiology and Forest Ecosystems, held 26–29 November 1996, Wageningen, The Netherlands. Kluwer Academic Publishers, Dordrecht.
Moorcroft, P.R., Hurtt, G.C. & Pacala, S.W. (2001). A method for scaling vegetation dynamics: the ecosystem demography model (ed). Ecological Monographs, 71, 557–586.
Morales, P., Sykes, M.T., Prentice, I.C., Smith, P., Smith, B., Bugmann, H., et al. (2005). Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11, 2211–2233.
Mori, A.S. (2017). Biodiversity and ecosystem services in forests: management and restoration founded on ecological theory. J Appl Ecol, 54, 7–11.
Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R. & Bugmann, H. (2018). Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 8, 5627.
Morin, X., Fahse, L., de Mazancourt, C., Scherer-Lorenzen, M. & Bugmann, H. (2014). Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett, 17, 1526–1535.
Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. (2011). Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters, 14, 1211–1219.
Morin, X. & Lechowicz, M.J. (2008). Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biology Letters, 4, 573–576.
Morin, X. & Thuiller, W. (2009). Comparing niche-and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90, 1301–1313.
Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., et al. (2015). REVIEW: Predictive ecology in a changing world. J Appl Ecol, 52, 1293–1310.
Nabuurs, G.-J., Delacote, P., Ellison, D., Hanewinkel, M., Hetemäki, L. & Lindner, M. (2017). By 2050 the Mitigation Effects of EU Forests Could Nearly Double through Climate Smart Forestry. Forests, 8, 484.
Naeem, S., Bunker, D.E., Hector, A., Loreau, M. & Perrings, C. (2009). Biodiversity, ecosystem functioning, and human wellbeing: an ecological and economic perspective. Oxford University Press.
Nakashizuka, T. (2001). Species coexistence in temperate, mixed deciduous forests. Trends in Ecology & Evolution, 16, 205–210.
Neilson, R.P., Pitelka, L.F., Solomon, A.M., Nathan, R., Midgley, G.F., Fragoso, J.M.V., et al. (2005). Forecasting Regional to Global Plant Migration in Response to Climate Change. BioScience, 55, 749–759.
Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., et al. (2003). Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 300, 1560–1563.
Nobis, M.P. & Normand, S. (2014). KISSMig – a simple model for R to account for limited migration in analyses of species distributions. Ecography, 37, 1282–1287.
Noce, S., Collalti, A. & Santini, M. (2017). Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecology and Evolution, 7, 9358–9375.
Norby, R.J., De Kauwe, M.G., Domingues, T.F., Duursma, R.A., Ellsworth, D.S., Goll, D.S., et al. (2016). Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol, 209, 17–28.
van Oijen, M., Reyer, C., Bohn, F.J., Cameron, D.R., Deckmyn, G., Flechsig, M., et al. (2013). Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. Forest Ecology and Management, 289, 255–268.
van Oijen, M., Rougier, J. & Smith, R. (2005). Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol, 25, 915–927.
Overpeck, J.T., Rind, D. & Goldberg, R. (1990). Climate-induced changes in forest disturbance and vegetation. Nature, 343, 51–53.
Pacala, S.W., Canham, C.D., Saponara, J., Jr., J.A.S., Kobe, R.K. & Ribbens, E. (1996). Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs, 66, 1–43.
Pachzelt, A., Rammig, A., Higgins, S. & Hickler, T. (2013). Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecological Modelling, 263, 92–102.
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., et al. (2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 333, 988–993.
Park, J.Y., Muller-Landau, H.C., Lichstein, J.W., Rifai, S.W., Dandois, J.P. & Bohlman, S.A. (2019). Quantifying Leaf Phenology of Individual Trees and Species in a Tropical Forest Using Unmanned Aerial Vehicle (UAV) Images. Remote Sensing, 11, 1534.
Pastor, J. & Post, W.M. (1986). Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry, 2, 3–27.
Pastor, J. & Post, W.M. (1988). Response of northern forests to CO 2 -induced climate change. Nature, 334, 55–58.
Pausas, J.G. (1999). Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: A simulation approach. Journal of Vegetation Science, 10, 717–722.
Pavlick, R., Drewry, D.T., Bohn, K., Reu, B. & Kleidon, A. (2013). The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM):  a diverse approach to representing terrestrial biogeography and   biogeochemistry based on plant functional trade-offs. Biogeosciences, 10, 4137–4177.
Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. (2016). The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Scientific Reports, 6, 24820.
di Porcia e Brugnera, M., Meunier, F., Longo, M., Moorthy, S.M.K., Deurwaerder, H.D., Schnitzer, S.A., et al. (2019). Modeling the impact of liana infestation on the demography and carbon cycle of tropical forests. Global Change Biology, 0.
Porté, A. & Bartelink, H.H. (2002). Modelling mixed forest growth: a review of models for forest management. Ecological Modelling, 150, 141–188.
Powell, T.L., Galbraith, D.R., Christoffersen, B.O., Harper, A., Imbuzeiro, H.M.A., Rowland, L., et al. (2013). Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytologist, 200, 350–365.
Prentice, I.C., Bondeau, A., Cramer, W., Harrison, S.P., Hickler, T., Lucht, W., et al. (2007). Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change. In: Terrestrial ecosystems in a changing world, Global Change — The IGBP Series (eds. Canadell, J.G., Pataki, D.E. & Pitelka, L.F.). Springer Berlin Heidelberg, pp. 175–192.
Pretzsch, H., Biber, P. & Ďurský, J. (2002). The single tree-based stand simulator SILVA: construction, application and evaluation. Forest Ecology and Management, National and Regional Climate Change Impact Assessments in the Forestry Sector, 162, 3–21.
Pretzsch, H., Grote, R., Reineking, B., Rötzer, T. & Seifert, S. (2008). Models for Forest Ecosystem Management: A European Perspective. Ann Bot, 101, 1065–1087.
Pütz, S., Groeneveld, J., Alves, L.F., Metzger, J.P. & Huth, A. (2011). Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests. Ecological Modelling, 222, 1986–1997.
Pütz, S., Groeneveld, J., Henle, K., Knogge, C., Martensen, A.C., Metz, M., et al. (2014). Long-term carbon loss in fragmented Neotropical forests. Nat Commun, 5, 5037.
Quillet, A., Peng, C. & Garneau, M. (2010). Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: recent developments, limitations, and future challenges. Environ. Rev., 18, 333–353.
R Core Team. (2018). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Radchuk, V., Laender, F.D., Cabral, J.S., Boulangeat, I., Crawford, M., Bohn, F., et al. (2019). The dimensionality of stability depends on disturbance type. Ecology Letters, 22, 674–684.
Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in science. Source Code for Biology and Medicine, 8, 7.
Ramage, M.H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D.U., et al. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333–359.
Rammer, W. & Seidl, R. (2019). A scalable model of vegetation transitions using deep neural networks. Methods in Ecology and Evolution, 10, 879–890.
Rasche, L., Fahse, L., Zingg, A. & Bugmann, H. (2011). Getting a virtual forester fit for the challenge of climatic change. Journal of Applied Ecology, 48, 1174–1186.
Reed, S.C., Yang, X. & Thornton, P.E. (2015). Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytol, 208, 324–329.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I., et al. (2013). Climate extremes and the carbon cycle. Nature, 500, 287–295.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195.
Réjou-Méchain, M., Barbier, N., Couteron, P., Ploton, P., Vincent, G., Herold, M., et al. (2019). Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surv Geophys, 40, 881–911.
Restrepo-Coupe, N., Levine, N.M., Christoffersen, B.O., Albert, L.P., Wu, J., Costa, M.H., et al. (2017). Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Glob Change Biol, 23, 191–208.
Reyer, C. (2015). Forest Productivity Under Environmental Change—a Review of Stand-Scale Modeling Studies. Curr Forestry Rep, 1, 53–68.
Reyer, C.P.O., Bugmann, H., Nabuurs, G.-J. & Hanewinkel, M. (2015). Models for adaptive forest management. Reg Environ Change, 15, 1483–1487.
Richter, S., Kipfer, T., Wohlgemuth, T., Calderón Guerrero, C., Ghazoul, J. & Moser, B. (2012). Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia, 169, 269–279.
Rödig, E., Cuntz, M., Heinke, J., Rammig, A. & Huth, A. (2017). Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Global Ecology and Biogeography, 26, 1292–1302.
Rödig, E., Cuntz, M., Rammig, A., Fischer, R., Taubert, F. & Huth, A. (2018). The importance of forest structure for carbon fluxes of the Amazon rainforest. Environ. Res. Lett., 13, 054013.
Rogers, A., Medlyn, B.E., Dukes, J.S., Bonan, G., von Caemmerer, S., Dietze, M.C., et al. (2017). A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol, 213, 22–42.
Rogers, B.M., Soja, A.J., Goulden, M.L. & Randerson, J.T. (2015). Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 8, 228–234.
Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B.L., et al. (2018). Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 11, 429–451.
Roşca, S., Suomalainen, J., Bartholomeus, H. & Herold, M. (2018). Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests. Interface Focus, 8, 20170038.
Rüger, N., Condit, R., Dent, D.H., DeWalt, S.J., Hubbell, S.P., Lichstein, J.W., et al. (2019). Demographic tradeoffs predict tropical forest dynamics. bioRxiv, 808865.
Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M., Reeves, M. & Hashimoto, H. (2004). A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. BioScience, 54, 547–560.
Rykiel Jr., E.J. (1996). Testing ecological models: the meaning of validation. Ecological Modelling, 90, 229–244.
Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., et al. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS, 108, 9899–9904.
Sabaté, S., Gracia, C.A. & Sánchez, A. (2002). Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology and Management, National and Regional Climate Change Impact Assessments in the Forestry Sector, 162, 23–37.
Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke, J., et al. (2016). Resilience of Amazon forests emerges from plant trait diversity. Nature Climate Change, 6, 1032–1036.
Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., et al. (2015). Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Change Biol, 21, 2711–2725.
van der Sande, M.T., Poorter, L., Balvanera, P., Kooistra, L., Thonicke, K., Boit, A., et al. (2017). The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests. Current Opinion in Environmental Sustainability, 26, 69–76.
Sato, H., Itoh, A. & Kohyama, T. (2007). SEIB-DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol. Model., 200, 279–307.
Savage, M., Sawhill, B. & Askenazi, M. (2000). Community dynamics: what happens when we rerun the tape? Journal of Theoretical Biology, 205, 515–526.
Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., et al. (2018). LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description. Geoscientific Model Development, 11, 1343–1375.
Scheiter, S., Langan, L. & Higgins, S.I. (2013). Next-generation dynamic global vegetation models: learning from community ecology. New Phytol, 198, 957–969.
Scherer-Lorenzen, M. (2014). The functional role of biodiversity in the context of global change. In: Forests and Global Change (eds. Coomes, D.A., Burslem, D.F.R.P. & Simonson, W.D.). Cambridge, UK, pp. 195–238.
Scherstjanoi, M., Kaplan, J.O., Poulter, B. & Lischke, H. (2014). Challenges in developing a computationally efficient plant physiological height-class-structured forest model. Ecological Complexity, 19, 96–110.
Schmitt, S., Maréchaux, I., Chave, J., Fischer, F.J., Piponiot, C., Traissac, S., et al. (2019). Functional diversity improves tropical forest resilience: insights from a long-term virtual experiment. Journal of Ecology.
Schnitzer, S.A. & Carson, W.P. (2016). Would Ecology Fail the Repeatability Test? BioScience, 66, 98–99.
Seagle, S.W. & Liang, S.-Y. (2001). Application of a forest gap model for prediction of browsing effects on riparian forest succession. Ecological Modelling, 144, 213–229.
Seidl, R., Albrich, K., Thom, D. & Rammer, W. (2018). Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. Journal of Environmental Management, 209, 46–56.
Seidl, R., Fernandes, P.M., Fonseca, T.F., Gillet, F., Jönsson, A.M., Merganičová, K., et al. (2011). Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling, 222, 903–924.
Seidl, R., Rammer, W. & Blennow, K. (2014a). Simulating wind disturbance impacts on forest landscapes: Tree-level heterogeneity matters. Environmental Modelling & Software, 51, 1–11.
Seidl, R., Rammer, W., Scheller, R.M. & Spies, T.A. (2012). An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling, 231, 87–100.
Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P.J. (2014b). Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4, 806–810.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., et al. (2017). Forest disturbances under climate change. Nature Climate Change, 7, 395–402.
Serra‐Diaz, J.M., Keenan, T.F., Ninyerola, M., Sabaté, S., Gracia, C. & Lloret, F. (2013). Geographical patterns of congruence and incongruence between correlative species distribution models and a process-based ecophysiological growth model. Journal of Biogeography, 40, 1928–1938.
Shifley, S.R., He, H.S., Lischke, H., Wang, W.J., Jin, W., Gustafson, E.J., et al. (2017). The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models. Landscape Ecol, 32, 1307–1325.
Shugart, H.H. (1984). A theory of forest dynamics. Springer, New York.
Shugart, H.H., Asner, G.P., Fischer, R., Huth, A., Knapp, N., Le Toan, T., et al. (2015). Computer and remote-sensing infrastructure to enhance large-scale testing of individual-based forest models. Frontiers in Ecology and the Environment, 13, 503–511.
Shugart, H.H. & Noble, I.R. (1981). A computer model of succession and fire response of the high-altitude Eucalyptus forest of the Brindabella Range, Australian Capital Territory. Australian Journal of Ecology, 6, 149–164.
Shugart, H.H., Wang, B., Fischer, R., Ma, J., Fang, J., Yan, X., et al. (2018). Gap models and their individual-based relatives in the assessment of the consequences of global change. Environ. Res. Lett., 13, 033001.
Shugart, H.H.J. & West, D.C. (1977). Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. Journal of Environmental Management, 5, 161–179.
Sitch, S., Huntingford, C., Gedney, N., Levy, P.E., Lomas, M., Piao, S.L., et al. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015–2039.
Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol., 9, 161–185.
Smith, B., Prentice, I.C. & Sykes, M.T. (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography, 10, 621–637.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., et al. (2014). Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences, 11, 2027–2054.
Smith, N.G. & Dukes, J.S. (2013). Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Change Biol, 19, 45–63.
Smith, T. & Huston, M. (1990). A theory of the spatial and temporal dynamics of plant communities. In: Progress in theoretical vegetation science, Advances in vegetation science (eds. Grabherr, G., Mucina, L., Dale, M.B. & Ter Braak, C.J.F.). Springer Netherlands, Dordrecht, pp. 49–69.
Snell, R.S. (2014). Simulating long-distance seed dispersal in a dynamic vegetation model. Global Ecology and Biogeography, 23, 89–98.
Snell, R.S. & Cowling, S.A. (2015). Consideration of dispersal processes and northern refugia can improve our understanding of past plant migration rates in North America. Journal of Biogeography, 42, 1677–1688.
Snell, R.S., Huth, A., Nabel, J.E.M.S., Bocedi, G., Travis, J.M.J., Gravel, D., et al. (2014). Using dynamic vegetation models to simulate plant range shifts. Ecography, 37, 1184–1197.
Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115–1123.
Sofaer, H.R., Jarnevich, C.S. & Flather, C.H. (2018). Misleading prioritizations from modelling range shifts under climate change. Global Ecology and Biogeography, 27, 658–666.
Solomon, A.M. (1986). Transient response of forests to CO2-induced climate change: simulation modeling experiments in eastern North America. Oecologia, 68, 567–579.
Stephenson, N.L. (1990). Climatic Control of Vegetation Distribution: The Role of the Water Balance. The American Naturalist, 135, 649–670.
Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Benton, T., Cameron, D.D., et al. (2013). Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58–67.
Svenning, J.-C. & Skov, F. (2004). Limited filling of the potential range in European tree species. Ecology Letters, 7, 565–573.
Takoudjou, S.M., Ploton, P., Sonké, B., Hackenberg, J., Griffon, S., Coligny, F. de, et al. (2018). Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods in Ecology and Evolution, 9, 905–916.
Taubert, F., Frank, K. & Huth, A. (2012). A review of grassland models in the biofuel context. Ecological Modelling, 7th European Conference on Ecological Modelling (ECEM), 245, 84–93.
Thom, D., Rammer, W., Dirnböck, T., Müller, J., Kobler, J., Katzensteiner, K., et al. (2017). The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. Journal of Applied Ecology, 54, 28–38.
Thonicke, K., Venevsky, S., Sitch, S. & Cramer, W. (2001). The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography, 10, 661–677.
Thuiller, W. (2003). BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9, 1353–1362.
Thuiller, W. (2004). Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology, 10, 2020–2027.
Thuiller, W., Albert, C., Araújo, M.B., Berry, P.M., Cabeza, M., Guisan, A., et al. (2008). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, Space matters - Novel developments in plant ecology through spatial modelling, 9, 137–152.
Thuiller, W., Richardson, D.M., Pyšek, P., Midgley, G.F., Hughes, G.O. & Rouget, M. (2005). Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11, 2234–2250.
Thuiller, W., Vayreda, J., Pino, J., Sabate, S., Lavorel, S. & Gracia, C. (2003). Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology and Biogeography, 12, 313–325.
United Nations. (2014). New York Declaration on Forests. United Nations, New York.
Urban, D.L., Bonan, G.B., Smith, T.M. & Shugart, H.H. (1991). Spatial applications of gap models. Forest Ecology and Management, Modelling Forest Succession in Europe, 42, 95–110.
Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.-B., Pe’er, G., Singer, A., et al. (2016). Improving the forecast for biodiversity under climate change. Science, 353, aad8466.
Vacchiano, G., Ascoli, D., Berzaghi, F., Lucas-Borja, M.E., Caignard, T., Collalti, A., et al. (2018). Reproducing reproduction: How to simulate mast seeding in forest models. Ecological Modelling, 376, 40–53.
Václavík, T., Kupfer, J.A. & Meentemeyer, R.K. (2012). Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). Journal of Biogeography, 39, 42–55.
Václavík, T. & Meentemeyer, R.K. (2019). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 73–83.
Van Bodegom, P.M., Douma, J.C., Witte, J.P.M., Ordoñez, J.C., Bartholomeus, R.P. & Aerts, R. (2012). Going beyond limitations of plant functional types when predicting global ecosystem–atmosphere fluxes: exploring the merits of traits-based approaches. Global Ecology and Biogeography, 21, 625–636.
Van Nes, E.H. & Scheffer, M. (2005). A strategy to improve the contribution of complex simulation models to ecological theory. Ecological Modelling, 185, 153–164.
Veloz, S.D., Williams, J.W., Blois, J.L., He, F., Otto‐Bliesner, B. & Liu, Z. (2012). No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Global Change Biology, 18, 1698–1713.
Verbeeck, H. & Kearsley, E. (2016). The importance of including lianas in global vegetation models. PNAS, 113, E4–E4.
Verheijen, L.M., Aerts, R., Brovkin, V., Cavender-Bares, J., Cornelissen, J.H.C., Kattge, J., et al. (2015). Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Glob Change Biol, 21, 3074–3086.
Vira, B., Wildburger, C. & Mansourian, S. (Eds.). (2015). Forests, trees and landscapes for food security and nutrition a global assessment report. International Union of Forest Research Organizations (IUFRO), Vienna.
Wäldchen, J., Rzanny, M., Seeland, M. & Mäder, P. (2018). Automated plant species identification—Trends and future directions. PLOS Computational Biology, 14, e1005993.
Wang, B., Shuman, J., Shugart, H.H. & Lerdau, M.T. (2018). Biodiversity matters in feedbacks between climate change and air quality: a study using an individual-based model. Ecological Applications, 28, 1223–1231.
Wang, Y.P., Law, R.M. & Pak, B. (2010). A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7, 2261–2282.
Watt, A.S. (1947). Pattern and Process in the Plant Community. Journal of Ecology, 35, 1–22.
Woodward, F.I. & Cramer, W. (1996). Plant functional types and climatic change: Introduction. Journal of Vegetation Science, 7, 306–308.
Wright, J.S. (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1–14.
Xiaodong, Y. & Shugart, H.H. (2005). FAREAST: a forest gap model to simulate dynamics and patterns of eastern Eurasian forests. Journal of Biogeography, 32, 1641–1658.
Yousefpour, R., Augustynczik, A.L.D., Reyer, C.P.O., Lasch-Born, P., Suckow, F. & Hanewinkel, M. (2018). Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry. Scientific Reports, 8, 345.
Yue, C., Ciais, P., Cadule, P., Thonicke, K., Archibald, S., Poulter, B., et al. (2014). Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: simulating historical global burned area and fire regimes. Geoscientific Model Development, 7, 2747–2767.
Yue, C., Ciais, P., Cadule, P., Thonicke, K. & van Leeuwen, T.T. (2015). Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance. Geoscientific Model Development, 8, 1321–1338.
Zaehle, S., Sitch, S., Prentice, I.C., Liski, J., Cramer, W., Erhard, M., et al. (2006). The importance of age-related decline in forest NPP for modelling regional carbon balances. Ecological Applications, 16, 1555–1574.
Zolkos, S.G., Goetz, S.J. & Dubayah, R. (2013). A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128, 289–298.
Zuidema, P.A., Baker, P.J., Groenendijk, P., Schippers, P., van der Sleen, P., Vlam, M., et al. (2013). Tropical forests and global change: filling knowledge gaps. Trends in Plant Science, 18, 413–419.}