References
1. J. J. Elser, et al. , Nutritional constraints in terrestrial and freshwater food webs. Nature 408 , 578–580 (2000).
2. L. M. Schoonhoven, T. Jermy, J. J. A. Van Loon, “Plants as insect food: not the ideal” in Insect-Plant Biology , (Springer, 1998), pp. 83–120.
3. T. C. White, The inadequate environment: nitrogen and the abundance of animals (Springer Science & Business Media, 2012).
4. F. Slansky Jr, P. Feeny, Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecological Monographs 47 , 209–228 (1977).
5. N. M. Haddad, J. Haarstad, D. Tilman, The effects of long-term nitrogen loading on grassland insect communities. Oecologia124 , 73–84 (2000).
6. A. Joern, S. T. Behmer, Importance of dietary nitrogen and carbohydrates to survival, growth, and reproduction in adults of the grasshopper Ageneotettix deorum (Orthoptera: Acrididae).Oecologia 112 , 201–208 (1997).
7. G. S. Wheeler, M. D. Halpern, Compensatory responses of Samea multiplicalis larvae when fed leaves of different fertilization levels of the aquatic weed Pistia stratiotes. Entomologia experimentalis et applicata 92 , 205–216 (1999).
8. D. S. Smith, F. E. Northcott, The effects on the grasshopper, Melanoplus mexicanus mexicanus (Sauss.)(Orthoptera: Acrididae), of varying the nitrogen content in its food plant. Canadian Journal of Zoology 29 , 297–304 (1951).
9. D. E. Lincoln, T. S. Newton, P. R. Ehrlich, K. S. Williams, Coevolution of the checkerspot butterfly Euphydryas chalcedona and its larval food plant Diplacus aurantiacus: larval response to protein and leaf resin. Oecologia 52 , 216–223 (1982).
10. B. E. Tabashnik, Responses of pest and non-pest Colias butterfly larvae to intraspecific variation in leaf nitrogen and water content.Oecologia 55 , 389–394 (1982).
11. W. J. Mattson Jr, Herbivory in relation to plant nitrogen content.Annual review of ecology and systematics 11 , 119–161 (1980).
12. D. Berner, W. U. Blanckenhorn, C. Körner, Grasshoppers cope with low host plant quality by compensatory feeding and food selection: N limitation challenged. Oikos 111 , 525–533 (2005).
13. A. J. Cease, et al. , Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science335 , 467–469 (2012).
14. K. P. Lee, et al. , Lifespan and reproduction in Drosophila: New insights from nutritional geometry. PNAS 105 , 2498–2503 (2008).
15. F. J. Clissold, G. D. Sanson, J. Read, The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust. Journal of Animal Ecology 75 , 1000–1013 (2006).
16. S. H. South, C. M. House, A. J. Moore, S. J. Simpson, J. Hunt, Male Cockroaches Prefer a High Carbohydrate Diet That Makes Them More Attractive to Females: Implications for the Study of Condition Dependence. Evolution 65 , 1594–1606 (2011).
17. D. Raubenheimer, S. J. Simpson, The geometry of compensatory feeding in the locust. Animal Behaviour 45 , 953–964 (1993).
18. S. T. Behmer, Insect herbivore nutrient regulation. Annual review of entomology 54 , 165–187 (2009).
19. S. J. Simpson, D. Raubenheimer, The geometric analysis of feeding and nutrition: a user’s guide. Journal of Insect Physiology41 , 545–553 (1995).
20. S. J. Simpson, D. Raubenheimer, A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 342 , 381–402 (1993).
21. S. T. Behmer, Insect herbivore nutrient regulation. Annual review of entomology 54 (2009).
22. S. J. Simpson, D. Raubenheimer, The nature of nutrition: a unifying framework from animal adaptation to human obesity (Princeton university press, 2012).
23. S. M. Solon-Biet, et al. , The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell metabolism 19 , 418–430 (2014).
24. J. J. Couture, J. S. Servi, R. L. Lindroth, Increased nitrogen availability influences predator–prey interactions by altering host-plant quality. Chemoecology 20 , 277–284 (2010).
25. C. S. Awmack, S. R. Leather, Host Plant Quality and Fecundity in Herbivorous Insects. Annual Review of Entomology 47 , 817–844 (2002).
26. S. McNeill, The role of nitrogen in the development of insect-plant relationships. Biochemical aspects of plant and animal coevolution , 77–98 (1977).
27. W. J. Mattson Jr, Herbivory in relation to plant nitrogen content.Annual review of ecology and systematics 11 , 119–161 (1980).
28. J. Gebauer, Effects of different nitrogen contents in wheat leaves on the food choice and feeding activity of the grey field slug, Deroceras reticulatum (Müller) under laboratory conditions.Journal of Plant Diseases and Protection 109 , 421–429 (2002).
29. F. J. Clissold, G. D. Sanson, J. Read, The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust. Journal of Animal Ecology 75 , 1000–1013 (2006).
30. P. A. Lenhart, M. D. Eubanks, S. T. Behmer, Water stress in grasslands: dynamic responses of plants and insect herbivores.Oikos 124 , 381–390 (2015).
31. T. Abe, M. Higashi, Cellulose centered perspective on terrestrial community structure. Oikos , 127–133 (1991).
32. K. P. Lee, D. Raubenheimer, S. J. Simpson, The effects of nutritional imbalance on compensatory feeding for cellulose-mediated dietary dilution in a generalist caterpillar. Physiological Entomology 29 , 108–117 (2004).
33. S. J. McNaughton, J. L. Tarrants, M. M. McNaughton, R. D. Davis, Silica as a Defense against Herbivory and a Growth Promotor in African Grasses. Ecology 66 , 528–535 (1985).
34. S. J. McNaughton, J. L. Tarrants, Grass leaf silicification: natural selection for an inducible defense against herbivores. Proceedings of the National Academy of Sciences 80 , 790–791 (1983).
35. C. R. Blem, The energetics of migration. Animal migration, orientation, and navigation , 175–224 (1980).
36. D. M. Hunter, L. McCulloch, D. E. Wright, Lipid accumulation and migratory flight in the Australian plague locust, Chortoicetes terminifera (Walker)(Orthoptera: Acrididae). Bulletin of Entomological Research 71 , 543–546 (1981).
37. T. Weis-Fogh, Fat combustion and metabolic rate of flying locusts (Schistocerca gregaria Forskaal). Phil. Trans. R. Soc. Lond. B 237 , 1–36 (1952).
38. I. H. Maiga, M. Lecoq, C. Kooyman, Ecology and management of the Senegalese grasshopper Oedaleus senegalensis (Krauss 1877)(Orthoptera: Acrididae) in West Africa: review and prospects in Annales de La Société Entomologique de France , (Taylor & Francis, 2008), pp. 271–288.
39. J. R. Riley, D. R. Reynolds, Radar-based studies of the migratory flight of grasshoppers in the middle Niger area of Mali in Proc. R. Soc. Lond. B , (The Royal Society, 1979), pp. 67–82.
40. J. R. Riley, D. R. Reynolds, A Long-Range Migration of Grasshoppers Observed in the Sahelian Zone of Mali by Two Radars. Journal of Animal Ecology 52 , 167–183 (1983).
41. J. R. Riley, D. R. Reynolds, Nocturnal grasshopper migration in West Africa: transport and concentration by the wind, and the implications for air-to-air control. Phil. Trans. R. Soc. Lond. B328 , 655–672 (1990).
42. P. A. Loaiza, O. Balocchi, A. Bertrand, Carbohydrate and crude protein fractions in perennial ryegrass as affected by defoliation frequency and nitrogen application rate. Grass and Forage Science72 , 556–567 (2017).
43. D. Berrigan, The Allometry of Egg Size and Number in Insects.Oikos 60 , 313–321 (1991).
44. J. L. Capinera, Qualitative Variation in Plants and Insects: Effect of Propagule Size on Ecological Plasticity. The American Naturalist 114 , 350–361 (1979).
45. M. C. Pardo, M. D. López-León, G. M. Hewitt, J. P. M. Camacho, Female fitness is increased by frequent mating in grasshoppers.Heredity 74 , 654–660 (1995).
46. R. K. Butlin, C. W. Woodhatch, G. M. Hewitt, Male spermatophore investment increases female fecundity in a grasshopper. Evolution41 , 221–225 (1987).
47. R. Dudley, The evolutionary physiology of animal flight: paleobiological and present perspectives. Annual review of physiology 62 , 135–155 (2000).
48. T. M. Casey, “Insect flight energetics” in Locomotion and Energetics in Arthropods , (Springer, 1981), pp. 419–452.
49. Weis-Fogh T., Uvarov Boris Petrovich, Fat combustion and metabolic rate of flying locusts (Schistocerca gregaria Forskål).Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237 , 1–36 (1952).
50. A. R. Jutsum, G. J. Goldsworthy, Fuels for flight in Locusta .Journal of Insect Physiology 22 , 243–249 (1976).
51. M. Le Gall, R. Overson, A. J. Cease, A global review on locusts (Orthoptera: Acrididae) and their interactions with livestock grazing practices. Frontiers in Ecology and Evolution 7 , 263 (2019).
52. D. Raubenheimer, S. J. Simpson, Integrative models of nutrient balancing: application to insects and vertebrates. Nutrition Research Reviews 10 , 151–179 (1997).
53. E. Obeng, et al. , Insect incidence and damage on pearl millet (Pennisetum glaucum) under various nitrogen regimes in Alabama.The Florida Entomologist 98 , 74–79 (2015).
54. W. Kutsch, H. Martz, G. Gäde, Flight capability and flight motor pattern in a sedentary South African grasshopper, Phymateus morbillosus– a comparison with migratory species. Physiological Entomology 27 , 39–50 (2002).
55. F. Picaud, D. P. Petit, Body size, sexual dimorphism and ecological succession in grasshoppers. Journal of Orthoptera Research17 , 177–182 (2008).
56. V. A. Drake, V. A. Drake, A. G. Gatehouse, Insect migration: tracking resources through space and time (Cambridge University Press, 1995).
57. R. A. Holland, M. Wikelski, D. S. Wilcove, How and Why Do Insects Migrate? Science 313 , 794–796 (2006).
58. R. W. Russell, M. L. May, K. L. Soltesz, J. W. Fitzpatrick, Massive swarm migrations of dragonflies (Odonata) in eastern North America.The American Midland Naturalist 140 , 325–343 (1998).
59. M. L. My Hanh Launois-Luong, Oedaleus senegalensis (Krauss, 1977) sauteriau ravageur du Sahel (1989).
60. S. M. Solon-Biet, et al. , Macronutrient balance, reproductive function, and lifespan in aging mice. PNAS 112 , 3481–3486 (2015).
61. A. A. Maklakov, et al. , Sex-Specific Fitness Effects of Nutrient Intake on Reproduction and Lifespan. Current Biology18 , 1062–1066 (2008).
62. J. I. Sprent, “Nitrogen fixation in arid environments” inPlants for Arid Lands , (Springer, 1985), pp. 215–229.
63. J. Skujiņš, Nitrogen cycling in arid ecosystems. Ecological Bulletins , 477–491 (1981).
64. M. Le Gall, et al. , Linking land use and the nutritional ecology of herbivores: a case study with the Senegalese locust.Functional Ecology .
65. M. L. Word, et al. , Soil-targeted interventions could alleviate locust and grasshopper pest pressure in West Africa.Science of The Total Environment (2019).
66. F. J. Clissold, G. D. Sanson, J. Read, S. J. Simpson, Gross vs. net income: how plant toughness affects performance of an insect herbivore.Ecology 90 , 3393–3405 (2009).
67. A. J. Cease, et al. , Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science335 , 467–469 (2012).
68. A. J. Cease, et al. , Living With Locusts: Connecting Soil Nitrogen, Locust Outbreaks, Livelihoods, and Livestock Markets.BioScience 65 , 551–558 (2015).
69. J. M. Rothman, D. Raubenheimer, C. A. Chapman, Nutritional geometry: gorillas prioritize non-protein energy while consuming surplus protein.Biology Letters , rsbl20110321 (2011).
70. P. A. Lenhart, M. D. Eubanks, S. T. Behmer, Water stress in grasslands: dynamic responses of plants and insect herbivores.Oikos (2014).
71. D. G. Le Couteur, et al. , The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73 , 1237–1252 (2016).
72. K. Jensen, C. McClure, N. K. Priest, J. Hunt, Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster. Aging Cell 14 , 605–615 (2015).
73. S. J. Harrison, D. Raubenheimer, S. J. Simpson, J.-G. J. Godin, S. M. Bertram, Towards a synthesis of frameworks in nutritional ecology: interacting effects of protein, carbohydrate and phosphorus on field cricket fitness. Proceedings of the Royal Society of London B: Biological Sciences 281 , 20140539 (2014).
74. S. M. Solon-Biet, et al. , The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice. Cell Metabolism 19 , 418–430 (2014).
75. B. G. Fanson, P. W. Taylor, Protein:carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast:sugar ratios. AGE 34 , 1361–1368 (2012).
76. A. Dussutour, S. J. Simpson, Ant workers die young and colonies collapse when fed a high-protein diet. Proceedings of the Royal Society of London B: Biological Sciences , rspb20120051 (2012).
77. B. G. Fanson, C. W. Weldon, D. Pérez‐Staples, S. J. Simpson, P. W. Taylor, Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell8 , 514–523 (2009).
78. D. A. Cullen, et al. , “From molecules to management: mechanisms and consequences of locust phase polyphenism” inAdvances in Insect Physiology , (Elsevier, 2017), pp. 167–285.
79. M. P. Pener, S. J. Simpson, “Locust Phase Polyphenism: An Update” in Advances in Insect Physiology , S. J. Simpson, M. P. Pener, Eds. (Academic Press, 2009), pp. 1–272.
80. H. Song, Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Minireview. Psyche: A Journal of Entomology (2011) https:/doi.org/10.1155/2011/741769 (February 22, 2018).
81. A. Tripathi, A. Pandey, Post-Hoc Comparison in Survival Analysis: An Easy Approach. Journal of Biosciences and Medicines 5 , 112–119 (2017).