
Runoff data series prediction based on Complete Ensemble

Empirical Mode Decomposition with Adaptive Noise and

Radial Basis Function Neural Network extension

Abstract

This  study  investigated  the  influence  of  data  extension  on  the  decomposition  and  prediction

accuracy of runoff data series. To this end, an original data series was constructed using annual runoff

data from a hydrological station in China (Tang Naihai) for the period 1956–2013, and radial basis

function  neural  network  (RBFNN)  extension  was  applied  to  the  original  data  series.  Complete

ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was then applied to both

data series, and their decomposition and prediction results were compared. The decomposition results

indicate that the end effect significantly lowers the accuracy of low–middle frequency components.

Nevertheless, the end effect could be effectively suppressed and decomposition error could be reduced

by applying RBFNN extension. At the end points,  the extension data series could more accurately

reflect the real fluctuation characteristics of components and subsequent variation trends. Regarding

component  prediction,  the  prediction  results  followed  the  variation  trend  of  the  components

themselves, with a rather large gap in the prediction results of low-frequency components between the

two  groups  of  data  series.  The  final  prediction  results  obtained  from  the  reconstruction  of  the

component  prediction results  suggest  that  the extension sequence has  a  clearly superior  prediction

accuracy than the original  data series.  Hence, when using the CEEMDAN method to process non-

stationary hydrological data, multi-time-scale information of the data series can be obtained through

reasonable extension after decomposition of the original data series. The acquired information provides

evidence for the analysis and prediction of the evolution law of hydrological elements.

Keywords: Runoff forecasting; complete ensemble empirical mode decomposition (CEEMD); end

effect; radial basis function neural network (RBFNN); data extension; data-driven model; combination

forecast; autoregressive integrated moving average (ARIMA)
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1. Introduction

Runoff modeling plays an important role in hydrological studies, with wide applications extending

from water supply to disaster management. The variation of runoff has multi-time scale characteristics

which  are  of  use  for  runoff  modeling building.  To determine the internal  law of  the  evolution of

hydrological  data  series  and  predict  the  evolution  process  of  regional  hydrological  elements, the

fluctuation state and trend of each time scale of runoff data series need to be analyzed. However, under

the joint influence of natural and social systems, runoff data series often show complex non-stationary

and  nonlinear  characteristics,  complicating  the  multi-time  scale  analysis  and  prediction  of  runoff

sequences.

  A conventional  method for  processing non-stationary and non-linear  series  is  empirical  mode

decomposition (EMD) (Huang et  al.,  1998,  1999).  However,  EMD has limited applications in  the

presence of perturbations and has the disadvantages of mode splitting and mode mixing (Huang and

Wu,  2008;  Sang  et  al.,  2014).  These  shortcomings  can  be  overcome  by  the  complete  ensemble

empirical mode decomposition with adaptive noise (CEEMDAN) method (Torres et al., 2011, 2014),

which can also improve decomposition precision and more clearly distinguish between different scales

of change patterns in complex data (Marusiak & Pekar, 2014; Zhang et al., 2017). Thus, CEEMDAN

has high potential in the processing of nonlinear data series. This method has already been applied in

multi-time scale analysis and prediction of hydrological systems (Adarsh et al., 2015; Liu et al., 2018;

Zhang et al., 2019, Norani et al., 2014; Di et al., 2014; Zhang et al., 2016; Prasad et al., 2018; Wen et

al.,  2019).  However,  the CEEMDAN method is still  based on EMD decomposition; the end effect

problem in the EMD algorithm (Huang et al., 1999; Deng et al., 2001) tends to lead to the distortion of

decomposition results, which is a key factor limiting decomposition accuracy. Moreover, many studies

(Liu et  al.,  2018; Adarsh et  al.,  2015; Prasad et  al.,  2018; Wen et  al.,  2019) have directly applied

CEEMDAN to original hydrological data series without considering the end effect. Therefore, their

decomposition may be inaccurate and their analysis and prediction results may not reflect the actual

situation.

    Thus far, the end effect has primarily been studied in the context of the EMD method, with little

focus on the CEEMDAN method. Among various extension-based methods that  can solve the end

effect of EMD (Zhao et al., 2001, Shu et al., 2006, Zhang et al., 2003, Deng et al., 2001; Hu et al.,
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2007), the  radial basis function neural network (RBFNN) extension technique is highly suitable for

hydrological data as it can achieve high performance for predicting nonlinear and non-stationary data

series   (Alizadeh et al., 2017; Elanayar and Shin, 1994; Taormina et al., 2016). 

  The approach of decomposition, prediction, and reconstruction has widely been applied in the

prediction of hydrological time series (Norani et al., 2014; Di et al., 2014; Zhang et al., 2016; Prasad et

al., 2018; Wen et al., 2019). Previous studies investigated prediction using decomposed sequences and

proposed that the prediction can be improved by selecting a prediction mode of the corresponding

model according to the characteristics of different components. 

    In this study, we explored the potential of RBFNN extension to solve the end effect. To ensure the

rationality  and  accuracy  of  component  prediction,  RBFNN  prediction  was  applied  to  the  strong

nonlinear component obtained by CEEMDAN decomposition and autoregressive integrated moving

average (ARIMA) prediction was applied to the more stable component. CEEMDAN was applied to

both the original  and RBFNN series,  and the results were compared to verify the effectiveness of

RBFNN extension.

2. Method

2.1 CEEMDAN method 

The CEEMDAN method can be used to extract relatively stable intrinsic mode functions (IMFs)

and trends (Res) from original data to clearly demonstrates the fluctuation characteristics of different

time scales, facilitating convenient analysis and prediction of complex data series.

The CEEMDAN algorithm is described as follows (Torres et al., 2011, 2014): 

Let x denote data series to be decomposed, Ek ( ⋅) denote the k -order modal operators generated

by EMD, and  M (⋅) denote the local mean operator to generate the data series to be decomposed.

Where  
E1 ( x )=x−M (x) .

 Let  
w(i)denote  Gaussian  white  noise  with  mean  0,  and  variance  1;

x(i)=x+w(i ), ⟨ ⋅ ⟩
 is the operator for calculating the average value. 

ε 0
 denotes the inverse of the ideal

SNR  for  the  first  added  noise  and  the  original  signal
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β0=ε0 std (x)/std (E1(w
(i )
)) , βk=ε0 std (rk ) ,k ≥1

. 

(1) Use EMD to calculate 
x(i)=x+β0 E1(w

(i )
)
(i.e. 
x=1

) to obtain the first residual value: 

r1=¿                 (1) 

(2) In the first stage (
k=1

), calculate the first order modal ~
d1=x−r1

. 

(3) Let the average value of the local mean
r1+β1E2(w

( i)
)
 be the estimated value of the second

residual value, then define the second order mode as follows: 

~
d2=r1−r2=r1−⟨M (r1+β1E2(w

( i)
))⟩

          (2) 

(4) For k=3 ,⋯, K , calculate the k th residual value 

rk=⟨M (rk−1+βk−1Ek (w
(i)
))⟩

             (3) 

(5) Calculate thek  order mode

~
dk=rk−1−rk=r k−1−⟨M (rk−1+βk−1E k(w

(i)
))⟩

        (4) 

(6) Return to step 4 to calculate the next k . 

Repeat steps (4) to (6) until the obtained residual satisfies one of the following conditions, and the

calculation can be terminated: IMF conditions met; the number of local extremum points is less than 3;

no further decomposition can be done by EMD. 

After reconstruction by CEEMDAN, the final residual satisfies the following equation: 

rk=x−∑
k=1

K
~
dk

                (5) 

K is the total order of the modes. Hence, the original data series (x) can be described as: 
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x=x−∑
k=1

K
~
dk

                (6) 

The  specific  algorithm  of  CEEMDAN  demonstrates  that  the  
Ek (¿ )

 algorithm  is  used

repeatedly in the process of decomposing data, i.e., EMD decomposition. Therefore, the end effect also

affects the decomposition accuracy of CEEMDAN. 

2.2 RBFNN extension 

RBFNN extension is a prediction method based on data series. It has several advantages, such as

simple topological structure, fixed network structure, and fast and efficient learning, and is suitable for

nonlinear data series.

The RBFNN extension method can be explained in detail as follows (Hu et al., 2007): 

For a given data series  x (let length be  n) first generated by certain rules, its learning sample

matrix is  Pm×k and its corresponding target matrix is  T l ×k , where k is the number of samples, and

m ,l are data numbers. In MATLAB, the newrbe function is used to design a standard radial basis

network to input the training sample (P, T) into the training network. By selecting the appropriate

spread value, a trained radial basis network can be obtained.

Use this network for  data extension: Determine the sample matrix  p1 of  data series  x at  the

boundary (such as the right boundary); then input it into the trained RBFNN network to obtain the

extension data output a1. Let a1 be the new boundary for the original data series to generate the new

sample matrix p2, input p2 into the network to gain the new extension data a2, and so on, until data

series  of  appropriate  length  is  extended  at  the  right  end  of  the  data.  In  addition,  the  data  series

containing the appropriate length is extended at the left end likewise. In this manner, extended data

series x1 was obtained for CEEMDAN decomposition. 

The prediction length should be set within a reasonable range because the prediction accuracy of

RBFNN decreases as the number of prediction steps increases. Furthermore, at least one minimum and

one  maximum  point  at  each  end  of  the  extension  is  required  to  inhibit  the  end  effect  in  the

decomposition process (Hu et al., 2007). 
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3. Case study

3.1 Data selection

In this study, annual runoff data from the Tang Naihai Hydrological Station in the source area of

the Yellow River covering the period from 1956 to 2013 were used for the analyses. We set up three

sets of data series: (1) A dataset covering 44 years from 1963 to 2006 was intercepted as the original

data series. (2) The left and right ends of the original sequence were considered for RBFNN extension,

where the left end extended to 1956 and the right end extended to 2013. In this case, the obtained data

series from 1956 to 2013 is extension data series. (3) The entire dataset of annual runoff from 1956 to

2013 was taken as the standard data series. 

3.2 Data extension 

In the original data series, the maximum interval between two adjacent maximum or minimum

points is 6 years. In order to ensure that new extreme points can emerge in the extension to inhibit the

end effect with certain accuracy, both left and right ends of the original data series were selected as the

prediction length of the RBFNN model. The extension results and relative error obtained by comparing

the measured data from 1956 to 1962 and 2007 to 2013 with the RBFNN extension results are shown

in Fig. 1 and Table 1, respectively. 

Fig. 1 Original data series and extension result

Table 1. RBFNN extension error

Fig.  1 and Table 1 show the occurrence of six extreme points during 2007–2012 in the right

extension. The first 5 extreme points are in accordance with the change trend of the measured data,

while  the  last  extreme  point  (2012)  shows  a  deviation,  with  a  relative  error  reaching  36.59%.

Regarding the left extension, three extreme points in 1958, 1960, and 1962 were obtained. The extreme

point in 1962 is inconsistent with the trend of the measured data, with an error of 37.96%, while the

other two extreme points are generally in line with the change trend of the measured data. Hence, for

annual runoff data series with strong non-stationarity, their law of change is difficult to determine using

the RBFNN model,  and  direct  prediction may lead  to  large errors  at  some points.  On the  whole,

although there are two points with large deviation, the left and right ends of the extension can basically
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reflect the general trend of the standard data series.

3.3 CEEMDAN decomposition 

3.3.1 Comparison of decomposition results

The original data series, extension data series, and standard data series were decomposed using the

CEEMDAN method; the decomposition results are presented in Fig. 2. The extension sequence and

standard sequence in  the 1956–1962 and 2007–2013 data series  were listed as  "pollution" data in

CEEMDAN attributable to the end effect. Therefore, these two parts of the series were discarded. The

decomposition accuracy of the original data series and the extension sequence was evaluated based on

the decomposition result of the standard data series. 

Fig. 2 CEEMDAN decomposition results of original data series, extension data series, and standard

data series

According to  Fig.  2,  CEEMDAN provides  five  components  each for  the original  data  series,

extension data series, and standard data series. We compare each layer of the three data series and

discuss the effect of RBFNN extension on CEEMDAN.

Regarding the IMF1 component, the three sets of data basically overlap, and the end effect has no

obvious  influence  on  the  first  layer  component.  Thus,  there  is  no  convincing  evidence  that  data

extension can improve the decomposition accuracy.

Regarding  the  IMF2  component,  the  middle  parts  of  the  three  data  series  basically  overlap.

However, at both ends of the component, although the original data series and the standard data series

follow the same trend, a certain separation occurs between the lines, and errors attributable to the end

effect begin to show. In contrast, the extension data series remains close to the standard value and the

end effect is inhibited. 

Regarding the IMF3 component, the overlapping parts between the original data series and the

standard data series are dramatically reduced, and the change trend and real value at both ends are out

of sync. In particular, the mismatch is more significant at and the quasi-period is significantly larger at

the  right  end,  further  reflecting  the  influence  of  the  end  effect.  The decomposition  results  of  the

extension data series still coincide with the real value to a large extent and separation only occurs at the
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two ends. Although the amplitude is somewhat deviated, the trend is generally synchronized.

Regarding the IMF4 component, the gap between the original data series and the standard data

series is further widened, the amplitude and quasi-period are significantly deviated, and both ends show

a trend of further expansion. The extension data and standard value are also widely separated, but the

amplitude difference is rather small, and the variation trend, quasi-period, and other information are

still consistent with the real data series.

The Res components of the last three groups all reflect a downward trend of runoff series on a

long time scale,  and the trend  changes  of  the three groups  are  basically  the same,  except  for  the

difference in amplitude. In this layer, the original data series and the extension data series are separated

from the standard value, and the improvement effect of data extension on the decomposition accuracy

is not obvious.

The  results  showed  that  the  CEEMDAN  method  is  susceptible  to  the  end  effect  and  the

corresponding errors  gradually spread  inward from the  end points  along with decomposition,  thus

affecting the decomposition effect of the entire data series. For the IMF1 component and trend, data

extension does not provide any obvious improvement in decomposition accuracy. However, for other

middle- and low-frequency components,  RBFNN extension can significantly inhibit  the end effect,

improve the decomposition accuracy, and more accurately reflect the fluctuation characteristics under

multiple time scales. Particularly at the end point, the extension data series can reflect the trend of data

and facilitate convenient runoff prediction. 

3.3.2 Decomposition error

In this study, root-mean-square error (RMSE) and correlation coefficient (R) (Chai and Draxler,

2014; Krause et al., 2005) were calculated to quantitatively describe the decomposition accuracy of

extension data series and non-continuation sequences with reference to the decomposition results of the

standard data series.

RMSE can be calculated as follows: 
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RMSE=√∑i=1
n

(x i−X i)
2

n

 (7) 

where n denotes the number of data, x i denotes the ith data in the real data series, and X i denotes the i

th data of the corresponding component after CEEMDAN. The smaller the value of e, the smaller the

error between the data series and real data series. 

R  can be expressed as follows: 

R j=
cov (x j , IMF j)

√δ(x j)√δ(IMF j)
 (8)

where x j is the jth component of the original data series, IMF j is the jth intrinsic mode function, δ is

variance, and cov  is covariance. The correlation coefficient  R j can represent the similarity between

IMF and standard data series components and reflect the decomposition accuracy. The closer the value

of R to 1, the more accurate the decomposition result. 

Table 2. Errors in the original data series and extension data series

As  shown by  the  RMSE and R of  the  IMF2,  IMF3,  and  IMF4 components  in  Table  2,  the

decomposition accuracy of the extension series was significantly improved compared with the original

data series.  In the IMF1 component, both series showed relatively high accuracy, with no obvious

advantage of the extension, but the error of the Res component was smaller in the extension data series.

Overall, the decomposition accuracy of the extension data series is higher than that of the original data

series. 

3.4 Runoff prediction

3.4.1 Component prediction

Each layer component of the original data series and the extension data series was predicted. A

prediction length of seven years was set, covering the period from 2007 to 2013. Although the standard

series covers the period from 2007 to 2013, it is located in the right end of the sequence. Under the

influence of  the end effect  of CEEMDAN, the decomposition results for  these years may produce

errors and do not accurately reflect the actual change rule of the component. Therefore, the were not
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considered the standard for evaluating the performance of the prediction. For each layer component,

the prediction result of the extension data series is termed prediction 1, and the prediction result of the

original data series is termed prediction 2. The difference between the two groups of predictions were

primarily investigated.

After CEEMDAN decomposition, IMF1 of the two groups of runoff data series retained strong

non-stationarity. Therefore, the RBFNN model was used to make predictions; the ARIMA model was

used for other components as they appeared to be relatively stable. The prediction results of each layer

component are illustrated in Figs. 3–7. 

Fig. 3 Prediction results of the IMF1 component

Fig. 4 prediction results of the IMF2 component

Fig. 5 Prediction results of the IMF3 component

Fig. 6 Prediction results of the IMF4 component

Fig. 7 Prediction results of the Res component

As shown in Fig. 3, as the IMF1 components of the original data series and extension data series

basically overlap,  differences in  their  predicted values  are also negligible.  The first  four points  of

prediction 1 are below those of prediction 2, which may be due to the fact that the value of the original

data series at the right end of the IMF1 component is smaller than the continuation sequence, and this

trend is further reflected in the prediction.

In Fig. 4, although the IMF2 components of the two sets of data series generally overlap in the

middle,  the  inconsistencies  at  the  right  end  points  lead  to  a  more  pronounced  deviation  of  their

prediction results. The occurrence of the extreme point of prediction 2 lags behind that of prediction 1,

and its peak value is also smaller, consistent with the variation characteristics of the right end of the

IMF2 component in both groups of data series.

As illustrated in Figs. 5 and 6, the predictions of the two series reflect the variation trend of their

respective components in this layer, particularly at the end points. However, the difference between

them is more significant and the fluctuation rules reflected are also quite different. As for the IMF3

component, prediction 1 begins to decline after reaching the peak, while prediction 2 continues to rise
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from the trough to near the peak. In this component, prediction 1 first increases to the maximum value

and then exhibits a downward trend, while prediction 2 maintains an upward trend from trough to peak.

Fig. 7 shows that the decline rate of the Res component of the original data series slowed down at

the end. Prediction 1 maintains this trend and shows a slight increase, while prediction 2 maintains the

downward trend towards the end.

In summary, the prediction results of the IMF1 component are basically consistent. The prediction

gap between the  original  and  extension  data  series  is  mainly reflected  in  other  middle-  and low-

frequency components, and the change law at the end point exerts a major influence on the prediction

results. In addition, after CEEMDAN decomposition, the low- and middle-frequency components were

relatively stable, with rather weak nonlinearity. Therefore, the prediction results are relatively reliable.

The  final  prediction  obtained  by  the  reconstruction  of  the  prediction  results  of  IMF1  with  small

differences  and  other  components  of  the  reliable  prediction  results  can  accurately  and  objectively

reflect the prediction performance of the two groups of data series.

3.4.2 Reconstruction

Prediction 1 and prediction 2 of each component were reconstructed to obtain prediction results of

the  extension  data  series  and  original  data  series  (Fig.  8  and  Table  3).  The  previously  described

extension results for 2007–2013 using RBFNN (Section 2.2) correspond to the direct application of

RBFNN to the original  data series without any preprocessing. This represents is a general  method

commonly used in  hydrological  time series  prediction.  In  Table 3,  the relative errors  of  extension

results from 2007 to 2013 are added for comparison with the two groups of prediction results using the

"decompositions, predictions-reconstruction" mode.

Fig. 8 Prediction results of the extension data series and original data series

Table 3. Prediction results and relative errors 

As shown in Fig. 8 and Table 3, the predicted fluctuation rules of the extension and original data

series are consistent with the standard series, but their prediction accuracy is somewhat different. In the

first five points (2007–2011), the predicted runoff of the original data series was significantly lower

than that of the standard data series, with the relative error in 2008 reaching 22.88%; in contrast, the
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prediction result of the extension data series was more accurate, and relative error remained within

10%. Combined with the prediction results of the IMF1 and Res components in Fig. 3–7, the prediction

results of the original data series are larger than those of the extension data series, whereas the opposite

is true for the 2–4 components, with widely varying prediction results. In the reconstruction process,

the predicted values of the original data series were relatively smaller because of the superposition of

this gap.

In general, the "decomposition-prediction-reconstruction" mode improved the prediction results of

both series for 2012, which had a rather large error in the RBFNN extension results (Fig. 1 and Table

1); the error of the prediction results of the original data series was smaller. However, in the prediction

results of the extension data series, the largest error was still observed for 2012, which is consistent

with the distribution law of the extension error. In the prediction results of the original data series, the

errors from 2008 to 2010 were higher than that of 2012; even for 2008 and 2010, the prediction error

was higher than that of RBFNN extension result. This may be due to the end effect and the deviation of

component prediction, due to which errors in the prediction results of the non-extended original data

series were transferred to other points after " decomposition-prediction-reconstruction". 

Among  the  three  methods  (direct  application  of  RBFNN  on  the  original  sequence,  direct

application  of  "decomposition-prediction-reconstruction",  and  direct  application  of  "extension-

decomposition-prediction-reconstruction" on prediction results), the direct use of RBFNN showed the

poorest prediction performance, with an average relative error reaching 15.11%. The average relative

error of the CEEMDAN decomposition-prediction-reconstruction method was 11.67%, showing that

the prediction performance was improved to some extent. The average relative error of the RBFNN

extension-CEEMDAN  decomposition-reconstruction  method  was  5.23%,  indicating  further

improvements in prediction accuracy. Therefore, when using the CEEMDAN method for prediction,

the original data series can be reasonably extended and the "decomposition-prediction-reconstruction"

approach can be implemented to effectively reduce prediction errors.

4. Conclusions

In this study, we addressed the issue of the end effect in the CEEMDAN method and discussed the

impact of RBFNN extension on decomposition accuracy. On this basis, predictions were made to verify
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the effectiveness of RBFNN extension in improving prediction performance. The main conclusions can

be summarized as follows: 

(1) The end effect of the CEEMDAN method introduces decomposition errors. As decomposition

proceeds, the errors gradually spread inward from the end points, with a relatively small impact on

high-frequency components but a rather large impact on medium- and low-frequency components.

(2) RBFNN extension on original data can significantly improve the decomposition accuracy of

middle- and low-frequency components, and more accurately retain the characteristics of the original

data series, such as fluctuation period and amplitude at respective time scales. Thus, RBFNN extension

improves the reliability of the multi-time scale analysis of hydrological series. 

(3) The fluctuation characteristics at the end points of the components significantly affect  the

prediction  results  of  the  component.  The  decomposition  results  of  the  extension  data  series  can

accurately reflect variation trends at the end points of the components, providing a basis for accurate

predictions.

(4)  The  CEEMDAN  method  can  handle  nonlinear  data  well  and  provide  relatively  stable

components  for  prediction. In  the practical  application of  CEEMDAN for prediction based on the

decomposition-prediction-reconstruction  approach,  RBFNN  extension  can  effectively  enhance  the

decomposition accuracy, thus improving prediction accuracy and prediction performance.
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