References
1. J. J. Elser, et al. , Nutritional constraints in terrestrial
and freshwater food webs. Nature 408 , 578–580 (2000).
2. L. M. Schoonhoven, T. Jermy, J. J. A. Van Loon, “Plants as insect
food: not the ideal” in Insect-Plant Biology , (Springer, 1998),
pp. 83–120.
3. T. C. White, The inadequate environment: nitrogen and the
abundance of animals (Springer Science & Business Media, 2012).
4. F. Slansky Jr, P. Feeny, Stabilization of the rate of nitrogen
accumulation by larvae of the cabbage butterfly on wild and cultivated
food plants. Ecological Monographs 47 , 209–228 (1977).
5. N. M. Haddad, J. Haarstad, D. Tilman, The effects of long-term
nitrogen loading on grassland insect communities. Oecologia124 , 73–84 (2000).
6. A. Joern, S. T. Behmer, Importance of dietary nitrogen and
carbohydrates to survival, growth, and reproduction in adults of the
grasshopper Ageneotettix deorum (Orthoptera: Acrididae).Oecologia 112 , 201–208 (1997).
7. G. S. Wheeler, M. D. Halpern, Compensatory responses of Samea
multiplicalis larvae when fed leaves of different fertilization levels
of the aquatic weed Pistia stratiotes. Entomologia experimentalis
et applicata 92 , 205–216 (1999).
8. D. S. Smith, F. E. Northcott, The effects on the grasshopper,
Melanoplus mexicanus mexicanus (Sauss.)(Orthoptera: Acrididae), of
varying the nitrogen content in its food plant. Canadian Journal
of Zoology 29 , 297–304 (1951).
9. D. E. Lincoln, T. S. Newton, P. R. Ehrlich, K. S. Williams,
Coevolution of the checkerspot butterfly Euphydryas chalcedona and its
larval food plant Diplacus aurantiacus: larval response to protein and
leaf resin. Oecologia 52 , 216–223 (1982).
10. B. E. Tabashnik, Responses of pest and non-pest Colias butterfly
larvae to intraspecific variation in leaf nitrogen and water content.Oecologia 55 , 389–394 (1982).
11. W. J. Mattson Jr, Herbivory in relation to plant nitrogen content.Annual review of ecology and systematics 11 , 119–161
(1980).
12. D. Berner, W. U. Blanckenhorn, C. Körner, Grasshoppers cope with low
host plant quality by compensatory feeding and food selection: N
limitation challenged. Oikos 111 , 525–533 (2005).
13. A. J. Cease, et al. , Heavy livestock grazing promotes locust
outbreaks by lowering plant nitrogen content. Science335 , 467–469 (2012).
14. K. P. Lee, et al. , Lifespan and reproduction in Drosophila:
New insights from nutritional geometry. PNAS 105 ,
2498–2503 (2008).
15. F. J. Clissold, G. D. Sanson, J. Read, The paradoxical effects of
nutrient ratios and supply rates on an outbreaking insect herbivore, the
Australian plague locust. Journal of Animal Ecology 75 ,
1000–1013 (2006).
16. S. H. South, C. M. House, A. J. Moore, S. J. Simpson, J. Hunt, Male
Cockroaches Prefer a High Carbohydrate Diet That Makes Them More
Attractive to Females: Implications for the Study of Condition
Dependence. Evolution 65 , 1594–1606 (2011).
17. D. Raubenheimer, S. J. Simpson, The geometry of compensatory feeding
in the locust. Animal Behaviour 45 , 953–964 (1993).
18. S. T. Behmer, Insect herbivore nutrient regulation. Annual
review of entomology 54 , 165–187 (2009).
19. S. J. Simpson, D. Raubenheimer, The geometric analysis of feeding
and nutrition: a user’s guide. Journal of Insect Physiology41 , 545–553 (1995).
20. S. J. Simpson, D. Raubenheimer, A multi-level analysis of feeding
behaviour: the geometry of nutritional decisions. Philosophical
Transactions of the Royal Society of London. Series B: Biological
Sciences 342 , 381–402 (1993).
21. S. T. Behmer, Insect herbivore nutrient regulation. Annual
review of entomology 54 (2009).
22. S. J. Simpson, D. Raubenheimer, The nature of nutrition: a
unifying framework from animal adaptation to human obesity (Princeton
university press, 2012).
23. S. M. Solon-Biet, et al. , The ratio of macronutrients, not
caloric intake, dictates cardiometabolic health, aging, and longevity in
ad libitum-fed mice. Cell metabolism 19 , 418–430
(2014).
24. J. J. Couture, J. S. Servi, R. L. Lindroth, Increased nitrogen
availability influences predator–prey interactions by altering
host-plant quality. Chemoecology 20 , 277–284 (2010).
25. C. S. Awmack, S. R. Leather, Host Plant Quality and Fecundity in
Herbivorous Insects. Annual Review of Entomology 47 ,
817–844 (2002).
26. S. McNeill, The role of nitrogen in the development of insect-plant
relationships. Biochemical aspects of plant and animal
coevolution , 77–98 (1977).
27. W. J. Mattson Jr, Herbivory in relation to plant nitrogen content.Annual review of ecology and systematics 11 , 119–161
(1980).
28. J. Gebauer, Effects of different nitrogen contents in wheat leaves
on the food choice and feeding activity of the grey field slug,
Deroceras reticulatum (Müller) under laboratory conditions.Journal of Plant Diseases and Protection 109 , 421–429
(2002).
29. F. J. Clissold, G. D. Sanson, J. Read, The paradoxical effects of
nutrient ratios and supply rates on an outbreaking insect herbivore, the
Australian plague locust. Journal of Animal Ecology 75 ,
1000–1013 (2006).
30. P. A. Lenhart, M. D. Eubanks, S. T. Behmer, Water stress in
grasslands: dynamic responses of plants and insect herbivores.Oikos 124 , 381–390 (2015).
31. T. Abe, M. Higashi, Cellulose centered perspective on terrestrial
community structure. Oikos , 127–133 (1991).
32. K. P. Lee, D. Raubenheimer, S. J. Simpson, The effects of
nutritional imbalance on compensatory feeding for cellulose-mediated
dietary dilution in a generalist caterpillar. Physiological
Entomology 29 , 108–117 (2004).
33. S. J. McNaughton, J. L. Tarrants, M. M. McNaughton, R. D. Davis,
Silica as a Defense against Herbivory and a Growth Promotor in African
Grasses. Ecology 66 , 528–535 (1985).
34. S. J. McNaughton, J. L. Tarrants, Grass leaf silicification: natural
selection for an inducible defense against herbivores. Proceedings
of the National Academy of Sciences 80 , 790–791 (1983).
35. C. R. Blem, The energetics of migration. Animal migration,
orientation, and navigation , 175–224 (1980).
36. D. M. Hunter, L. McCulloch, D. E. Wright, Lipid accumulation and
migratory flight in the Australian plague locust, Chortoicetes
terminifera (Walker)(Orthoptera: Acrididae). Bulletin of
Entomological Research 71 , 543–546 (1981).
37. T. Weis-Fogh, Fat combustion and metabolic rate of flying locusts
(Schistocerca gregaria Forskaal). Phil. Trans. R. Soc.
Lond. B 237 , 1–36 (1952).
38. I. H. Maiga, M. Lecoq, C. Kooyman, Ecology and management of the
Senegalese grasshopper Oedaleus senegalensis (Krauss 1877)(Orthoptera:
Acrididae) in West Africa: review and prospects in Annales de La
Société Entomologique de France , (Taylor & Francis, 2008), pp.
271–288.
39. J. R. Riley, D. R. Reynolds, Radar-based studies of the migratory
flight of grasshoppers in the middle Niger area of Mali in Proc.
R. Soc. Lond. B , (The Royal Society, 1979), pp. 67–82.
40. J. R. Riley, D. R. Reynolds, A Long-Range Migration of Grasshoppers
Observed in the Sahelian Zone of Mali by Two Radars. Journal of
Animal Ecology 52 , 167–183 (1983).
41. J. R. Riley, D. R. Reynolds, Nocturnal grasshopper migration in West
Africa: transport and concentration by the wind, and the implications
for air-to-air control. Phil. Trans. R. Soc. Lond. B328 , 655–672 (1990).
42. P. A. Loaiza, O. Balocchi, A. Bertrand, Carbohydrate and crude
protein fractions in perennial ryegrass as affected by defoliation
frequency and nitrogen application rate. Grass and Forage Science72 , 556–567 (2017).
43. D. Berrigan, The Allometry of Egg Size and Number in Insects.Oikos 60 , 313–321 (1991).
44. J. L. Capinera, Qualitative Variation in Plants and Insects: Effect
of Propagule Size on Ecological Plasticity. The American
Naturalist 114 , 350–361 (1979).
45. M. C. Pardo, M. D. López-León, G. M. Hewitt, J. P. M. Camacho,
Female fitness is increased by frequent mating in grasshoppers.Heredity 74 , 654–660 (1995).
46. R. K. Butlin, C. W. Woodhatch, G. M. Hewitt, Male spermatophore
investment increases female fecundity in a grasshopper. Evolution41 , 221–225 (1987).
47. R. Dudley, The evolutionary physiology of animal flight:
paleobiological and present perspectives. Annual review of
physiology 62 , 135–155 (2000).
48. T. M. Casey, “Insect flight energetics” in Locomotion and
Energetics in Arthropods , (Springer, 1981), pp. 419–452.
49. Weis-Fogh T., Uvarov Boris Petrovich, Fat combustion and metabolic
rate of flying locusts (Schistocerca gregaria Forskål).Philosophical Transactions of the Royal Society of London. Series
B, Biological Sciences 237 , 1–36 (1952).
50. A. R. Jutsum, G. J. Goldsworthy, Fuels for flight in Locusta .Journal of Insect Physiology 22 , 243–249 (1976).
51. M. Le Gall, R. Overson, A. J. Cease, A global review on locusts
(Orthoptera: Acrididae) and their interactions with livestock grazing
practices. Frontiers in Ecology and Evolution 7 , 263
(2019).
52. D. Raubenheimer, S. J. Simpson, Integrative models of nutrient
balancing: application to insects and vertebrates. Nutrition
Research Reviews 10 , 151–179 (1997).
53. E. Obeng, et al. , Insect incidence and damage on pearl millet
(Pennisetum glaucum) under various nitrogen regimes in Alabama.The Florida Entomologist 98 , 74–79 (2015).
54. W. Kutsch, H. Martz, G. Gäde, Flight capability and flight motor
pattern in a sedentary South African grasshopper, Phymateus
morbillosus– a comparison with migratory species. Physiological
Entomology 27 , 39–50 (2002).
55. F. Picaud, D. P. Petit, Body size, sexual dimorphism and ecological
succession in grasshoppers. Journal of Orthoptera Research17 , 177–182 (2008).
56. V. A. Drake, V. A. Drake, A. G. Gatehouse, Insect migration:
tracking resources through space and time (Cambridge University Press,
1995).
57. R. A. Holland, M. Wikelski, D. S. Wilcove, How and Why Do Insects
Migrate? Science 313 , 794–796 (2006).
58. R. W. Russell, M. L. May, K. L. Soltesz, J. W. Fitzpatrick, Massive
swarm migrations of dragonflies (Odonata) in eastern North America.The American Midland Naturalist 140 , 325–343 (1998).
59. M. L. My Hanh Launois-Luong, Oedaleus senegalensis (Krauss, 1977)
sauteriau ravageur du Sahel (1989).
60. S. M. Solon-Biet, et al. , Macronutrient balance, reproductive
function, and lifespan in aging mice. PNAS 112 ,
3481–3486 (2015).
61. A. A. Maklakov, et al. , Sex-Specific Fitness Effects of
Nutrient Intake on Reproduction and Lifespan. Current Biology18 , 1062–1066 (2008).
62. J. I. Sprent, “Nitrogen fixation in arid environments” inPlants for Arid Lands , (Springer, 1985), pp. 215–229.
63. J. Skujiņš, Nitrogen cycling in arid ecosystems. Ecological
Bulletins , 477–491 (1981).
64. M. Le Gall, et al. , Linking land use and the nutritional
ecology of herbivores: a case study with the Senegalese locust.Functional Ecology .
65. M. L. Word, et al. , Soil-targeted interventions could
alleviate locust and grasshopper pest pressure in West Africa.Science of The Total Environment (2019).
66. F. J. Clissold, G. D. Sanson, J. Read, S. J. Simpson, Gross vs. net
income: how plant toughness affects performance of an insect herbivore.Ecology 90 , 3393–3405 (2009).
67. A. J. Cease, et al. , Heavy livestock grazing promotes locust
outbreaks by lowering plant nitrogen content. Science335 , 467–469 (2012).
68. A. J. Cease, et al. , Living With Locusts: Connecting Soil
Nitrogen, Locust Outbreaks, Livelihoods, and Livestock Markets.BioScience 65 , 551–558 (2015).
69. J. M. Rothman, D. Raubenheimer, C. A. Chapman, Nutritional geometry:
gorillas prioritize non-protein energy while consuming surplus protein.Biology Letters , rsbl20110321 (2011).
70. P. A. Lenhart, M. D. Eubanks, S. T. Behmer, Water stress in
grasslands: dynamic responses of plants and insect herbivores.Oikos (2014).
71. D. G. Le Couteur, et al. , The impact of low-protein
high-carbohydrate diets on aging and lifespan. Cell. Mol. Life
Sci. 73 , 1237–1252 (2016).
72. K. Jensen, C. McClure, N. K. Priest, J. Hunt, Sex-specific effects
of protein and carbohydrate intake on reproduction but not lifespan in
Drosophila melanogaster. Aging Cell 14 , 605–615 (2015).
73. S. J. Harrison, D. Raubenheimer, S. J. Simpson, J.-G. J. Godin, S.
M. Bertram, Towards a synthesis of frameworks in nutritional ecology:
interacting effects of protein, carbohydrate and phosphorus on field
cricket fitness. Proceedings of the Royal Society of London B:
Biological Sciences 281 , 20140539 (2014).
74. S. M. Solon-Biet, et al. , The Ratio of Macronutrients, Not
Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in
Ad Libitum-Fed Mice. Cell Metabolism 19 , 418–430
(2014).
75. B. G. Fanson, P. W. Taylor, Protein:carbohydrate ratios explain life
span patterns found in Queensland fruit fly on diets varying in
yeast:sugar ratios. AGE 34 , 1361–1368 (2012).
76. A. Dussutour, S. J. Simpson, Ant workers die young and colonies
collapse when fed a high-protein diet. Proceedings of the Royal
Society of London B: Biological Sciences , rspb20120051 (2012).
77. B. G. Fanson, C. W. Weldon, D. Pérez‐Staples, S. J. Simpson, P. W.
Taylor, Nutrients, not caloric restriction, extend lifespan in
Queensland fruit flies (Bactrocera tryoni). Aging Cell8 , 514–523 (2009).
78. D. A. Cullen, et al. , “From molecules to management:
mechanisms and consequences of locust phase polyphenism” inAdvances in Insect Physiology , (Elsevier, 2017), pp. 167–285.
79. M. P. Pener, S. J. Simpson, “Locust Phase Polyphenism: An Update”
in Advances in Insect Physiology , S. J. Simpson, M. P. Pener,
Eds. (Academic Press, 2009), pp. 1–272.
80. H. Song, Density-Dependent Phase Polyphenism in Nonmodel Locusts: A
Minireview. Psyche: A Journal of Entomology (2011)
https:/doi.org/10.1155/2011/741769 (February 22, 2018).
81. A. Tripathi, A. Pandey, Post-Hoc Comparison in Survival Analysis: An
Easy Approach. Journal of Biosciences and Medicines 5 ,
112–119 (2017).