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Abstract 27 

Climate warming is currently advancing spring leaf-out, enhancing net primary productivity 28 

(NPP) of temperate forests. However, it remains unclear whether this trend will continue. Using 29 

727,401 direct phenological observations of dominant forest trees, we test for the major controls 30 

on leaf-out and forecast future trajectories of spring arrival. By representing hypothesized 31 

relationships with day-length, autumn temperature and winter-chilling, we accurately predicted 32 

reductions in the advance of leaf-out. There was a strong consensus between our empirical 33 

model and existing process-based models, revealing that the advance in leaf-out will not exceed 34 

2 weeks over the rest of century. By incorporating these trends into a dynamic global vegetation 35 

model, we estimate that these environmental constraints reduce the expected increases in forest 36 

NPP by ~0.6 Gt per year. These findings reveal important environmental constraints on the 37 

productivity of broadleaf deciduous trees and highlight that shifting spring phenology is 38 

unlikely to slow the rate of warming by offsetting anthropogenic carbon emissions. 39 
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Main text 53 

Shifts in the timing of annual growth cycles in temperate trees have direct impacts on global 54 

biogeochemical cycles1–3, species distribution patterns4, and ultimately feedback to the climate 55 

system by affecting the atmospheric carbon budget2. There is broad consensus that warming 56 

trends over the past decades have led to an earlier arrival of spring leaf emergence in Northern 57 

Hemisphere temperate trees, a trend that is enhancing global primary productivity under climate 58 

change1,5,6. Depending on species and location, leaf emergence has advanced by 3–8 days for 59 

every degree increase in air temperature5–7. However, a growing body of evidence suggests that 60 

this past trend cannot be used to predict future responses, because other environmental factors 61 

may constrain the future advances in spring phenology8–11. Aside from spring temperature, most 62 

temperate trees rely on additional factors including winter chilling and day-length, that are 63 

likely to become limiting in the future8–11. Yet, a lack of information about the existence, or 64 

relative importance of these drivers translates to high uncertainty in model predictions of future 65 

forest phenology12. Given that each day advance in spring leaf unfolding of deciduous trees 66 

translates to an increase in net ecosystem carbon uptake of 4.5 gC m-2 (ref 1), untangling these 67 

mechanisms is critical for improving confidence in future climate projections.  68 

Three main factors –– autumn temperatures13,14, winter chilling8,10,15,16, and day 69 

length17–19 –– have been proposed to control spring leaf-out by modulating the amount of 70 

warming that trees require to leaf-out. Each of these factors is likely to counteract the advances 71 

in spring onset under a warming climate. Specifically, as the climate warms, the accumulated 72 

warming required for leaves to emerge is expected to increase because: (i) warmer autumn 73 

temperatures delay the initiation of dormancy13,14; (ii) warmer winters lead to reduced chilling 74 

accumulation6,20; and (iii) days at spring onset are becoming shorter17,21–23  (Fig. 1). The 75 

potential effects of these separate environmental drivers have been identified using controlled 76 

climate chamber experiments with pot plants or twig cuttings9–11. These studies provide 77 

valuable mechanistic insights, but they do not necessarily reflect the behavior of mature trees 78 



under natural growing conditions24. Although the inclusion of these hypothesized mechanisms 79 

can improve the performance of mechanistic phenological models, the exact nature, and relative 80 

importance, of these mechanisms remains untested under natural conditions23. As such, we 81 

cannot represent these mechanisms in global biogeochemical models to predict the 82 

consequences for future temperate forest productivity. Parameterizing phenological models and 83 

translating their effects into global biogeochemical models requires direct empirical evidence 84 

about the effects of these dominant environmental drivers in mature trees exposed to real-world 85 

changes in natural environmental conditions25. 86 

To represent the important phenological mechanisms into larger biogeochemical 87 

models, we need unifying evidence for the strength and direction of these ecological 88 

parameters. Empirically testing the influence of these environmental constraints is also vital for 89 

avoiding overparameterization in global biogeochemical models, which need to rely on simple 90 

sub-models to represent plant physiological processes. To date, dynamic global vegetation 91 

models, such as LPJ-GUESS, cannot reflect the complex dynamics that are represented in 92 

specialized phenology models. As such, they can only account for spring phenology using a 93 

simple degree-day–chilling relationship, neglecting the important physiological mechanisms 94 

that are likely to restrict the advance of spring phenology in the future. These models are thus 95 

likely to vastly overestimate the advances in spring phenology over the rest of the century. 96 

Addressing this huge source of uncertainty necessitates that we generate simple empirical 97 

parameters for the combined roles of autumn temperature, winter chilling and day length. 98 

In this study, we aim to bridge the gap between specialized phenological models and 99 

global vegetation models by developing a simple, empirical model to evaluate the key 100 

mechanisms represented in process-based models. Using a massive in situ database of forest 101 

leaf-out observations, we determine the interactive effects of autumn temperature, winter 102 

chilling and spring day-length variation on thermal requirements to leaf-out in mature temperate 103 

forest trees. We then use the observed relationships to train statistical predictions of future 104 



spring arrival. By comparing this empirical model performance with all available process-based 105 

models from the phenological literature, we show that it adequately reflects the dominant 106 

drivers of spring phenology, and predicts spring leaf-out with as much accuracy as existing 107 

mechanistic models. In addition, we use forecasts of future temperatures to project the future 108 

changes in spring phonology under two climate change scenarios (“CO2 stabilization” scenario, 109 

RCP 4.5 and “business-as-usual”, RCP 8.5). With high confidence in our ‘simple’ empirical 110 

model performance, we could then use the calculated coefficients to train a global dynamic 111 

vegetation model to more accurately reflect the future changes in spring phenology. Ultimately, 112 

this big-data approach enables us to test the effects of interacting climate drivers, benchmark 113 

model projections, and evaluate how these mechanisms influence global dynamic vegetation 114 

model predictions of future phenology and global net primary productivity (NPP). 115 

 116 

Empirical test of the environmental drivers of spring leaf-out 117 

This analysis is underpinned by a massive database of in situ observations of leaf-out 118 

date in mature individuals of nine temperate tree species that dominate European forests, 119 

collected from the Pan European Phenology Project26 – the only database to date, that contains 120 

long-term (>15 years), ground-sourced phenological observations. After initial filtering, we 121 

obtained 24,650 individual data series (lasting between 15 and 63 years) from 4,165 locations 122 

across Central Europe (Fig. S1), resulting in 727,401 observations across all timeseries (see 123 

Methods). To test for the importance of autumn temperatures, winter chilling, and spring day-124 

length on warming required to leaf-out at each site, we applied univariate regression models 125 

over time at the individual-level (Fig. 2). Winter chilling, reflecting the sum of chilling from 1 126 

October until the mean leaf-out date of each individual, was calculated in two ways (either 127 

temperatures below 5 °C, or between 0 – 5 °C) to reflect two possibilities proposed in the 128 

literature20,27,28. To calculate the day-length perceived by plants at the time when spring 129 

warming occurs for each year, we first needed to define a date reflecting the onset of spring 130 



warming. To do so, for each site and species combination, we calculated the average degree-131 

days accumulating before leaf-out. Spring onset each year was then defined as the date when 132 

the average degree-days to leaf-out at the respective site were reached. We then transformed 133 

this date to the corresponding day length value. This “day length value” thus reflects how early 134 

spring warming occurred each year. 135 

Before building our multivariate full model, we applied linear univariate models to test 136 

for the separate effects of each environmental variable. These models showed that, while 137 

autumn temperatures had a relatively minor effect, both winter chilling (P < 0.001; Correlation 138 

coefficient = 0.4 – 0.5) and day-length (P < 0.001; Correlation coefficient = 0.5 – 0.7) had 139 

consistent negative effects on accumulated warming required to leaf-out across all species 140 

(Figs. 2 and S2). Interestingly, when chilling was calculated using all temperatures below 5°C, 141 

the model outperformed an equivalent model in which effective chilling temperatures range 142 

between 0 and 5°C, a commonly used approach7,27 (Fig. 2b). In line with previous studies9,17,21, 143 

European beech showed the strongest chilling and day length sensitivity (Fig. 2b, c), but the 144 

limiting effects of both variables were consistent across all temperate tree species. Consistent 145 

with the findings of a previous study30, these results show that the timing of the onset of spring 146 

warming represents a strong control on leaf-out. See ref30 for a more detailed test of this 147 

relationship. It is also possible that this time effect could ultimately be driven by mechanisms 148 

other than day length, such as an internal clock or changes in spectral light composition31. Our 149 

results do not give mechanistic insights that would allow us to disentangle the mechanisms by 150 

which plants sense the time of the year, but they provide important evidence that both winter 151 

chilling and the timing of the onset of spring warming modulate the amount of warming 152 

required to leaf-out, thereby restricting future responses to climate change. 153 

To predict the amount of warming required for each tree to leaf-out, we then ran 154 

multivariate models, including all three factors (autumn temperature, winter chilling, and day 155 

length) and the interactions between them. The best model (lowest AIC and highest R2) included 156 



chilling and day length as fixed effects, and an interaction between winter chilling and day 157 

length (Fig. S3a). This interaction term is supported by experimental studies showing that 158 

winter chilling can substitute for day length and vice versa9,10,17,18,22. Across all species, the full 159 

model accurately predicted the accumulated warming required to leaf-out across 727,401 160 

observations over 63 years (R2 values ranging between 0.4 and 0.6; Fig. S3a). As such, the 161 

coefficients in these empirical models reveal parameters for each of the dominant 162 

environmental drivers of spring phenology that are necessary for predicting changes in leaf-out 163 

over time.  164 

To test for the importance of these ecological mechanisms, we compared the predictions 165 

of our full model (with spring warming, day length, and winter chilling) against similar 166 

empirical models that lack these mechanisms. Specifically, we compared the performance of 167 

our full-model to a simple “null model”, which included only spring warming, and a “chilling 168 

model” (see equation 7) – including spring warming and winter chilling – which has previously 169 

been implemented in the LPJ-GUESS dynamic global vegetation model. By contrast to more 170 

complex phenological models, the starting date of degree-day accumulation was not fitted to 171 

the observed data and instead fixed to the first day of the year, allowing for easy incorporation 172 

into large-scale vegetation models. This also ensures that the null model (warming-only model) 173 

is not confounded by other factors because fitting a starting date of degree-day accumulation 174 

implicitly accounts for winter chilling and/or day-length by determining when plants become 175 

susceptible to spring warming. On average, across all species in our dataset, observed leaf-out 176 

dates advanced by 3.8 ± 0.1 days per each degree increase in air temperature. The full model 177 

performed well in predicting this temperature sensitivity, predicting 3.7 ± 0.2 days/°C. In 178 

contrast, because they lack the ecological mechanisms that might restrict future advances in 179 

spring leaf-out, the chilling and null model over-estimated leaf emergence, predicting 4.9 ± 0.2 180 

and 6.3 ± 0.2 days/°C, respectively (Fig. 3b). The inclusion of all three mechanisms vastly 181 

improved model accuracy. But more importantly, this reduced the over-estimation of spring 182 



leaf-emergence in extremely warm years. This demonstrates that the combined roles of winter 183 

chilling, day length, and spring warming need to be accounted for in predictions of future tree 184 

phenology and productivity. 185 

 186 

Evaluating phenology model performance 187 

To evaluate whether our full empirical model (the full model) is capturing the 188 

mechanisms in existing state-of-the-art phenology models, we compared the performance of 189 

our full model against 17 process models from the literature (Fig. 4). We stress that, even though 190 

some of these models are called “ecodormancy models” (suggesting that they solely consider 191 

spring warming as a factor), all of these models at least implicitly account for winter chilling- 192 

/ day length-induced endodormancy release by fitting specific starting dates of degree-day 193 

accumulation to the data (we therefore refer to them as explicit or implicit endodormancy 194 

models hereafter). Although fitting a specific starting date of degree-day accumulation cannot 195 

reflect the gradual transition from endo- to ecodormancy (see e.g. Fig. 2 in ref22), these models 196 

all directly or indirectly represent the ecological mechanisms that we have evaluated in our full 197 

model. 198 

Compared to all existing phenology models, our empirical model performed well in 199 

predicting leaf emergence over the last 15 years of leaf-out observations. Explaining over 50% 200 

of the variation in spring leaf emergence over 727,401 observations, our simple model 201 

performed well. This was only marginally worse explanatory power than the best available 202 

phenology models (RMSE values) (Fig. 4c). But most importantly, our full model excelled in 203 

terms of model-accuracy, with predictions fitting close to the 1:1 line in predicted vs. observed 204 

plots, compared to most other models (Fig. 4c). That is, the intercept and slope components of 205 

observed vs. predicted comparisons of leaf-out dates for our full model were among the least 206 

likely to differ from 1 and 0, respectively, with a significant (P <0.05) deviation only found for 207 

<2% of sites (Fig. 4 a,b). Four of the other process-based models showed an equally low 208 



proportion of significant sites with exceptionally high model accuracy. Model accuracy was 209 

slightly lower for 11 models (2–6% significant sites), while the remaining 4 models all 210 

performed considerably worse (13–88% significant sites) [Fig. 4 a,b].  211 

The high predictive accuracy of the top 4 process models is in direct contrast with 212 

previous studies, which suggested low performance across all phenology models12. This 213 

distinction is likely to arise from our focus on model accuracy (i.e. slope estimates) rather than 214 

model fit (i.e. root mean squared error), and the test if predicted values (in the x-axis) reflect 215 

observations (in the y-axis), not vice versa32 (see Methods). Nevertheless, by accurately 216 

representing the three dominant factors regulating spring leaf-out, our simple empirical model 217 

performed as well as the best phenology models. 218 

Our simple regression model provides basic parameters that can easily be incorporated 219 

into large-scale vegetation models and Earth system models to project future terrestrial 220 

vegetation carbon dynamics. More complex phenological models rely on spatially-explicit 221 

parameter-optimization algorithms to account for endodormancy release. Capturing the spatial 222 

variation across temperate forests would require large amounts of spatially-uniform 223 

phenological data to train these models. Such data does not currently exist and would require a 224 

huge coordinated sampling effort. In contrast, our regression model offers a highly 225 

parsimonious approach, reflecting the main mechanisms triggering spring phenology without 226 

the limitations of model overparameterization. The required parameters can be easily calculated 227 

and represented within large-scale vegetation models or Earth system models with minimal 228 

increases in complexity. As such, this approach can provide projections of increased veracity 229 

without inflating structural uncertainty, which remains the main cause of divergence in 230 

vegetation model projections of carbon stocks33. Our model can thus provide the empirical 231 

relationships that are needed to underpin future projections of temperate spring phenology, and 232 

its impacts on terrestrial vegetation carbon dynamics. 233 

 234 



Future projections of spring leaf-out 235 

To examine how these ecological mechanisms influence future projections of spring 236 

leaf-out, we extrapolated the timing of spring leaf-out until 2100 using two future climate 237 

scenarios (“CO2 stabilization” scenario, RCP 4.5 and “business-as-usual”, RCP 8.5; Fig. S7). 238 

Specifically, for each scenario, we ran statistical extrapolations of future leaf-out dates, based 239 

on the seven best-performing phenology models, including our full model, and the simple null 240 

model accounting solely for temperature accumulation. For both climate scenarios, the seven 241 

best models gave very similar predictions, estimating a ~60% reduction in the phenological 242 

response rates to global warming compared to what would be expected if spring warming was 243 

the sole driver of leaf-out phenology (i.e. null model) [Fig. 4d]. That is, while the null model 244 

predicted 25-days earlier leaf unfolding by the end of the 21st century under a “business-as-245 

usual” scenario, the full model estimated advances of only 11 days. The full model projected 246 

similar responses for all species, with the exception of Fagus sylvatica (Fig. S8). Under a 247 

“business-as-usual” scenario, F. sylvatica is expected to advance leaf-out dates less than the 248 

other species because pronounced chilling and day length constraints (Fig. 2) cause a lower 249 

temperature sensitivity (3.0 days/°C) compared to the other study species (Figs. S6 and S9). 250 

 251 

Quantifying changes in temperate forest productivity 252 

To comprehend how our leaf-out predictions will affect future projections of NPP, we 253 

used a dynamic global vegetation model (LPJ-GUESS). Previously, spring phenology was 254 

implemented as a function of degree-days and winter chilling (see chilling model in Figs. 3, 4, 255 

and 5)34. We parameterized the phenology algorithm using the empirically-derived 256 

relationships with day-length at spring onset, and the updated estimates of winter chilling. 257 

These changes drastically reduced the projected increases in temperate forest productivity over 258 

the rest of this century. Specifically, the standard LPJ-GUESS model (including chilling-only) 259 

estimates that cumulative temperate forest NPP will increase by a total of 37 Gt carbon as a 260 



result of earlier spring onset over the rest of the century. However, the updated model, including 261 

the new empirically-derived information about the ecological constraints on spring phenology 262 

estimates an increase of only 12 Gt over the same time period (Figure 5). This 25 Gt reduction 263 

in NPP of temperate trees over the rest of the century translates to decreases in temperate forest 264 

cumulative net biome productivity of 15.5% (Fig. S10). 265 

 266 

Conclusions 267 

Our big data approach enables us to test the effects of the three main ecological factors –winter 268 

chilling, day-length, and spring warming – that regulate the timing of spring leaf emergence in 269 

temperate forest trees. A simple statistical model reflecting these interactive ecological drivers 270 

performed as well as the best existing phenology models at predicting spring leaf-out over 271 

24,650 individual time series, highlighting that these mechanisms are critical for representing 272 

future changes in spring leaf-out. Although spring warming is likely to increase over the rest of 273 

the century, the reductions in winter chilling and day length are likely to constrain the future 274 

advances in spring leaf emergence. Our statistical model reveals unifying parameters that can 275 

be used to represent these important phenological mechanisms in larger biogeochemical 276 

models. By representing this information into a global dynamic vegetation model, we find that 277 

the expected increases in temperate forest NPP over the rest of the century are substantially 278 

reduced relative to previous expectations, which could lead to a reduction in NPP of 0.6 279 

Gigatons carbon per year at the end of the 21st century. These results have direct implications 280 

for future climate projections, highlighting that forest productivity will be increasingly 281 

constrained by factors aside from air temperature in the future. 282 

 283 

 284 

 285 

 286 



Materials and Methods 287 

 288 

Data set. In situ observations of leaf-out date were obtained from the Pan European Phenology 289 

network26, which provides open-access phenological data for Europe (mainly Germany, 290 

Switzerland, and Austria). We selected leaf-out records of 9 common temperate tree species (7 291 

deciduous angiosperms, 1 deciduous conifer, 1 evergreen conifer) at 4,165 sites (see Fig. S1 for 292 

site locations). For the seven angiosperms, leaf-out was defined as the date when unfolded 293 

leaves, pushed out all the way to the petiole, were visible on the respective individual (BBCH 294 

11, Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie). For the two 295 

conifers Larix decidua and Picea abies leaf-out was defined as the date when the first needles 296 

started to separate (“mouse-ear stage”; BBCH 10).  297 

Information on temperature parameters was derived from a gridded climatic data set 298 

of daily minimum and maximum temperatures at 0.5º spatial resolution (approximately 50 299 

km)35. We additionally tested the CRU/NCAR dataset 300 

(https://crudata.uea.ac.uk/cru/data/ncep/) which also contains daily minimum and maximum 301 

temperatures at 0.5º spatial resolution and obtained very similar results (R2 for degree-days 302 

extracted from ref 35 vs. CRU/NCAR dataset = 0.94). Future predictions of daily maximum and 303 

minimum temperatures, based on two different climate warming scenarios (RCP 4.5 and 8.5) 304 

were obtained from ref 35.  305 

Data reporting. No statistical methods were used to predetermine sample size.  306 

Data cleaning. Following ref29, we removed (i) leaf-out dates that deviated from an individual’s 307 

median more than 3 times the median absolute deviation (moderately conservative threshold), 308 

(ii) leaf-out dates for which the accumulated degree-days deviated from an individual’s median 309 

degree-days more than 3 times the median absolute deviation, and (iii) individuals, for which 310 

the standard deviation of phenological observations across years was higher than 15. This data 311 

cleaning removed 10% of the data, resulting in a total of 24,650 time-series and 727,401 312 



phenological observations (individuals x years), with a median time-series length of 29 years 313 

(minimally 15 years, maximally 63 years). 314 

Environmental parameters. Accumulated warming to leaf-out was calculated as the growing 315 

degree-days (using 5°C as base temperature) from 1 January until the date of leaf unfolding. 316 

We also tested a temperature threshold of 0 °C, which produced very similar results. Here, we 317 

only report the results using the threshold of 5 °C. To calculate degree-days, we approximated 318 

hourly temperature values with a sine curve based on daily maximum (Tmax) and minimum 319 

temperatures (Tmin) [equation 1], subtracted 5 (base temperature) from each value, then set all 320 

values below the base temperature to zero (because negative development is biologically not 321 

possible), and finally calculated the mean of all 24 values for each day, weighting day-time 322 

values (= time when sun is above the horizon) 3 times more than night-time values. This 323 

weighting was done because the effect of day-time temperature on leaf unfolding is ~3 times 324 

higher than that of night-time temperature36,37.  325 

Three factors have been suggested to affect the amount of accumulated warming 326 

(degree-days) required to leaf-out: i) preceding autumn temperatures13,14, ii) exposure to winter 327 

chilling8,10,18, and iii) the prevailing day-length when warming occurs9,22. We obtained 328 

information for all three factors: Chilling sums were calculated as the sum of chilling days from 329 

1 October until mean leaf-out at the respective site. Temperature (Thour) at any time of the day 330 

(timeday) was simulated with a sine curve based on daily maximum (Tmax) and minimum 331 

temperatures (Tmin) using the following equation: 332 

 333 
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 335 

 This allowed us to calculate the daily proportion of chilling, rather than using a simple 336 

presence/absence classification based on daily mean temperatures (e.g., ref. 20). Multiple studies 337 



have reported that temperatures slightly above freezing are most effective in satisfying chilling 338 

requirements and assume that effective chilling temperatures range between 0 °C and 5 °C27,29: 339 

 340 

𝐶ℎ𝑖𝑙𝑙"#$% = 	1			𝑖𝑓	0	 ≤ 𝑇 ≤ 5                                                                                                    (2) 341 

 342 

where chilling (Chillhour) at any given time of the day depends on the temperature (T). 343 

We then calculated daily chilling proportions, e.g., a day in which in 75% of the time 344 

temperatures are between 0°C and 5 °C translates to 0.75 chilling days. 345 

In addition, we calculated winter chilling including all temperatures below or equal to 346 

5 °C (e.g., ref 20): 347 

 348 

𝐶ℎ𝑖𝑙𝑙"#$% = 	1			𝑖𝑓	𝑇 ≤ 5                                                                                                            (3) 349 

 350 

To obtain information on the prevailing day-length at spring onset (the time when 351 

substantial warming occurs in spring), for each time series, a specific degree-day threshold 352 

(average degree-days at the mean leaf-out date at the respective site) was used as a proxy for 353 

spring onset. The date when the respective degree-day value occurred each year was then 354 

transferred to a day-length value (DL) as a function of latitude and date38: 355 

 356 

DL = 24 − 1P
7
𝑐𝑜𝑠-8 T	

UVWX.Z[[[\]ZX 	C	^_` a\
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 358 

𝜑 = 𝑠𝑖𝑛-8(0.29795 ∗ 𝑐𝑜𝑠	𝜃)                                                                                                     (5) 359 

 360 

𝜃 = 0.2163108 + 2 ∗ 𝑡𝑎𝑛-8p0.9671396 ∗ tanp0.00860 ∗ (𝐷𝑂𝑌 − 186)vv                           (6) 361 

 362 



where L is the latitude of the phenological site and DOY is the day of year when the average 363 

degree-days to leaf-out at each site were reached. To infer information on autumn temperatures 364 

in the year preceding leaf unfolding, we calculated the mean temperatures of the months 365 

September and October, September–November, or October and November for each year.  366 

For each species and site, we also analysed the relationship between preseason 367 

temperature and leaf-out dates (Fig. S9). Preseason temperature was defined as the average 368 

temperature during the 60 days prior to the average leaf unfolding date of an individual. 369 

 370 

Analysis. To characterize the relative effects of autumn temperature, winter chilling, and day 371 

length on warming required to leaf-out, for each time-series we used univariate linear 372 

regressions with the accumulated warming required to leaf-out as the dependent variable, and 373 

winter chilling, day length, or autumn temperature in each year as the independent variables 374 

(Fig. 2). To visualize the correlations for each species, we removed noise that is due to between-375 

site variation using mixed effects models (R-package lme4) [Fig. S2]. We calculated chilling 376 

in two ways (equations 2 and 3), and, in all nine species, the effect of chilling on the amount of 377 

warming required to leaf-out was significantly higher when choosing the second option (all 378 

temperatures ≤ 5°C satisfy chilling requirements; Fig. 2b). To remove possible covariate effects 379 

of day-length, we also applied partial correlation analyses between winter chilling and spring 380 

warming and obtained similar results, i.e., in all nine species, partial correlation coefficients 381 

were higher when using all temperatures ≤ 5°C to calculate winter chilling. Similarly, we tested 382 

which temperature period in autumn best predicts the amount of warming required to leaf-out, 383 

and for each time-series, the autumn temperature period that yielded the highest correlation 384 

coefficient was chosen for multivariate modelling. 385 

We used breakpoint analysis39, based on the residual sums of squares, to test whether 386 

the effect of day length or winter chilling on required accumulated warming is linear or whether 387 

the observed response is flattening beyond a threshold. In 70% and 76% of all time-series, a 388 



linear model was preferred over a breakpoint model for the effect of day length or winter 389 

chilling, respectively, on required accumulated warming. For the 30% and 25% of time series 390 

in which a breakpoint was inferred, we investigated whether steeper slopes are preferred with 391 

decreasing day length or chilling. For day length, a steeper slope at shorter days was preferred 392 

for only 15% of pixels, while the opposite pattern also was preferred for 15% of pixels. For 393 

chilling, a steeper slope under low chilling was only inferred for 13% of pixels, while the 394 

opposite pattern was inferred for 11%. We thus rejected the hypothesis that the effect of day 395 

length or winter chilling on the amount of warming required to leaf-out is non-linear, i.e., 396 

increases with decreasing day length or chilling. 397 

After we had chosen the best autumn period and chilling model for each species, we 398 

modelled individual warming requirements using multivariate linear models. Sixteen models 399 

were tested against each other (Fig. S3a). The models always included winter chilling and day-400 

length as fixed effects. Additionally, we either included or excluded autumn temperatures as 401 

explanatory variable. We also tested for an interaction term between day-length and winter 402 

chilling, because day-length and chilling cues can interact, with long days substituting for 403 

insufficient chilling and vice versa21,22. We also tested models including chilling and day length 404 

as exponential terms (which did not affect model precision and projections; Figs. S5 and S6). 405 

In addition to our multivariate model (hereafter referred to as full model), we applied a chilling 406 

model, in which the amount of warming required to leaf-out is solely affected by winter chilling 407 

(equation 7), and a degree-day model, in which leaf-out is solely driven by degree-day 408 

accumulation. The starting date of degree-day accumulation was fixed to 1 January. All models 409 

were fitted separately to individuals, because we were interested in temporal patterns within 410 

individuals (rather than spatial patterns among individuals), and spring warming, day-length, 411 

and chilling requirements differ among individuals40. 412 

 413 

 414 



Process-based phenological models 415 

We ran 17 parameterized process-based phenological models from the literature to test the 416 

overall performance of our full model against existing models. We used the R-package 417 

PHENOR41 to calibrate the models. Model parameters were optimized using the GenSA 418 

algorithm42, combining both the Boltzmann machine and faster Cauchy machine simulated 419 

annealing approaches for fast optimizations43. According to ref41, the number of iterations was 420 

set to 40,000 with a starting temperature of 10,000. 421 

 422 

Model evaluation 423 

To judge the performance of phenological models, previous studies relied either solely on root-424 

mean square errors of observed vs predicted leaf-out dates12,44,45 or additionally evaluated 425 

model predictions by comparing predicted (in the y-axis) vs observed (in the x-axis) leaf-out 426 

dates41,46,47. However, such regression to evaluate models is incorrect, leading to erroneous 427 

estimates of the slope and intercept32. Especially in directional models such as spring 428 

phenological projections, where future climate conditions will lead to ever earlier occurrence 429 

dates, models need to be evaluated by analyzing intercept and slope components of observed 430 

(in the y-axis) vs predicted dates (in the x-axis). To do so, we conducted Wald-test based 431 

comparisons48 using the linearHypothesis function in the R-package car, allowing us to test for 432 

each individual site whether the slopes and intercepts of observed vs. predicted leaf-out dates 433 

differ significantly from 1 and 0, respectively (Fig. 4a,b). For each species, we also obtained 434 

the overall model fit (R2 values) and RMSE errors for observed versus predicted values (Figs. 435 

3c, 4c, and S4). Next, we applied 10-fold cross-validations49, and tested whether projected leaf-436 

out dates capture (i) observed temporal trends and (ii) the observed sensitivity of leaf-out dates 437 

to spring temperatures (Figs. 3a,b, S5, and S6). To calculate temperature sensitivity trends 438 

based on time-series, we had to remove noise that is due to between-site variation. This was 439 



done by adjusting the data using mixed effects modelling available through the R-package 440 

lme4. 441 

 442 

Future projections of spring onset 443 

To forecast leaf-out dates based on our models, we used future projections of daily minimum 444 

and maximum temperatures from two climate scenarios (Fig. S7)35. Emissions in the RCP 4.5 445 

climate scenario peak around 2040 and then decline. In the RCP 8.5 climate scenario emissions 446 

continue to rise throughout the 21st century. 447 

 448 

Land-surface flux projections 449 

We used LPJ-GUESS, a dynamic global vegetation model50, to simulate the effects of shifting 450 

spring phenology on temperate forest carbon balances (net primary productivity [NPP] and net 451 

biome productivity). LPJ-GUESS represents vegetation growth and dynamics using a mixture 452 

of plant functional types that respond to forcing from the climate (temperature, precipitation, 453 

incoming shortwave radiation), atmospheric CO2 mixing ratios and soil type. The successional 454 

structure of vegetation is simulated using multiple (here ten) replicate patches in each grid cell, 455 

which are subject to stochastic processes of establishment and mortality. Photosynthesis, 456 

respiration, stomatal conductance and phenology in LPJ-GUESS are simulated on a daily time 457 

step.  458 

Limitations in availability of the necessary driving data and requirements for 459 

parsimony to operate at large-scales mean that common process-based phenological models 460 

cannot easily be incorporated into global vegetation models such as LPJ-GUESS. Instead, in 461 

common with most other such models (e.g. refs51,52), spring phenology was represented by an 462 

exponential relationship between growing degree-days to leaf-out and the length of the chilling 463 

period (chilling model). In LPJ-GUESS the relationship was formulated as follows34: 464 

 465 



GDD° = 𝛼 + 𝛽𝑒-{|                                                                                                                    (7) 466 

 467 

where C is the length of the chilling period and α, β, and κ are constants specific to plant 468 

functional types. 469 

 470 

Based on our empirical findings we replaced this equation by the following (full model): 471 

 472 

GDD° = 𝛼 + 𝛽C + 𝛾D + 𝛿CD                                                                                                     (8)  473 

 474 

where C is the length of the chilling period, D is the day length at spring onset, CD is the 475 

interaction between chilling and day length, and α, β, γ, and δ are coefficients specific to plant 476 

functional types. The length of the chilling period was defined as the number of days <5°C from 477 

1 October, day length at spring onset was defined relative to a degree-day threshold (see table 478 

1). We calculated a specific spring onset for each functional type because, the needleleaf 479 

summergreen species Larix decidua, for example, flushes earlier than many broadleaf 480 

summergreen trees. Three functional types of trees (BSI, broadleaved summergreen shade-481 

intolerant; BST, broadleaved summergreen shade-tolerant; NS, needleleaved summergreen) 482 

were present in our species sampling. Following ref53, Fagus sylvatica and Tilia cordata were 483 

treated as shade tolerant, Aesculus hippocastanum, Alnus glutinosa, Betula pendula, Fraxinus 484 

excelsior, and Quercus robur as shade intolerant. Leaf-out phenology of Picea abies was not 485 

included in LPJ-GUESS because, in evergreen species, onset of photosynthetic activity in 486 

spring is not dependent on the flushing of new buds. In addition to the deciduous plant 487 

functional types described above, LPJ-GUESS simulations also included a temperate 488 

needleleaved evergreen tree, a boreal needleleaved evergreen shade-tolerant tree, a boreal 489 

needleleaved evergreen shade-intolerant tree and a C3 grass50, with the distributions of each 490 

functional type governed by model-internal processes of competition. All simulations were run 491 



as potential natural vegetation (i.e. without land management) and the outputs were masked and 492 

rescaled to current temperate forest area as defined by Hansen et al.54. 493 

Daily climate forcing data came from the r1i1p1 ensemble member of the IPSL-494 

CM5A-LR model from CMIP555 for 1850-2099 following the RCP 8.5 scenario, bias-corrected 495 

to 1960-1999 WATCH climate56, as prepared for the ISI-MIP2 project. Atmospheric CO2 496 

mixing ratios were as prescribed for the RCP 8.5 scenario of CMIP5 and N deposition data was 497 

taken from Lamarque et al.57. Simulations were spun-up for 500 years using recycled, detrended 498 

1850-1879 climate, and 1850 atmospheric CO2 mixing ratio and N deposition. They were then 499 

run under fully transient environmental forcings from 1850-2099. The spatial resolution was 500 

0.5° x 0.5°. In total four simulations were conducted: simulations with the original and updated 501 

phenology algorithms, and two further simulations in which, for each of the algorithms, leaf 502 

out dates from 2010 onwards were forced by mean 2001-2010 daily temperatures in each grid 503 

cell, so as to provide a baseline from which to identify the effects of the phenology algorithm 504 

on the carbon cycle. 505 

 506 
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Table 1 | Coefficients estimated for the full model according to equation 8. Separate 677 

coefficients were obtained for each plant functional type and reflect the average across species 678 

and sites. Spring onset refers to the average degree-days used to calculate day-length. Species 679 

used to infer functional-type specific coefficients: broadleaved summergreen shade-intolerant 680 

= Aesculus hippocastanum, Alnus glutinosa, Betula pendula, Fraxinus excelsior, and Quercus 681 

robur; broadleaved summergreen shade-tolerant = Fagus sylvatica and Tilia cordata; 682 

needleleaf summergreen = Larix decidua. 683 

 684 

Functional type α  β  γ  δ   Spring onset 

(GDD) 

Temperate broadleaf 

summergreen shade-

intolerant (BSI) 

730.64 -0.05 -34.78 -0.01 215 

Temperate broadleaf 

summergreen shade-

tolerant (BST) 

1008.88 -1.16 -53.46 0.06 220 

Boreal needleleaf 

summergreen (NS) 

618.18 -2.49 -33.50 0.15 150 
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 690 



 691 
Figure 1 | Testing for interactive climate effects on the timing of spring leaf-out. a, In the 692 
full model (green), the amount of warming required to leaf-out is directly affected by winter 693 
chilling and spring day length, winter chilling interacts with day-length, and autumn 694 
temperatures affect winter chilling. In the Null model (red), leaf-out is solely driven by spring 695 
warming. b–d, The interactive effects among climate factors should cause warming 696 
requirements to increase under warmer autumns (b), reduced chilling (c), or shorter day length 697 
(d). e, Under cold spring conditions, leaf-out should occur earlier than expected from the Null 698 
model because long days and long chilling reduce the amount of warming required to leaf-out; 699 
under warm spring conditions, leaf-out should occur later than expected from the Null model 700 
because short days and short chilling increase the amount of warming required to leaf-out. 701 
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 710 
 711 
Figure 2 | The effects of autumn temperature (a), winter chilling (b), and day-length (c) 712 
on accumulated warming required to leaf-out. Pearson correlation coefficients (± 2 standard 713 
errors) are shown for each parameter. a, The mean temperatures of the months October and 714 
November, September to November, or September and October were used to calculate autumn 715 
temperatures. b, Two different temperature ranges were used to calculate winter chilling: all 716 
temperatures below 5°C (red) or temperatures between 0°C and 5°C (turquoise). c, The 717 
relationship between day-length at spring onset and accumulated warming required to leaf-out. 718 
Number of analysed time-series per species: Aesculus hippocastanum, 3703; Alnus glutinosa, 719 
1841; Betula pendula, 3663; Fagus sylvatica, 3091; Fraxinus excelsior, 2178; Larix decidua, 720 
2644; Picea abies, 2942; Quercus robur, 3152; Tilia cordata, 1436. 721 
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 741 
 742 
Figure 3 | Leaf-out date predictions based on the empirical relationships between required 743 
accumulated warming and autumn temperature, winter chilling, and day-length (see 744 
Figure 1). a, b, Observed and empirically modelled leaf-out dates using 10-fold cross-745 
validations in response to year (a) and spring temperature (b) averaged across all nine study 746 
species (observed leaf-out = black lines; full model = green lines; chilling model = blue lines; 747 
Null model = red lines). See Figs. S5 and S6 for species-specific plots. Loess smoothing curves 748 
in b) are based on random-effects models to control for differences among sites. c, Observed 749 
versus predicted leaf-out dates of the full model, the chilling model, and the Null model. Solid 750 
lines show linear regression fit, dashed lines show the 1:1 line. For the chilling model and the 751 
Null model, the intercept differed significantly from 0 and the slope differed from 1 (P < 0.05). 752 
To standardize among sites, observed and predicted leaf-out dates are shown as anomalies, i.e., 753 
as deviation from the mean observed leaf-out date at each site. 754 
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 763 
Figure 4 | Model evaluation and future projections of Central European leaf-out dates. a-764 
c, Model comparison of the three empirical models applied in this study (green = full model, 765 
blue = chilling model, red = Null model) and 17 process-based models from the literature. a, 766 
Significance values reporting whether the slope of observed versus predicted leaf-out dates 767 
differs from 1. Numbers above indicate the percentages of sites for which the model slopes 768 
were significantly (P<0.05) smaller (= overprediction) or larger than 1 (= underprediction). b, 769 
Significance values reporting whether the intercept of observed versus predicted leaf-out dates 770 
differs from 0. Numbers above indicate the percentages of sites for which the model intercepts 771 
were significantly larger (= overprediction) or smaller than 0 (= underprediction). c, Root-772 
mean-square errors of models. The dashed line shows the average RMSE expected under a 773 
Null-model where leaf-out dates do not differ among years. d, Future leaf-out projections (15-774 
year moving averages for nine species) under the RCP 8.5 climate-scenario, based on the seven 775 
best performing models and the Null model. The grey area indicates one s.e. either side of the 776 
mean. Right panel shows estimated advances in leaf-out by the end of the 21st century (2080–777 
2100) compared to the average leaf-out dates between 1990–2010 according to the full model 778 
(green) and the Null model (red). 779 
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 780 
Figure 5 | Effects of leaf-out changes in Northern Hemisphere temperate forests on net 781 
primary productivity (NPP). a, Annual forest NPP (above 23°N latitude) over the 21st 782 
century, simulating spring leaf-out times with the chilling model (solid blue line) or the full 783 
model (solid green line). Dashed lines show the baselines assuming no leaf-out changes in the 784 
future (phenology fixed at years 2001-2010). b, Increases in NPP that are solely caused by leaf-785 
out shifts simualted with the chilling model and the full model. Arrows in a) and b) show the 786 
cumulative difference in NPP between the standard LPJ-GUESS model (including the chilling 787 
model) and the updated model (including our full model). c, Differences in average leaf-out 788 
times of Northern Hemisphere temperate forests simualted with the chilling model and the full 789 
model. Plant functional types: NS, needleleaved summergeen; BS, broadleaved summergreen 790 
(either shade tolerant or intolerant). 791 
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 824 
 825 
Figure S1 | Locations of the 4,165 sites used in this study. Each site contains long-term leaf-826 
out observations (>15 years) for at least one species. On average, information on six species 827 
was available per site. 828 



 829 
 830 
Figure S2 | The univariate effects of autumn temperature (a), winter chilling (b), and day-831 
length (c) on accumulated warming (degree-days) required to leaf-out. Random effects 832 
models were applied to remove site effects for each species. Winter chilling was calculated 833 
using all temperatures below 5 °C (see Methods).  834 
 835 
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 836 
 837 
Figure S3 | Comparison of empirical model equations. a, Comparison of 16 models testing 838 
the relationships between accumulated warming required to leaf-out and day-length, winter 839 
chilling, and autumn temperatures in the nine study species. Model equations are shown on the 840 
right. Across all species, models including an interaction term between day-length and winter 841 
chilling had significantly higher R2 values. Whether autumn temperature was included as a 842 
fixed effect or not did not affect the model fit. Also, model fit was unaffected by whether day-843 
length and winter chilling were included as exponential terms or not. b, Future projections of 844 
Central European leaf-out dates including winter chilling and day length as normal (green lines) 845 
or exponential terms (blue lines) in the model (equations 13 and 14 in panel a). 15-year moving 846 
averages for nine species are shown. Left panel: ‘CO2 stabilization’ climate scenario (RCP 4.5); 847 
Right panel: ‘business-as-usual’ scenario (RCP 8.5). The grey area indicates one s.e. either side 848 
of the mean. 849 
 850 
 851 
 852 
 853 

0.40

0.45

0.50

0.55

0.60

A.
 hi

pp
oc

as
tan

um

Al
nu

s g
lut

ino
sa

Be
tul

a p
en

du
la

Fa
gu

s s
ylv

ati
ca

Fr
ax

inu
s e

xc
els

ior

La
rix

 de
cid

ua

Pi
ce

a a
bie

s

Qu
er

cu
s r

ob
ur

Til
ia 

co
rd

ata

Co
ef

fic
ien

t o
f d

et
er

m
ina

tio
n 

(R
2 ) Models

1  GDDi ~ α + β1DayLengthi       + β2Chillingi        + β3AutumnTempi 
2  GDDi ~ α + β1exp(DayLengthi) + β2exp(Chillingi) + β3AutumnTempi   
3  GDDi ~ α + β1exp(DayLengthi) + β2Chillingi     + β3AutumnTempi   
4  GDDi ~ α + β1DayLengthi         + β2exp(Chillingi) + β3AutumnTempi  
5  GDDi ~ α + β1DayLengthi         + β2Chillingi       + β3AutumnTempi + β4DayLengthiChillingi

6  GDDi ~ α + β1exp(DayLengthi) + β2exp(Chillingi) + β3AutumnTempi  + β4DayLengthiexp(Chillingi) 
7  GDDi ~ α + β1exp(DayLengthi) + β2Chillingi      + β3AutumnTempi + β4DayLengthiChillingi 
8  GDDi ~ α + β1DayLengthi         + β2exp(Chillingi) + β3AutumnTempi  + β4DayLengthiexp(Chillingi) 
9 GDDi ~ α + β1DayLengthi      + β2Chillingi  
10  GDDi ~ α + β1exp(DayLengthi) + β2exp(Chillingi)  
11 GDDi ~ α + β1exp(DayLengthi) + β2Chillingi  
12  GDDi ~ α + β1DayLengthi       + β2exp(Chillingi)  
13 GDDi ~ α + β1DayLengthi       + β2Chillingi          + β3DayLengthiChillingi 
14 GDDi ~ α + β1exp(DayLengthi) + β2exp(Chillingi)  + β3DayLengthiexp(Chillingi)  
15 GDDi ~ α + β1exp(DayLengthi) + β2Chillingi          + β3DayLengthiChillingi 
16 GDDi ~ α + β1DayLengthi        + β2exp(Chillingi) + β3DayLengthiexp(Chillingi) 

RCP 8.5

2040 2060 2080 2040 2060 2080

90

100

110

120

Year

Le
af

-o
ut

 d
at

e 
(D

OY
)

Full model normal
Full model exponential

RCP 4.5

a

b

13

14



 854 
 855 
Figure S4 | Observed versus predicted leaf-out dates of the full model (a), the chilling 856 
model (b), and the Null model (c). Solid lines show linear regression fit, dashed lines show the 857 
1:1 line. RMSE values, R2 values, and regression slopes are shown in each panel, asterisks 858 
indicate that the slope differs significantly from 1 (Wald-test; *P <0.05, **P <0.01, ***P 859 
<0.001). To standardize among sites, observed and predicted leaf-out dates are shown as 860 
anomalies, i.e., as deviation from the mean observed leaf-out date at each site. 861 
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 866 
 867 
Figure S5 | Temporal projections of leaf-out dates of the nine study species. Observed 868 
(black lines) and empirically modelled average leaf-out dates using 10-fold cross-validations in 869 
response to year (full model = green lines; chilling model = blue lines; Null model = red lines). 870 
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 872 
Figure S6 | Spring temperature sensitivities of leaf-out dates. Observed and empirically 873 
modelled average leaf-out dates using 10-fold cross-validations  in response to spring 874 
temperature (observed leaf-out = black lines; full model = green lines; chilling model = blue 875 
lines; Null model = red lines). Loess smoothing curves are based on random-effects models to 876 
control for differences among sites. 877 
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 878 
Figure S7 | Future projections of Central European spring temperatures. a, 15-year 879 
moving averages for a ‘CO2 stabilization’ climate scenario (RCP 4.5) (lightblue) or a ‘business-880 
as-usual’ scenario (RCP 8.5) (orange). The grey area indicates one s.e. either side of the mean. 881 
b, Estimated increases in spring temperatures by the end of the 21st century compared to 1990–882 
2010. Spring temperatures were calculated as the preseason temperatures 60 days prior to the 883 
mean leaf-out date for each individual. 884 
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 894 
 895 
Figure S8 | Future projections of leaf-out dates for the nine study species based on the full 896 
model (upper panels) or the Null model (lower panels) using 15-year moving averages. Left 897 
panels: ‘CO2 stabilization’ climate scenario (RCP 4.5); Right panels: ‘business-as-usual’ 898 
scenario (RCP 8.5). The black line shows the average across all species, the grey area indicates 899 
one s.e. either side of the mean. 900 
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 922 

 923 
 924 
Figure S9 | Spring temperature sensitivities of the nine study species. a, Density 925 
distributions of spring temperature sensitivities (days advance in leaf unfolding per each °C 926 
increase in air temperature) for 24,650 time-series. b, Density plot of P values for the correlation 927 
between spring temperature and leaf-out dates. The red line shows the 5% significance 928 
threshold. Number of analysed time-series per species: Aesculus hippocastanum, 3703; Alnus 929 
glutinosa, 1841; Betula pendula, 3663; Fagus sylvatica, 3091; Fraxinus excelsior, 2178; Larix 930 
decidua, 2644; Picea abies, 2942; Quercus robur, 3152; Tilia cordata, 1436. 931 
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 943 
 944 
Figure S10 | Effects of leaf-out changes in Northern Hemisphere temperate forests on net 945 
biome productivity (NBP). a, Annual forest NBP (above 23°N latitude) over the 21st century, 946 
simulating spring leaf-out times with the chilling model (solid blue line) or the full model (solid 947 
green line). Dashed lines show the baselines assuming no leaf-out changes in the future 948 
(phenology fixed at years 2001-2010). b, Increases in NBP that are solely caused by leaf-out 949 
shifts simulated with the chilling model and the full model. Arrows show the difference in NBP 950 
between the standard LPJ-GUESS model (including chilling-only) and the updated model 951 
(including our full phenology model). On average, NBP decreases by 15.5%, which equals a 952 
decrease in cumulative NBP over the 21st century of 9.5 Gt. 953 
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